# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ `paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2, we want to make Paddle a plain Python package. The model config package defined the way how to configure a neural network topology in Paddle Python code. The primary usage shows below. .. code-block:: python import paddle.v2 as paddle img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784)) hidden = paddle.layer.fc(input=img, size=200) prediction = paddle.layer.fc(input=hidden, size=10, act=paddle.activation.Softmax()) # use prediction instance where needed. parameters = paddle.parameters.create(cost) """ import collections import inspect import re import paddle.trainer_config_helpers as conf_helps from paddle.trainer.config_parser import \ RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \ RecurrentLayerGroupEnd, model_type from paddle.trainer_config_helpers.config_parser_utils import \ parse_network_config as __parse__ from paddle.trainer_config_helpers.default_decorators import wrap_act_default from paddle.trainer_config_helpers.default_decorators import \ wrap_bias_attr_default from paddle.trainer_config_helpers.default_decorators import wrap_name_default from paddle.trainer_config_helpers.layers import RecurrentLayerGroupSetGenerator, Generator from paddle.trainer_config_helpers.layers import layer_support import activation import attr import data_type from config_base import Layer, __convert_to_v2__ __all__ = ['parse_network', 'data'] def parse_network(output_layers, extra_layers=None): """ Parse all layers in the neural network graph and then generate a ModelConfig object. .. note:: This function is used internally in paddle.v2 module. User should never invoke this method. :param output_layers: Output layers. :type output_layers: Layer :param extra_layers: Some layers in the neural network graph are not in the path of output_layers. :type extra_layers: Layer :return: A ModelConfig object instance. :rtype: ModelConfig """ if not isinstance(output_layers, collections.Sequence): output_layers = [output_layers] if extra_layers is not None and not isinstance(extra_layers, collections.Sequence): extra_layers = [extra_layers] def __real_func__(): """ __real_func__ is the function that config_parser.parse invoked. It is the plain old paddle configuration function. """ context = dict() real_output = [each.to_proto(context=context) for each in output_layers] if extra_layers is not None: extra_output = [ each.to_proto(context=context) for each in extra_layers ] conf_helps.outputs(real_output) return __parse__(__real_func__) """ Some layer may need some special config, and can not use __convert_to_v2__ to convert. So we also need to implement some special LayerV2. """ class DataLayerV2(Layer): METHOD_NAME = 'data_layer' def __init__(self, name, type, **kwargs): assert isinstance(type, data_type.InputType) self.type = type self.__method_name__ = 'data_layer' self.__kwargs__ = kwargs super(DataLayerV2, self).__init__(name=name, parent_layers=dict()) def to_proto_impl(self, **kwargs): args = dict() args['size'] = self.type.dim for each in kwargs: args[each] = kwargs[each] for each in self.__kwargs__: args[each] = self.__kwargs__[each] return getattr(conf_helps, self.__method_name__)(name=self.name, **args) def __map_docstr__(doc): doc = re.sub(r'(data = [^\)]+)\).*', "data = paddle.layer.data(name=\"input\", " "type=paddle.data_type.dense_vector(1000))", doc) doc = re.sub(r':param size:.*', ':param type: Data type of this data layer', doc) doc = re.sub(r':type size:.*', ":type size: paddle.v2.data_type.InputType", doc) return doc class MemoryV2(Layer): def __init__(self, name, extra_input=None, **kwargs): """ Init memory object, if memory is inited inside recurrent_group step function, it may depend on a boot_layer that should be initialized outside recurrent_group, so we: 1. add RecurrentLayerInput to extra_parent of self. 2. add boot_layer to the extra_parent of RecurrentLayerInput. :param extra_input: list of RecurrentLayerInput :type extra_input: [RecurrentLayerInput] """ self.name = name super(MemoryV2, self).__init__(name=name, parent_layers=dict()) self.__kwargs__ = kwargs self.__boot_layer_name__ = None if 'boot_layer' in kwargs: begin_of_current_rnn = [] # TODO(yuyang18): Fix inspect, it could be wrong when user invoke a # function inside step. st = inspect.stack() for i in xrange(len(st)): locs = inspect.stack()[i][0].f_locals keys = locs.keys() for key in keys: val = locs[key] if isinstance(val, RecurrentLayerInput): begin_of_current_rnn.append(val) elif isinstance(val, collections.Sequence): for v in val: if isinstance(v, RecurrentLayerInput): begin_of_current_rnn.append(v) if begin_of_current_rnn: break assert begin_of_current_rnn is not None for extra in begin_of_current_rnn: self.append_extra_parent(extra) extra.append_extra_parent(kwargs['boot_layer']) self.__boot_layer_name__ = kwargs['boot_layer'].name def to_proto_impl(self, **kwargs): args = dict() for each in kwargs: args[each] = kwargs[each] for each in self.__kwargs__: args[each] = self.__kwargs__[each] if self.__boot_layer_name__ is not None: args['boot_layer'] = self.__context__[self.__boot_layer_name__] size = args.get('size', None) if size is not None: if callable(size): real_size = size() else: real_size = size args['size'] = real_size return conf_helps.memory(name=self.name, **args) def context_name(self): return self.name + "#memory" def use_context_name(self): """ memory layer will have the same name with some layer :return: """ return True class StaticInputV2(object): def __init__(self, input, is_seq=False, size=None): assert isinstance(input, LayerV2) self.name = input.name self.input = input self.is_seq = is_seq self.size = size # TODO(add size check) # assert input.size is not None or size is not None class BaseGeneratedInputV2(object): def __init__(self): self.bos_id = None self.eos_id = None def before_real_step(self): raise NotImplementedError() def after_real_step(self, *args): raise NotImplementedError() class GeneratedInputV2(BaseGeneratedInputV2): def __init__(self, size, embedding_name, embedding_size): super(GeneratedInputV2, self).__init__() self.size = size self.embedding_name = embedding_name self.embedding_size = embedding_size def after_real_step(self, input): return max_id(input=input, name='__beam_search_predict__') def before_real_step(self): predict_id = memory( name='__beam_search_predict__', size=self.size, boot_with_const_id=self.bos_id) trg_emb = embedding( input=predict_id, size=self.embedding_size, param_attr=attr.ParamAttr(name=self.embedding_name)) return trg_emb class RecurrentLayerGroupSetGeneratorV2(Layer): def __init__(self, eos_name, max_length, beam_size, num_results_per_sample): self.eos_name = eos_name self.max_length = max_length self.beam_size = beam_size self.num_results_per_sample = num_results_per_sample super(RecurrentLayerGroupSetGeneratorV2, self).__init__( name=eos_name, parent_layers={}) def to_proto_impl(self, **kwargs): RecurrentLayerGroupSetGenerator( Generator( eos_layer_name=self.eos_name, max_num_frames=self.max_length, beam_size=self.beam_size, num_results_per_sample=self.num_results_per_sample)) return self def context_name(self): return self.eos_name + ".fake" def use_context_name(self): return True class MixedLayerV2(Layer): """ This class is use to support `with` grammar. If not, the following code could convert mixed_layer simply. mixed = __convert_to_v2__( 'mixed_layer', name_prefix='mixed', parent_names=['input']) """ class AddToSealedMixedLayerExceptionV2(Exception): pass def __init__(self, size=0, input=None, name=None, act=None, bias_attr=None, layer_attr=None): self.__method_name__ = 'mixed_layer' self.finalized = False self.__inputs__ = [] if input is not None: self.__inputs__ = input other_kwargs = dict() other_kwargs['name'] = name other_kwargs['size'] = size other_kwargs['act'] = act other_kwargs['bias_attr'] = bias_attr other_kwargs['layer_attr'] = layer_attr parent_layers = {"input": self.__inputs__} super(MixedLayerV2, self).__init__(name, parent_layers) self.__other_kwargs__ = other_kwargs def __iadd__(self, other): if not self.finalized: self.__inputs__.append(other) return self else: raise MixedLayerV2.AddToSealedMixedLayerExceptionV2() def __enter__(self): assert len(self.__inputs__) == 0 return self def __exit__(self, *args, **kwargs): self.finalized = True def to_proto_impl(self, **kwargs): args = dict() for each in kwargs: args[each] = kwargs[each] for each in self.__other_kwargs__: args[each] = self.__other_kwargs__[each] size = args.get('size', None) if size is not None: if callable(size): real_size = size() else: real_size = size args['size'] = real_size return getattr(conf_helps, self.__method_name__)(**args) @wrap_name_default("mixed") @wrap_act_default(act=activation.Linear()) @wrap_bias_attr_default(has_bias=False) @layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT) def mixed(size=0, name=None, input=None, act=None, bias_attr=False, layer_attr=None): return MixedLayerV2(size, input, name, act, bias_attr, layer_attr) class RecurrentLayerInput(Layer): def __init__(self, recurrent_name, index, parent_layers): parents_len = len(parent_layers) assert parents_len <= 1 if parents_len == 0: self.__parents__ = [] else: self.__parents__ = parent_layers.values()[0] self.__recurrent_name__ = recurrent_name name = self.__parents__[ index].name if index >= 0 else self.context_name() super(RecurrentLayerInput, self).__init__( name=name, parent_layers=parent_layers) def context_name(self): return self.__recurrent_name__ + ".begin" def to_proto_impl(self, **kwargs): model_type('recurrent_nn') RecurrentLayerGroupWithoutOutLinksBegin( name=self.__recurrent_name__, in_links=map(lambda x: x.name, self.__parents__)) return self class RecurrentLayerOutput(Layer): def __init__(self, recurrent_name, index, parent_layers): assert len(parent_layers) == 1 self.__parents__ = parent_layers.values()[0] super(RecurrentLayerOutput, self).__init__( name=self.__parents__[index].name, parent_layers=parent_layers) self.__recurrent_name__ = recurrent_name def context_name(self): return self.__recurrent_name__ + ".end" def to_proto_impl(self, **kwargs): for l in self.__parents__: RecurrentLayerGroupSetOutLink(l.name) RecurrentLayerGroupEnd(name=self.__recurrent_name__) LayerV2 = Layer data = DataLayerV2 data.__name__ = 'data' AggregateLevel = conf_helps.layers.AggregateLevel ExpandLevel = conf_helps.layers.ExpandLevel memory = MemoryV2 def __layer_name_mapping__(inname): if inname in ['data_layer', 'memory', 'mixed_layer', 'recurrent_group']: # Do Not handle these layers return elif inname == 'maxid_layer': return 'max_id' elif inname.endswith('memory') or inname.endswith( '_seq') or inname.endswith('_sim') or inname == 'hsigmoid': return inname elif inname in [ 'cross_entropy', 'multi_binary_label_cross_entropy', 'cross_entropy_with_selfnorm' ]: return inname + "_cost" elif inname.endswith('_cost'): return inname elif inname.endswith("_layer"): return inname[:-len("_layer")] def __layer_name_mapping_parent_names__(inname): all_args = getattr(conf_helps, inname).argspec.args return filter( lambda x: x in ['input1', 'input2', 'label', 'input', 'a', 'b', 'expand_as', 'weights', 'vectors', 'weight', 'score', 'left', 'right', 'output_mem'], all_args) def __convert_layer__(_new_name_, _old_name_, _parent_names_): global __all__ __all__.append(_new_name_) globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_) globals()[new_name].__name__ = new_name for each_layer_name in dir(conf_helps): new_name = __layer_name_mapping__(each_layer_name) if new_name is not None: parent_names = __layer_name_mapping_parent_names__(each_layer_name) assert len(parent_names) != 0, each_layer_name __convert_layer__(new_name, each_layer_name, parent_names) del parent_names del new_name del each_layer_name @wrap_name_default() def recurrent_group(step, input, name=None): if not isinstance(input, collections.Sequence): input = [input] non_static_inputs = filter(lambda x: not isinstance(x, StaticInputV2), input) actual_input = [ RecurrentLayerInput( recurrent_name=name, index=i, parent_layers={'recurrent_inputs': non_static_inputs}) for i in xrange(len(non_static_inputs)) ] extra_input = None if len(non_static_inputs) == 0: extra_input = RecurrentLayerInput( recurrent_name=name, index=-1, parent_layers={}) def __real_step__(*args): rnn_input = list(args) static_inputs = filter(lambda x: isinstance(x, StaticInputV2), input) for static_input in static_inputs: mem_name = "__%s_memory__" % static_input.input.name mem = memory( name=mem_name, extra_input=extra_input, is_seq=static_input.is_seq, size=static_input.input.calculate_size, boot_layer=static_input.input) with mixed( name=mem_name, size=static_input.input.calculate_size, act=activation.Identity()) as mix: mix += identity_projection(input=mem) rnn_input.insert(input.index(static_input), mix) return step(*rnn_input) actual_output = __real_step__(*actual_input) if not isinstance(actual_output, collections.Sequence): actual_output = [actual_output] retv = [ RecurrentLayerOutput( recurrent_name=name, index=i, parent_layers={'recurrent_outputs': actual_output}) for i in xrange(len(actual_output)) ] if len(retv) == 1: return retv[0] else: return retv @wrap_name_default() def beam_search(step, input, bos_id, eos_id, beam_size, max_length=500, name=None, num_results_per_sample=None): if num_results_per_sample is None: num_results_per_sample = beam_size assert num_results_per_sample <= beam_size # logger.warning("num_results_per_sample should be less than beam_size") if isinstance(input, StaticInputV2) or isinstance( input, BaseGeneratedInputV2): input = [input] generated_input_index = -1 real_input = [] for i, each_input in enumerate(input): assert isinstance(each_input, StaticInputV2) or isinstance( each_input, BaseGeneratedInputV2) if isinstance(each_input, BaseGeneratedInputV2): assert generated_input_index == -1 generated_input_index = i else: real_input.append(each_input) assert generated_input_index != -1 gipt = input[generated_input_index] assert isinstance(gipt, BaseGeneratedInputV2) gipt.bos_id = bos_id gipt.eos_id = eos_id def __real_step__(*args): eos_name = "__%s_eos_layer__" % name generator = RecurrentLayerGroupSetGeneratorV2( eos_name, max_length, beam_size, num_results_per_sample) args = list(args) before_step_layer = gipt.before_real_step() before_step_layer.append_child( layer=generator, parent_names=[before_step_layer.name]) args.insert(generated_input_index, before_step_layer) predict = gipt.after_real_step(step(*args)) eos_layer = eos(input=predict, eos_id=eos_id, name=eos_name) predict.append_child(layer=eos_layer, parent_names=[predict.name]) return predict # tmp = paddle.layer.recurrent_group( # step=__real_step__, # input=real_input, # reverse=False, # name=name, # is_generating=True) tmp = recurrent_group( step=__real_step__, input=real_input, name=name) return tmp __projection_names__ = filter(lambda x: x.endswith('_projection'), dir(conf_helps)) __all__ += __projection_names__ __operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps)) __all__ += __operator_names__ # convert projection for prj in __projection_names__: globals()[prj] = __convert_to_v2__( prj, parent_names=['input'], is_default_name=False) globals()[prj].__name__ = prj # convert operator operator_list = [ # [V1_method_name, parent_names], ['dotmul_operator', ['a', 'b']], ['conv_operator', ['img', 'filter']] ] for op in operator_list: globals()[op[0]] = __convert_to_v2__( op[0], parent_names=op[1], is_default_name=False) globals()[op[0]].__name__ = op[0]