diff --git a/README.md b/README.md index 60ffbe728178705b1734e682868614025214c2a4..45186ec4ef48dc305b2616dbf4966f01c3609962 100644 --- a/README.md +++ b/README.md @@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle. Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle. -### Latest PaddlePaddle Release: [Fluid 0.14.0](https://github.com/PaddlePaddle/Paddle/tree/v0.14.0) +### Latest PaddlePaddle Release: [Fluid 0.15.0](https://github.com/PaddlePaddle/Paddle/tree/v0.15.0) ### Install Latest Stable Release: ``` # Linux CPU @@ -76,26 +76,26 @@ pip install paddlepaddle-gpu==0.14.0.post85 ## Installation -It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/install/install_doc.html) on our website. +It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/beginners_guide/install/install_doc.html) on our website. ## Documentation -We provide [English](http://paddlepaddle.org/documentation/docs/en/0.14.0/getstarted/index_en.html) and -[Chinese](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/index.html) documentation. +We provide [English](http://paddlepaddle.org/documentation/docs/en/0.15.0/getstarted/index_en.html) and +[Chinese](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/beginners_guide/index.html) documentation. - [Deep Learning 101](https://github.com/PaddlePaddle/book) You might want to start from this online interactive book that can run in a Jupyter Notebook. -- [Distributed Training](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/user_guides/howto/training/cluster_howto.html) +- [Distributed Training](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/user_guides/howto/training/cluster_howto.html) You can run distributed training jobs on MPI clusters. -- [Python API](http://paddlepaddle.org/documentation/api/zh/0.14.0/fluid.html) +- [Python API](http://paddlepaddle.org/documentation/api/zh/0.15.0/fluid.html) Our new API enables much shorter programs. -- [How to Contribute](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/advanced_usage/development/contribute_to_paddle.html) +- [How to Contribute](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/advanced_usage/development/contribute_to_paddle.html) We appreciate your contributions! diff --git a/benchmark/fluid/args.py b/benchmark/fluid/args.py index ed696e82f8723eba573e8affd3f25e2aa6426e63..0d5c9652de6b814627e54018366137e214726619 100644 --- a/benchmark/fluid/args.py +++ b/benchmark/fluid/args.py @@ -140,5 +140,11 @@ def parse_args(): '--use_lars', action='store_true', help='If set, use lars for optimizers, ONLY support resnet module.') + parser.add_argument( + '--reduce_strategy', + type=str, + choices=['reduce', 'all_reduce'], + default='all_reduce', + help='Specify the reduce strategy, can be reduce, all_reduce') args = parser.parse_args() return args diff --git a/benchmark/fluid/fluid_benchmark.py b/benchmark/fluid/fluid_benchmark.py index 11bd75e1d09a6b51c7c749c512f2b71f3604f3fb..ddd9fe809853a830ca676cc98f1819f683866def 100644 --- a/benchmark/fluid/fluid_benchmark.py +++ b/benchmark/fluid/fluid_benchmark.py @@ -91,7 +91,8 @@ def dist_transpile(trainer_id, args, train_prog, startup_prog): program=train_prog, pservers=pserver_endpoints, trainers=trainers, - sync_mode=not args.async_mode) + sync_mode=not args.async_mode, + startup_program=startup_prog) if training_role == "PSERVER": pserver_program = t.get_pserver_program(current_endpoint) pserver_startup_program = t.get_startup_program( @@ -169,6 +170,14 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, strategy = fluid.ExecutionStrategy() strategy.num_threads = args.cpus strategy.allow_op_delay = False + build_strategy = fluid.BuildStrategy() + if args.reduce_strategy == "reduce": + build_strategy.reduce_strategy = fluid.BuildStrategy( + ).ReduceStrategy.Reduce + else: + build_strategy.reduce_strategy = fluid.BuildStrategy( + ).ReduceStrategy.AllReduce + avg_loss = train_args[0] if args.update_method == "pserver": @@ -183,6 +192,7 @@ def train_parallel(train_args, test_args, args, train_prog, test_prog, avg_loss.name, main_program=train_prog, exec_strategy=strategy, + build_strategy=build_strategy, num_trainers=num_trainers, trainer_id=trainer_id) diff --git a/benchmark/fluid/models/mnist.py b/benchmark/fluid/models/mnist.py index cef8657ee629dcbc19221fd3440844a56627e920..f123e07fb711bd8ff67c1ecf5ec9a02c1e79eb1d 100644 --- a/benchmark/fluid/models/mnist.py +++ b/benchmark/fluid/models/mnist.py @@ -67,11 +67,14 @@ def cnn_model(data): def get_model(args, is_train, main_prog, startup_prog): # NOTE: mnist is small, we don't implement data sharding yet. - filelist = [ - os.path.join(args.data_path, f) for f in os.listdir(args.data_path) - ] + opt = None + data_file_handle = None with fluid.program_guard(main_prog, startup_prog): if args.use_reader_op: + filelist = [ + os.path.join(args.data_path, f) + for f in os.listdir(args.data_path) + ] data_file_handle = fluid.layers.open_files( filenames=filelist, shapes=[[-1, 1, 28, 28], (-1, 1)], @@ -100,7 +103,7 @@ def get_model(args, is_train, main_prog, startup_prog): if is_train: opt = fluid.optimizer.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999) - opt.minimize() + opt.minimize(avg_cost) if args.memory_optimize: fluid.memory_optimize(main_prog) diff --git a/benchmark/fluid/models/resnet.py b/benchmark/fluid/models/resnet.py index ae1baa48e17e40448e457052fd1464b9604a2128..1b3bfe659c7d97b58dc4121387d4db22266381c5 100644 --- a/benchmark/fluid/models/resnet.py +++ b/benchmark/fluid/models/resnet.py @@ -20,6 +20,7 @@ import functools import numpy as np import time import os +import math import cProfile, pstats, StringIO @@ -27,128 +28,120 @@ import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.profiler as profiler -# from recordio_converter import imagenet_train, imagenet_test from imagenet_reader import train, val +train_parameters = { + "input_size": [3, 224, 224], + "input_mean": [0.485, 0.456, 0.406], + "input_std": [0.229, 0.224, 0.225], + "learning_strategy": { + "name": "piecewise_decay", + "batch_size": 256, + "epochs": [30, 60, 90], + "steps": [0.1, 0.01, 0.001, 0.0001] + } +} + + +class ResNet(): + def __init__(self, layers=50, is_train=True): + self.params = train_parameters + self.layers = layers + self.is_train = is_train + + def net(self, input, class_dim=1000): + layers = self.layers + supported_layers = [50, 101, 152] + assert layers in supported_layers, \ + "supported layers are {} but input layer is {}".format(supported_layers, layers) + + if layers == 50: + depth = [3, 4, 6, 3] + elif layers == 101: + depth = [3, 4, 23, 3] + elif layers == 152: + depth = [3, 8, 36, 3] + num_filters = [64, 128, 256, 512] + + conv = self.conv_bn_layer( + input=input, num_filters=64, filter_size=7, stride=2, act='relu') + conv = fluid.layers.pool2d( + input=conv, + pool_size=3, + pool_stride=2, + pool_padding=1, + pool_type='max') + + for block in range(len(depth)): + for i in range(depth[block]): + conv = self.bottleneck_block( + input=conv, + num_filters=num_filters[block], + stride=2 if i == 0 and block != 0 else 1) + + pool = fluid.layers.pool2d( + input=conv, pool_size=7, pool_type='avg', global_pooling=True) + stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) + out = fluid.layers.fc(input=pool, + size=class_dim, + act='softmax', + param_attr=fluid.param_attr.ParamAttr( + initializer=fluid.initializer.Uniform(-stdv, + stdv))) + return out + + def conv_bn_layer(self, + input, + num_filters, + filter_size, + stride=1, + groups=1, + act=None): + conv = fluid.layers.conv2d( + input=input, + num_filters=num_filters, + filter_size=filter_size, + stride=stride, + padding=(filter_size - 1) // 2, + groups=groups, + act=None, + bias_attr=False) + return fluid.layers.batch_norm( + input=conv, act=act, is_test=not self.is_train) + + def shortcut(self, input, ch_out, stride): + ch_in = input.shape[1] + if ch_in != ch_out or stride != 1: + return self.conv_bn_layer(input, ch_out, 1, stride) + else: + return input -def conv_bn_layer(input, - ch_out, - filter_size, - stride, - padding, - act='relu', - is_train=True): - conv1 = fluid.layers.conv2d( - input=input, - filter_size=filter_size, - num_filters=ch_out, - stride=stride, - padding=padding, - act=None, - bias_attr=False) - return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train) - - -def shortcut(input, ch_out, stride, is_train=True): - ch_in = input.shape[1] # if args.data_format == 'NCHW' else input.shape[-1] - if ch_in != ch_out: - return conv_bn_layer( - input, ch_out, 1, stride, 0, None, is_train=is_train) - else: - return input - - -def basicblock(input, ch_out, stride, is_train=True): - short = shortcut(input, ch_out, stride, is_train=is_train) - conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train) - conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train) - return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') - - -def bottleneck(input, ch_out, stride, is_train=True): - short = shortcut(input, ch_out * 4, stride, is_train=is_train) - conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train) - conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train) - conv3 = conv_bn_layer( - conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train) - return fluid.layers.elementwise_add(x=short, y=conv3, act='relu') - - -def layer_warp(block_func, input, ch_out, count, stride): - res_out = block_func(input, ch_out, stride) - for i in range(1, count): - res_out = block_func(res_out, ch_out, 1) - return res_out - + def bottleneck_block(self, input, num_filters, stride): + conv0 = self.conv_bn_layer( + input=input, num_filters=num_filters, filter_size=1, act='relu') + conv1 = self.conv_bn_layer( + input=conv0, + num_filters=num_filters, + filter_size=3, + stride=stride, + act='relu') + conv2 = self.conv_bn_layer( + input=conv1, num_filters=num_filters * 4, filter_size=1, act=None) -def resnet_imagenet(input, - class_dim, - depth=50, - data_format='NCHW', - is_train=True): + short = self.shortcut(input, num_filters * 4, stride) - cfg = { - 18: ([2, 2, 2, 1], basicblock), - 34: ([3, 4, 6, 3], basicblock), - 50: ([3, 4, 6, 3], bottleneck), - 101: ([3, 4, 23, 3], bottleneck), - 152: ([3, 8, 36, 3], bottleneck) - } - stages, block_func = cfg[depth] - conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3) - pool1 = fluid.layers.pool2d( - input=conv1, pool_type='avg', pool_size=3, pool_stride=2) - res1 = layer_warp(block_func, pool1, 64, stages[0], 1) - res2 = layer_warp(block_func, res1, 128, stages[1], 2) - res3 = layer_warp(block_func, res2, 256, stages[2], 2) - res4 = layer_warp(block_func, res3, 512, stages[3], 2) - pool2 = fluid.layers.pool2d( - input=res4, - pool_size=7, - pool_type='avg', - pool_stride=1, - global_pooling=True) - out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax') - return out - - -def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'): - assert (depth - 2) % 6 == 0 - - n = (depth - 2) // 6 - - conv1 = conv_bn_layer( - input=input, ch_out=16, filter_size=3, stride=1, padding=1) - res1 = layer_warp(basicblock, conv1, 16, n, 1) - res2 = layer_warp(basicblock, res1, 32, n, 2) - res3 = layer_warp(basicblock, res2, 64, n, 2) - pool = fluid.layers.pool2d( - input=res3, pool_size=8, pool_type='avg', pool_stride=1) - out = fluid.layers.fc(input=pool, size=class_dim, act='softmax') - return out + return fluid.layers.elementwise_add(x=short, y=conv2, act='relu') def _model_reader_dshape_classdim(args, is_train): - model = resnet_cifar10 + model = None reader = None - if args.data_set == "cifar10": - class_dim = 10 - if args.data_format == 'NCHW': - dshape = [3, 32, 32] - else: - dshape = [32, 32, 3] - model = resnet_cifar10 - if is_train: - reader = paddle.dataset.cifar.train10() - else: - reader = paddle.dataset.cifar.test10() - elif args.data_set == "flowers": + if args.data_set == "flowers": class_dim = 102 if args.data_format == 'NCHW': dshape = [3, 224, 224] else: dshape = [224, 224, 3] - model = resnet_imagenet if is_train: reader = paddle.dataset.flowers.train() else: @@ -159,7 +152,6 @@ def _model_reader_dshape_classdim(args, is_train): dshape = [3, 224, 224] else: dshape = [224, 224, 3] - model = resnet_imagenet if not args.data_path: raise Exception( "Must specify --data_path when training with imagenet") @@ -173,12 +165,11 @@ def _model_reader_dshape_classdim(args, is_train): reader = train(xmap=False) else: reader = val(xmap=False) - return model, reader, dshape, class_dim + return reader, dshape, class_dim def get_model(args, is_train, main_prog, startup_prog): - model, reader, dshape, class_dim = _model_reader_dshape_classdim(args, - is_train) + reader, dshape, class_dim = _model_reader_dshape_classdim(args, is_train) pyreader = None trainer_count = int(os.getenv("PADDLE_TRAINERS")) @@ -198,7 +189,8 @@ def get_model(args, is_train, main_prog, startup_prog): label = fluid.layers.data( name='label', shape=[1], dtype='int64') - predict = model(input, class_dim, is_train=is_train) + model = ResNet(is_train=is_train) + predict = model.net(input, class_dim=class_dim) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) @@ -215,16 +207,15 @@ def get_model(args, is_train, main_prog, startup_prog): total_images = 1281167 / trainer_count - step = int(total_images / args.batch_size + 1) - epochs = [30, 60, 80, 90] + step = int(total_images / (args.batch_size * args.gpus) + 1) + epochs = [30, 60, 90] bd = [step * e for e in epochs] base_lr = args.learning_rate lr = [] lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)] optimizer = fluid.optimizer.Momentum( - learning_rate=base_lr, - #learning_rate=fluid.layers.piecewise_decay( - # boundaries=bd, values=lr), + learning_rate=fluid.layers.piecewise_decay( + boundaries=bd, values=lr), momentum=0.9, regularization=fluid.regularizer.L2Decay(1e-4)) optimizer.minimize(avg_cost) diff --git a/doc/fluid/dev/releasing_process_cn.md b/doc/fluid/dev/releasing_process_cn.md index 4c6728fba7150b0f1e180e57590f18a5b677c70d..acea9a2b5df903a958edf3683900e165670e196f 100644 --- a/doc/fluid/dev/releasing_process_cn.md +++ b/doc/fluid/dev/releasing_process_cn.md @@ -1,24 +1,23 @@ # PaddlePaddle发行规范 -PaddlePaddle使用git-flow branching model做分支管理,使用[Semantic Versioning](http://semver.org/)标准表示PaddlePaddle版本号。 +PaddlePaddle使用Trunk Based Development,使用[Semantic Versioning](http://semver.org/)标准表示PaddlePaddle版本号。 PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` -1. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 -1. 对这个版本的提交,做如下几个操作: - * 使用Regression Test List作为检查列表,测试本次release的正确性。 - * 如果失败,记录下所有失败的例子,在这个`release/版本号`分支中,修复所有bug后,Patch号加一,到第二步 - * 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`。 - * 将这个版本的python wheel包发布到pypi。 - * 更新Docker镜像(参考后面的操作细节)。 -1. 第三步完成后,将`release/版本号`分支合入master分支,将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。 -1. 协同完成Release Note的书写。 +2. 将新分支的版本打上tag,tag为`版本号rc-Patch号`。例如,第一个tag为`0.10.0-rc0`。 +3. 新分支一般不接受新的feature和优化。QA在release分支上进行测试。研发基于最新的develop开发。 +4. QA和研发发现的bug,在develop上修复验证后,cherry-pick修复到release分支。直到release分支相对稳定。 +5. 如果有需要,在release分支最新代码上打上新的tag,比如`0.10.0-rc1`,让更多的用户加入测试。重复3-4步。 +6. release分支稳定后,打上正式的release tag,比如`0.10.0`。 +7. 将这个版本的python wheel包发布到pypi。 +8. 更新Docker镜像(参考后面的操作细节)。 需要注意的是: -* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 -* 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 +* bug修复需要先在develop上进行,然后进入release分支。而不是直接在release分支上开发。 + +* release分支原则上只接受修复类的修改,不接受新feature。 ## 发布wheel包到pypi @@ -61,24 +60,21 @@ docker push [镜像]:[version] ## PaddlePaddle 分支规范 -PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 - -* PaddlePaddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中: - * `master`分支为稳定(stable branch)版本分支。每一个`master`分支的版本都是经过单元测试和回归测试的版本。 - * `develop`分支为开发(develop branch)版本分支。每一个`develop`分支的版本都经过单元测试,但并没有经过回归测试。 - * `release/版本号`分支为每一次Release时建立的临时分支。在这个阶段的代码正在经历回归测试。 +PaddlePaddle开发过程使用[Trunk Based Development](https://trunkbaseddevelopment.com/) 开发规范。 -* 其他用户的fork版本库并不需要严格遵守[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,但所有fork的版本库的所有分支都相当于特性分支。 - * 建议,开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支 - * 建议,开发者fork的版本库中,再基于`develop`版本fork出自己的功能分支。 - * 当功能分支开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 - * 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。 +* `develop`分支为开发(develop branch)版本分支。每一个`develop`分支的版本都经过单元测试。并且会经过模型回归测试。 +* `release/版本号`分支为每一次Release时建立的临时分支。release分支主要用于测试,bug修复和最终发版。 +* `master`分支因为历史原因,已经废弃。 -* BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。 +* 其他开发者fork的feature branch。 + * 建议,开发者的feature branch需要同步主版本库的`develop`分支。 + * 建议,开发者的feature branch需要基于主版本库中的`develop`分支。 + * 当feature branch开发完毕后,向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。 + * 在评审过程中,开发者修改自己的代码,可以继续在自己的feature branch提交代码。 ## PaddlePaddle回归测试列表 -本列表说明PaddlePaddle发版之前需要测试的功能点。 +TODO ### PaddlePaddle Book中所有章节 diff --git a/doc/fluid/dev/releasing_process_en.md b/doc/fluid/dev/releasing_process_en.md index 2c1c30c1eddfde6d9a8e2637be86537c43cc1b00..b810dc941d27fdb5004812ab58e105502e83280f 100644 --- a/doc/fluid/dev/releasing_process_en.md +++ b/doc/fluid/dev/releasing_process_en.md @@ -4,26 +4,21 @@ PaddlePaddle manages its branches using "git-flow branching model", and [Semanti Each time we release a new PaddlePaddle version, we should follow the below steps: -1. Fork a new branch from `develop` named `release/[version]`, e.g. `release/0.10.0`. -1. Push a new tag on the release branch, the tag name should be like `[version]rc.patch`. The - first tag should be `0.10.0rc1`, and the second should be `0.10.0.rc2` and so on. -1. After that, we should do: - * Run all regression test on the Regression Test List (see PaddlePaddle TeamCity CI), to confirm - that this release has no major bugs. - * If regression test fails, we must fix those bugs and create a new `release/[version]` - branch from previous release branch. - * Modify `python/setup.py.in`, change the version number and change `ISTAGED` to `True`. - * Publish PaddlePaddle release wheel packages to pypi (see below instructions for detail). - * Update the Docker images (see below instructions for detail). -1. After above step, merge `release/[version]` branch to master and push a tag on the master commit, - then merge `master` to `develop`. -1. Update the Release Note. - -***NOTE:*** - -* Do ***NOT*** merge commits from develop branch to release branches to keep the release branch contain - features only for current release, so that we can test on that version. -* If we want to fix bugs on release branches, we must merge the fix to master, develop and release branch. +1. Create a new release branch from `develop`,named `release/[version]`. E.g.,`release/0.10.0` +2. Create a new tag for the release branch, tag format: `version-rc.Patch`. E.g. the first tag is `0.10.0-rc0`。 +3. New release branch normally doesn't accept new features or optimizations. QA will test on the release branch. Developer should develop based on `develop` branch. +4. If QA or Developer find bugs. They should first fix and verify on `develop` branch. Then cherry-pick the fix to the release branch. Wait until the release branch is stable. +5. If necessary, create a new tag on the relese branch, e.g. `0.10.0-rc1`. Involve more users to try it and repeat step 3-4. +6. After release branch is stable,Create the official release tag,such as `0.10.0`. +7. Release the python wheel package to pypi. +8. Update the docker image (More details below). + +NOTE: + +* bug fix should happen on `develop` branch, then cherry-pick to relese branch. Avoid developing directly on release branch. + +* release normally only accept bug fixes. Don't add new features. + ## Publish Wheel Packages to pypi @@ -97,26 +92,22 @@ You can then checkout the latest pushed tags at https://hub.docker.com/r/paddlep ## Branching Model -We use [git-flow](http://nvie.com/posts/a-successful-git-branching-model/) as our branching model, -with some modifications: - -* `master` branch is the stable branch. Each version on the master branch is tested and guaranteed. -* `develop` branch is for development. Each commit on develop branch has passed CI unit test, but no - regression tests are run. -* `release/[version]` branch is used to publish each release. Latest release version branches have - bugfix only for that version, but no feature updates. -* Developer forks are not required to follow - [git-flow](http://nvie.com/posts/a-successful-git-branching-model/) - branching model, all forks is like a feature branch. - * Advise: developer fork's develop branch is used to sync up with main repo's develop branch. - * Advise: developer use it's fork's develop branch to for new branch to start developing. - * Use that branch on developer's fork to create pull requests and start reviews. - * developer can push new commits to that branch when the pull request is open. -* Bug fixes are also started from developers forked repo. And, bug fixes branch can merge to - `master`, `develop` and `releases`. +PaddlePaddle uses [Trunk Based Development](https://trunkbaseddevelopment.com/) as our branching model. + +* `develop` branch is used for development. Each comment to `develop` branc goes through unit tests and model regression tests. +* `release/[version]` branch is used for each release. Release branch is used for tests, bug fix and evetual release. +* `master` branch as been deprecated for historical reasons + +* Developer's feature branch。 + * Developer's feature branch should sync with upstream `develop` branch. + * Developer's feature branch should be forked from upstream `develop` branch. + * After feature branch is ready, create a `Pull Request` against the Paddle repo and go through code review. + * In the review process, develop modify codes and push to their own feature branch. ## PaddlePaddle Regression Test List +TODO + ### All Chapters of PaddlePaddle Book We need to guarantee that all the chapters of PaddlePaddle Book can run correctly. Including diff --git a/doc/survey/dynamic_graph.md b/doc/survey/dynamic_graph.md index d03212007a34caecaf6a884d675a75dba3a71931..7f62eeadff43af1f0a3c81e284a6508bf063b21e 100644 --- a/doc/survey/dynamic_graph.md +++ b/doc/survey/dynamic_graph.md @@ -2,28 +2,31 @@ ## Automatic Differentiation -A key challenge in the field of deep learning is to automatically derive the backward pass from the forward pass described algorithmically by researchers. Such a derivation, or a transformation of the forward pass program, has been long studied before the recent prosperity of deep learning in the field known as [automatic differentiation](https://arxiv.org/pdf/1502.05767.pdf). +A key challenge in deep learning is to automatically derive the backward pass given the forward pass as a program, which has been long studied in the field of [automatic differentiation](https://arxiv.org/pdf/1502.05767.pdf), or autodiff, before the prosperity of deep learning. -## The Tape +## Program Transformation v.s. Backtracking -Given the forward pass program (usually in Python in practices), there are two strategies to derive the backward pass: +Given the forward pass program, there are two strategies to derive the backward pass: -1. from the forward pass program itself, or -1. from the execution trace of the forward pass program, which is often known as the *tape*. +1. by transforming the forward pass program without executing it, or +1. by backtracking the execution process of the forward pass program. -This article surveys systems that follow the latter strategy. +This article is about the latter strategy. -## Dynamic Network +## The Tape and Dynamic Networks -When we train a deep learning model, the tape changes every iteration as the input data change, so we have to re-derive the backward pass every iteration. This is known as *dynamic network*. +We refer to the trace of the execution of the forward pass program as a *tape* [[1]](http://www.bcl.hamilton.ie/~barak/papers/toplas-reverse.pdf). When we train a deep learning model, the tape changes every iteration as the input data change, so we'd have to re-derive the backward pass, which is time-consuming, but also eases the case that the forward program includes control flows like if-else and for/while. With these control flows, the execution trace might change with iterations. Such changes are known as *dynamic networks* in the field of deep learning. -Deep learning systems that utilize the idea of dynamic network gained their popularities in recent years. This article surveys two representative systems: [PyTorch](https://pytorch.org/) and [DyNet](https://dynet.readthedocs.io/en/latest/). +## Typical Systems -## An Overview +Deep learning systems that utilize the idea of dynamic networks gained their popularities in recent years. This article surveys the following typical systems: -Both frameworks record a ‘tape’ of the computation and interpreting (or run-time compiling) a transformation of the tape played back in reverse. This tape is a different kind of entity than the original program.[[link]](http://www.bcl.hamilton.ie/~barak/papers/toplas-reverse.pdf) +- [DyNet](https://dynet.readthedocs.io/en/latest/) +- [PyTorch](https://pytorch.org/) +- Chainer +- Autograd from HIPS -Consider the following code feedforward model. +Before diving into these systems, let us pose an example forward pass program: ```python x = Variable(randn(20, 1))) @@ -35,9 +38,11 @@ loss = softmax(pred, label) loss.backward() ``` -### 1) Dynet uses List to encode the Tape +## The Representation of Tapes -During the forward execution, a list of operators, in this case `matmul`, `matmul` and `softmax`, are recorded in the tape, along with the necessary information needed to do the backward such as pointers to the inputs and outputs. Then the tape is played in reverse order at `loss.backward()`. +### DyNet: the Tape as a List + +DyNet uses a linear data structure, a list, to represent the tape. During the execution of the above example, it is a list of operators: `matmul`, `matmul`, and `softmax`. The list also includes information needed to do the backward pass, such as pointers to the inputs and outputs. Then the tape is played in reverse order at `loss.backward().`
@@ -69,9 +74,9 @@ digraph g { ![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22ellipse%22%20];%20edge%20[];%20%22node0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_1,%20x%20|%20%3Cf2%3E%20output:%20h%22%20shape%20=%20%22record%22%20];%20%22node1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20%3Cf1%3E%20input:%20W_2,%20h%20|%20%3Cf2%3E%20output:%20pred%22%20shape%20=%20%22record%22%20];%20%22node2%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20%3Cf1%3E%20input:%20pred,%20label%20|%20%3Cf2%3E%20output:%20loss%22%20shape%20=%20%22record%22%20];%20%22node0%22:f0%20-%3E%20%22node1%22:f0%20[%20id%20=%200%20];%20%22node1%22:f0%20-%3E%20%22node2%22:f0%20[%20id%20=%201%20];%20}) -### 2) Pytorch uses Node Graph to encode the Tape +### PyTorch: the Tape as a Graph -The graph is composed of `Variable`s and `Function`s. During the forward execution, a `Variable` records its creator function, e.g. `h.creator = matmul`. And a Function records its inputs' previous/dependent functions `prev_func` through `creator`, e.g. `matmul.prev_func = matmul1`. At `loss.backward()`, a topological sort is performed on all `prev_func`s. Then the grad op is performed by the sorted order. +The graph is composed of `Variable`s and `Function`s. During the forward execution, a `Variable` records its creator function, e.g. `h.creator = matmul`. And a Function records its inputs' previous/dependent functions `prev_func` through `creator`, e.g. `matmul.prev_func = matmul1`. At `loss.backward()`, a topological sort is performed on all `prev_func`s. Then the grad op is performed by the sorted order. Please be aware that a `Function` might have more than one `prev_func`s.
@@ -132,27 +137,22 @@ digraph g { ![Alt text](https://g.gravizo.com/svg?digraph%20g%20{%20graph%20[%20rankdir%20=%20%22LR%22%20];%20subgraph%20function%20{%20node%20[%20fontsize%20=%20%2216%22%20style%20=%20filled%20shape%20=%20%22record%22%20];%20%22matmul0%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20None%22%20];%20%22matmul1%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20matmul%20|%20prev_func:%20matmul%22%20];%20%22softmax%22%20[%20label%20=%20%22%3Cf0%3E%20type:%20softmax%20|%20prev_func:%20matmul%22%20];%20}%20subgraph%20variable%20{%20node%20[%20fontsize%20=%20%2216%22%20shape%20=%20%22Mrecord%22%20style%20=%20filled%20fillcolor%20=%20white%20];%20%22x%22%20[%20label%20=%20%22%3Cf0%3E%20x%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22label%22%20[%20label%20=%20%22%3Cf0%3E%20label%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_1%22%20[%20label%20=%20%22%3Cf0%3E%20W_1%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22W_2%22%20[%20label%20=%20%22%3Cf0%3E%20W_2%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22h%22%20[%20label%20=%20%22%3Cf0%3E%20h%20|%20%3Cf1%3E%20creator:%20None%22%20];%20%22pred%22%20[%20label%20=%20%22%3Cf0%3E%20pred%20|%20%3Cf1%3E%20creator:%20matmul%22%20];%20%22loss%22%20[%20label%20=%20%22%3Cf0%3E%20loss%20|%20%3Cf1%3E%20creator:%20softmax%22%20];%20}%20subgraph%20data_flow%20{%20%22x%22:f0%20-%3E%20%22matmul0%22:f0;%20%22W_1%22:f0%20-%3E%20%22matmul0%22:f0;%20%22matmul0%22:f0%20-%3E%20%22h%22:f0;%20%22h%22:f0%20-%3E%20%22matmul1%22:f0;%20%22W_2%22:f0%20-%3E%20%22matmul1%22:f0;%20%22matmul1%22:f0%20-%3E%20%22pred%22:f0;%20%22pred%22:f0%20-%3E%20%22softmax%22:f0;%20%22label%22:f0%20-%3E%20%22softmax%22:f0;%20%22softmax%22:f0%20-%3E%20%22loss%22:f0;%20}%20subgraph%20prev_func%20{%20edge%20[color=%22red%22,%20arrowsize=%220.6%22,%20penwidth=%221%22,%20constraint=false];%20%22matmul1%22:f1%20-%3E%20%22matmul0%22:f0;%20%22softmax%22:f1%20-%3E%20%22matmul1%22:f0;%20label%20=%20%22prev_func%22;%20}%20}) -Chainer and Autograd uses the similar techniques to record the forward pass. For details please refer to the appendix. - -## Design choices +Chainer and Autograd use the similar techniques to record the forward pass. For details, please refer to the appendix. -### 1) Dynet's List vs Pytorch's Node Graph +## Comparison: List v.s. Graph -What's good about List: -1. It avoids a topological sort. One only needs to traverse the list of operators in reverse and calling the corresponding backward operator. -1. It promises effient data parallelism implementations. One could count the time of usage of a certain variable during the construction list. Then in the play back, one knows the calculation of a variable has completed. This enables communication and computation overlapping. +The list of DyNet could be considered the result of the topological sort of the graph of PyTorch. Or, the graph is the raw representation of the tape, which gives us the chance to *prune* part of the graph that is irrelevant with the backward pass before the topological sort [[2]](https://openreview.net/pdf?id=BJJsrmfCZ). Consider the following example, PyTorch only does backward on `SmallNet` while DyNet does both `SmallNet` and `BigNet`: -What's good about Node Graph: -1. More flexibility. PyTorch users can mix and match independent graphs however they like, in whatever threads they like (without explicit synchronization). An added benefit of structuring graphs this way is that when a portion of the graph becomes dead, it is automatically freed. [[2]](https://openreview.net/pdf?id=BJJsrmfCZ) Consider the following example, Pytorch only does backward on SmallNet while Dynet does both BigNet and SmallNet. ```python result = BigNet(data) loss = SmallNet(data) loss.backward() ``` -### 2) Dynet's Lazy evaluation vs Pytorch's Immediate evaluation +## Lazy v.s. Immediate Evaluation + +Another difference between DyNet and PyTorch is that DyNet lazily evaluates the forward pass, whereas PyTorch executes it immediately. Consider the following example: -Dynet builds the list in a symbolic matter. Consider the following example ```python for epoch in range(num_epochs): for in_words, out_label in training_data: @@ -164,16 +164,17 @@ for epoch in range(num_epochs): loss_val = loss_sym.value() loss_sym.backward() ``` + The computation of `lookup`, `concat`, `matmul` and `softmax` didn't happen until the call of `loss_sym.value()`. This defered execution is useful because it allows some graph-like optimization possible, e.g. kernel fusion. -Pytorch chooses immediate evaluation. It avoids ever materializing a "forward graph"/"tape" (no need to explicitly call `dy.renew_cg()` to reset the list), recording only what is necessary to differentiate the computation, i.e. `creator` and `prev_func`. +PyTorch chooses immediate evaluation. It avoids ever materializing a "forward graph"/"tape" (no need to explicitly call `dy.renew_cg()` to reset the list), recording only what is necessary to differentiate the computation, i.e. `creator` and `prev_func`. -## What can fluid learn from them? +## Fluid: Learning the Lessons Please refer to `paddle/contrib/dynamic/`. -# Appendix +## Appendix ### Overview diff --git a/paddle/fluid/API.spec b/paddle/fluid/API.spec index ae5f30e431aba4cae04b0fb35f00bce84f18de33..e362d3486487dd0b55e3e40d1c1358f2e5604ac5 100644 --- a/paddle/fluid/API.spec +++ b/paddle/fluid/API.spec @@ -59,7 +59,7 @@ paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], vara paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)) -paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,)) paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None)) paddle.fluid.InferenceTranspiler.__init__ paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) @@ -100,7 +100,7 @@ paddle.fluid.layers.gru_unit ArgSpec(args=['input', 'hidden', 'size', 'param_att paddle.fluid.layers.linear_chain_crf ArgSpec(args=['input', 'label', 'param_attr'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.crf_decoding ArgSpec(args=['input', 'param_attr', 'label'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None, defaults=None) -paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100)) paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None)) @@ -142,7 +142,7 @@ paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 's paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)) -paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label'], varargs=None, keywords=None, defaults=(False,)) +paddle.fluid.layers.softmax_with_cross_entropy ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100)) paddle.fluid.layers.smooth_l1 ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.layers.one_hot ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.autoincreased_step_counter ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1)) @@ -305,9 +305,9 @@ paddle.fluid.layers.target_assign ArgSpec(args=['input', 'matched_indices', 'neg paddle.fluid.layers.detection_output ArgSpec(args=['loc', 'scores', 'prior_box', 'prior_box_var', 'background_label', 'nms_threshold', 'nms_top_k', 'keep_top_k', 'score_threshold', 'nms_eta'], varargs=None, keywords=None, defaults=(0, 0.3, 400, 200, 0.01, 1.0)) paddle.fluid.layers.ssd_loss ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)) paddle.fluid.layers.detection_map ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral')) -paddle.fluid.layers.rpn_target_assign ArgSpec(args=['loc', 'scores', 'anchor_box', 'anchor_var', 'gt_box', 'rpn_batch_size_per_im', 'fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap'], varargs=None, keywords=None, defaults=(256, 0.25, 0.7, 0.3)) +paddle.fluid.layers.rpn_target_assign ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)) paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)) -paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'gt_boxes', 'im_scales', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None)) +paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)) paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)) paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None) @@ -346,7 +346,7 @@ paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'con paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)) -paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) +paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self', 'wait_port'], varargs=None, keywords=None, defaults=(True,)) paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None)) paddle.fluid.transpiler.InferenceTranspiler.__init__ paddle.fluid.transpiler.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt index cc7938b2ac07f11ceb7f33a2e37380d1e2ed2072..d998109df21f585bc4905e00e59fe07247fd3f5e 100644 --- a/paddle/fluid/framework/CMakeLists.txt +++ b/paddle/fluid/framework/CMakeLists.txt @@ -56,9 +56,9 @@ else() cc_test(mixed_vector_test SRCS mixed_vector_test.cc DEPS place memory device_context tensor) endif() if (NOT WIN32) -cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio) +cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto recordio version) else() -cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto) +cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor framework_proto version) endif (NOT WIN32) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor memory) @@ -116,7 +116,11 @@ cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope gl endif(NOT WIN32) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry device_context) -cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog) + +cc_library(version SRCS version.cc) +cc_test(version_test SRCS version_test.cc DEPS version) + +cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version) cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc) nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) diff --git a/paddle/fluid/framework/details/all_reduce_op_handle.cc b/paddle/fluid/framework/details/all_reduce_op_handle.cc index bf493a3fa44e48deec734250d04b2a413c3ed9da..7c5f5bd80a937bf1a1c891155764833d7b21c5c2 100644 --- a/paddle/fluid/framework/details/all_reduce_op_handle.cc +++ b/paddle/fluid/framework/details/all_reduce_op_handle.cc @@ -46,7 +46,8 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node, #endif void AllReduceOpHandle::RunImpl() { - platform::RecordEvent r("all_reduce", nullptr); + platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second); + if (NoDummyInputSize() == 1) { return; // No need to all reduce when GPU count = 1; } else { diff --git a/paddle/fluid/framework/details/broadcast_op_handle.cc b/paddle/fluid/framework/details/broadcast_op_handle.cc index 1d9f1bd6e417e30f0799f0bbed1739cedb4e8fbf..4fdab5cd94358d08eac7f8b041bf16d09042f0bd 100644 --- a/paddle/fluid/framework/details/broadcast_op_handle.cc +++ b/paddle/fluid/framework/details/broadcast_op_handle.cc @@ -15,12 +15,15 @@ #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "paddle/fluid/framework/details/container_cast.h" #include "paddle/fluid/framework/details/variable_visitor.h" +#include "paddle/fluid/platform/profiler.h" namespace paddle { namespace framework { namespace details { void BroadcastOpHandle::RunImpl() { + platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second); + if (places_.size() == 1) return; // The input and output may have dummy vars. diff --git a/paddle/fluid/framework/details/multi_devices_graph_pass.cc b/paddle/fluid/framework/details/multi_devices_graph_pass.cc index 7a99169849debcbc57d6f197b36c5045b211f3ef..250e093a5f789dba6b06df4889c060c294d469fe 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_pass.cc +++ b/paddle/fluid/framework/details/multi_devices_graph_pass.cc @@ -348,14 +348,31 @@ std::unique_ptr MultiDevSSAGraphBuilder::ApplyImpl( size_t cur_device_id = 0; bool is_forwarding = true; + bool is_dist_train = false; for (ir::Node *node : sorted_ops) { if (boost::get( node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) == static_cast(OpRole::kRPC)) { - CreateRPCOp(&result, node); + int op_dev_id = CreateRPCOp(&result, node); + PADDLE_ENFORCE(op_dev_id != -1, + "Can not schedule the RPC operator to the right place."); + if (node->Op()->Type() == "recv") { + auto recv_vars_attr = + boost::get>(node->Op()->GetNullableAttr( + OpProtoAndCheckerMaker::OpRoleVarAttrName())); + PADDLE_ENFORCE(recv_vars_attr.size() == 2UL); // [parameter, gradient] + if (recv_vars_attr[0].find(".block") == std::string::npos) { + bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]); + } + } + is_dist_train = true; } else if (IsDistTrainOp(node, send_vars, recv_vars)) { - CreateDistTrainOp(&result, node); + int op_dev_id = CreateDistTrainOp(&result, node); + if (node->Op()->Type() == "concat") { + auto origin_param_name = node->Op()->OutputArgumentNames()[0]; + bcast_var_name_set[op_dev_id].emplace(origin_param_name); + } } else if (IsScaleLossOp(node)) { // user can customize loss@grad if not use_default_grad_scale_ if (strategy_.gradient_scale_ != @@ -414,7 +431,9 @@ std::unique_ptr MultiDevSSAGraphBuilder::ApplyImpl( CreateReduceOp(&result, g_name, cur_device_id); graph->Get(kShardedVarDevice) .emplace(g_name, cur_device_id); - bcast_var_name_set[cur_device_id].emplace(p_name); + if (!is_dist_train) { + bcast_var_name_set[cur_device_id].emplace(p_name); + } break; case BuildStrategy::ReduceStrategy::kAllReduce: if (IsSparseGradient(g_name)) { @@ -436,15 +455,19 @@ std::unique_ptr MultiDevSSAGraphBuilder::ApplyImpl( } } } - bool use_gpu = false; #ifdef PADDLE_WITH_CUDA use_gpu = nccl_ctxs_ != nullptr; #endif - if (use_gpu || - strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) { - // Insert BCast Ops + // Insert broadcast operators principle: + // 1. Broadcast optimized parameters in Reduce strategy; + // 2. No need broadcast optimized parameters in AllReduce strategy because of + // the optimization sub-graph would be run on every GPU; + // 3. Allways broadcast received parameters in Distribute Training. + if ((use_gpu && + strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) || + is_dist_train) { for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) { auto &to_bcast_set = bcast_var_name_set[dev_id]; for (auto &bcast_name : to_bcast_set) { @@ -676,8 +699,8 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result, return var; } -void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, - ir::Node *node) const { +int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, + ir::Node *node) const { int op_dev_id = -1; std::vector input_var_names; std::vector output_var_names; @@ -720,6 +743,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, node->Op()->Type()); CreateComputationalOp(result, node, op_dev_id); + return op_dev_id; } void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) { @@ -738,8 +762,8 @@ void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) { } // Create RPC related op handles that connects its in ops and out ops. -void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, - ir::Node *node) const { +int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, + ir::Node *node) const { int op_dev_id = -1; if (node->Op()->Type() == "send") { // TODO(paddle-dev): getting the first var is not safe. @@ -825,6 +849,7 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id); } } + return op_dev_id; } bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const { diff --git a/paddle/fluid/framework/details/multi_devices_graph_pass.h b/paddle/fluid/framework/details/multi_devices_graph_pass.h index ac6d9c5a64cfde60f75c76dae0a30cc7d735e996..1ca8c4b855f9468589e537245380451a91a50b14 100644 --- a/paddle/fluid/framework/details/multi_devices_graph_pass.h +++ b/paddle/fluid/framework/details/multi_devices_graph_pass.h @@ -54,8 +54,8 @@ class MultiDevSSAGraphBuilder : public ir::Pass { bool IsScaleLossOp(ir::Node *node) const; - void CreateRPCOp(ir::Graph *result, ir::Node *node) const; - void CreateDistTrainOp(ir::Graph *result, ir::Node *node) const; + int CreateRPCOp(ir::Graph *result, ir::Node *node) const; + int CreateDistTrainOp(ir::Graph *result, ir::Node *node) const; /** * Is this operator as the end-point operator before/after send operator. diff --git a/paddle/fluid/framework/details/reduce_op_handle.cc b/paddle/fluid/framework/details/reduce_op_handle.cc index 6c7e5c1fb06620b1c071b00fcfcc1b4a29bf8d62..7fc06f234d42a992328c0b6164f17945d8075c28 100644 --- a/paddle/fluid/framework/details/reduce_op_handle.cc +++ b/paddle/fluid/framework/details/reduce_op_handle.cc @@ -27,7 +27,8 @@ namespace framework { namespace details { void ReduceOpHandle::RunImpl() { - platform::RecordEvent r("reduce", nullptr); + platform::RecordEvent record_event(Name(), dev_ctxes_.begin()->second); + if (places_.size() == 1) return; // the input and output may have dummy var. auto in_var_handles = DynamicCast(inputs_); diff --git a/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc index 609e18581957f62b040e04e937873b7a8fa5785a..ba243979b34aa1f683de707525403becaf0a1c00 100644 --- a/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc +++ b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc @@ -51,7 +51,7 @@ void ScaleLossGradOpHandle::RunImpl() { ->stream(); memory::Copy(boost::get(place_), tmp, platform::CPUPlace(), &coeff_, sizeof(float), stream); - VLOG(1) << place_ << "RUN Scale loss grad op"; + VLOG(10) << place_ << "RUN Scale loss grad op"; }); #endif } diff --git a/paddle/fluid/framework/framework.proto b/paddle/fluid/framework/framework.proto index c6588435819a982166cf2d2368a82b4402fdc2bc..460401df5473f8650f450a2bd247a703d91b6048 100644 --- a/paddle/fluid/framework/framework.proto +++ b/paddle/fluid/framework/framework.proto @@ -16,6 +16,13 @@ syntax = "proto2"; option optimize_for = LITE_RUNTIME; package paddle.framework.proto; +// Any incompatible changes to ProgramDesc and its dependencies should +// raise the version defined version.h. +// +// Serailization and Deserialization codes should be modified in a way +// that supports old versions following the version and compatibility policy. +message Version { optional int64 version = 1 [ default = 0 ]; } + enum AttrType { INT = 0; FLOAT = 1; @@ -180,4 +187,8 @@ message BlockDesc { // for more details. // TODO(panyx0718): A model can have multiple programs. Need a // way to distinguish them. Maybe ID or name? -message ProgramDesc { repeated BlockDesc blocks = 1; } +message ProgramDesc { + repeated BlockDesc blocks = 1; + + optional Version version = 2; +} diff --git a/paddle/fluid/framework/ir/CMakeLists.txt b/paddle/fluid/framework/ir/CMakeLists.txt index 78387c407398b58d3fab6eab12445c4198f809b5..7004f484a9975124750fad4cb8f773342082b514 100644 --- a/paddle/fluid/framework/ir/CMakeLists.txt +++ b/paddle/fluid/framework/ir/CMakeLists.txt @@ -19,7 +19,7 @@ function(pass_library TARGET DEST) endfunction() cc_library(node SRCS node.cc DEPS proto_desc) -cc_library(graph SRCS graph.cc DEPS node) +cc_library(graph SRCS graph.cc DEPS node pretty_log) cc_library(graph_helper SRCS graph_helper.cc DEPS graph) cc_library(pass SRCS pass.cc DEPS graph node graph_helper) cc_library(graph_traits SRCS graph_traits.cc DEPS graph) @@ -28,6 +28,9 @@ cc_library(graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph grap pass_library(graph_to_program_pass base) pass_library(graph_viz_pass base) pass_library(fc_fuse_pass inference) +if(WITH_MKLDNN) + pass_library(conv_relu_mkldnn_fuse_pass inference) +endif() pass_library(attention_lstm_fuse_pass inference) pass_library(infer_clean_graph_pass inference) pass_library(fc_lstm_fuse_pass inference) @@ -42,3 +45,6 @@ cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_r cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass) cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector) cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto) +if(WITH_MKLDNN) + cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass) +endif() diff --git a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.cc b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.cc new file mode 100644 index 0000000000000000000000000000000000000000..09c5ec59d66445bdbd5349447b125be89cb2efdf --- /dev/null +++ b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.cc @@ -0,0 +1,90 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h" +#include +#include +#include "paddle/fluid/platform/enforce.h" + +namespace paddle { +namespace framework { +namespace ir { + +std::unique_ptr ConvReLUFusePass::ApplyImpl( + std::unique_ptr graph) const { + PADDLE_ENFORCE(graph.get()); + FusePassBase::Init("conv_relu_mkldnn_fuse", graph.get()); + + std::unordered_set nodes2delete; + + GraphPatternDetector gpd; + auto* conv_input = gpd.mutable_pattern() + ->NewNode("conv_relu_mkldnn_fuse/conv_input") + ->AsInput() + ->assert_is_op_input("conv2d", "Input"); + patterns::ConvReLU conv_relu_pattern(gpd.mutable_pattern(), + "conv_relu_mkldnn_fuse"); + conv_relu_pattern(conv_input); + + int found_conv_relu_count = 0; + auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, + Graph* g) { + VLOG(4) << "handle ConvReLU fuse"; + GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, + conv_relu_pattern); // Filter + GET_IR_NODE_FROM_SUBGRAPH(conv_bias, conv_bias, conv_relu_pattern); // Bias + GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, conv_relu_pattern); // tmp + GET_IR_NODE_FROM_SUBGRAPH(conv, conv, conv_relu_pattern); // CONV op + GET_IR_NODE_FROM_SUBGRAPH(relu_out, relu_out, conv_relu_pattern); // Out + GET_IR_NODE_FROM_SUBGRAPH(relu, relu, conv_relu_pattern); // ReLU op + + // Create an ConvReLU Node. + OpDesc desc; + std::string conv_relu_i_in = subgraph.at(conv_input)->Name(); + std::string conv_relu_w_in = conv_weight->Name(); + std::string conv_relu_b_in = conv_bias->Name(); + std::string conv_relu_out = relu_out->Name(); + desc.SetInput("Input", std::vector({conv_relu_i_in})); + desc.SetInput("Filter", std::vector({conv_relu_w_in})); + desc.SetInput("Bias", std::vector({conv_relu_b_in})); + desc.SetOutput("Output", std::vector({conv_relu_out})); + desc.SetType("conv2d"); + for (auto& attr : conv->Op()->GetAttrMap()) { + desc.SetAttr(attr.first, attr.second); + } + desc.SetAttr("fuse_relu", true); + auto conv_relu_node = g->CreateOpNode(&desc); // OpDesc will be copied. + GraphSafeRemoveNodes(graph.get(), {conv, relu, conv_out}); + + PADDLE_ENFORCE(subgraph.count(conv_input)); + IR_NODE_LINK_TO(subgraph.at(conv_input), conv_relu_node); + IR_NODE_LINK_TO(conv_weight, conv_relu_node); + IR_NODE_LINK_TO(conv_bias, conv_relu_node); + IR_NODE_LINK_TO(conv_relu_node, relu_out); + + found_conv_relu_count++; + }; + + gpd(graph.get(), handler); + + AddStatis(found_conv_relu_count); + return graph; +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +REGISTER_PASS(conv_relu_mkldnn_fuse_pass, + paddle::framework::ir::ConvReLUFusePass); diff --git a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h new file mode 100644 index 0000000000000000000000000000000000000000..b5de0d548713772e7ad41cfb6d8b3e9460683efb --- /dev/null +++ b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h @@ -0,0 +1,39 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/framework/ir/graph.h" +#include "paddle/fluid/framework/ir/graph_pattern_detector.h" +#include "paddle/fluid/framework/ir/pass.h" + +namespace paddle { +namespace framework { +namespace ir { + +/* + * Fuse the CONV and ReLU to a ConvReLUOp. + */ +class ConvReLUFusePass : public FusePassBase { + public: + virtual ~ConvReLUFusePass() {} + + protected: + std::unique_ptr ApplyImpl(std::unique_ptr graph) const; +}; + +} // namespace ir +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..82b5fa1886098ca3b19c147c307d3f2fc3ba03d6 --- /dev/null +++ b/paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc @@ -0,0 +1,108 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h" + +#include + +namespace paddle { +namespace framework { +namespace ir { + +void SetOp(ProgramDesc* prog, const std::string& type, + const std::vector& inputs, + const std::vector& outputs) { + auto* op = prog->MutableBlock(0)->AppendOp(); + op->SetType(type); + if (type == "conv2d") { + op->SetAttr("use_mkldnn", true); + op->SetInput("Input", {inputs[0]}); + op->SetInput("Filter", {inputs[1]}); + op->SetInput("Bias", {inputs[2]}); + } else if (type == "relu") { + op->SetInput("X", inputs); + } + op->SetOutput("Out", outputs); +} + +// a->OP0->b +// b->OP1->c +// (c, weights, bias)->conv->f +// (f)->relu->g +ProgramDesc BuildProgramDesc() { + ProgramDesc prog; + for (auto& v : + std::vector({"a", "b", "c", "weights", "bias", "f", "g"})) { + auto* var = prog.MutableBlock(0)->Var(v); + var->SetType(proto::VarType::SELECTED_ROWS); + if (v == "weights" || v == "bias") { + var->SetPersistable(true); + } + } + + SetOp(&prog, "OP0", std::vector({"a"}), + std::vector({"b"})); + SetOp(&prog, "OP1", std::vector({"b"}), + std::vector({"c"})); + SetOp(&prog, "conv2d", std::vector({"c", "weights", "bias"}), + std::vector({"f"})); + SetOp(&prog, "relu", std::vector({"f"}), + std::vector({"g"})); + + return prog; +} + +TEST(ConvReLUFusePass, basic) { + auto prog = BuildProgramDesc(); + + std::unique_ptr graph(new ir::Graph(prog)); + + auto pass = PassRegistry::Instance().Get("conv_relu_mkldnn_fuse_pass"); + + int original_nodes_num = graph->Nodes().size(); + + graph = pass->Apply(std::move(graph)); + + int current_nodes_num = graph->Nodes().size(); + + // Remove 3 Nodes: CONV, RELU, conv_out + // Add 1 Node: ConvReLU + EXPECT_EQ(original_nodes_num - 2, current_nodes_num); + + // Assert conv_relu op in newly generated graph + int conv_relu_count = 0; + + for (auto* node : graph->Nodes()) { + if (node->IsOp() && node->Op()->Type() == "conv2d") { + if (node->Op()->HasAttr("use_mkldnn")) { + bool use_mkldnn = boost::get(node->Op()->GetAttr("use_mkldnn")); + if (use_mkldnn) { + if (node->Op()->HasAttr("fuse_relu")) { + bool fuse_relu = boost::get(node->Op()->GetAttr("fuse_relu")); + if (fuse_relu) { + ++conv_relu_count; + } + } + } + } + } + } + EXPECT_EQ(conv_relu_count, 1); +} + +} // namespace ir +} // namespace framework +} // namespace paddle + +USE_PASS(conv_relu_mkldnn_fuse_pass); diff --git a/paddle/fluid/framework/ir/fc_fuse_pass.cc b/paddle/fluid/framework/ir/fc_fuse_pass.cc index 5a4ebd6f3de555acccd72c61bd377ffd8ce69780..ca704c7f5631bbaa88f1bc2caaa22fd021de11c4 100644 --- a/paddle/fluid/framework/ir/fc_fuse_pass.cc +++ b/paddle/fluid/framework/ir/fc_fuse_pass.cc @@ -29,39 +29,27 @@ std::unique_ptr FCFusePass::ApplyImpl( std::unordered_set nodes2delete; GraphPatternDetector gpd; - // BuildFCPattern(gpd.mutable_pattern()); auto* x = gpd.mutable_pattern() ->NewNode("fc_fuse/x") ->AsInput() ->assert_is_op_input("mul", "X"); - patterns::FC(gpd.mutable_pattern(), "fc_fuse", x, true /*with bias*/); - -#define GET_NODE(id) \ - PADDLE_ENFORCE(subgraph.count(gpd.pattern().RetrieveNode("fc_fuse/" #id)), \ - "pattern has no Node called %s", #id); \ - auto* id = subgraph.at(gpd.pattern().RetrieveNode("fc_fuse/" #id)); \ - PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", "fc_fuse/" #id); + patterns::FC fc_pattern(gpd.mutable_pattern(), "fc_fuse"); + fc_pattern(x, true /*with bias*/); int found_fc_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "handle FC fuse"; - // Currently, there is no FC op available, so I will just simulate the - // scenerio. - // FC's fusion is simple, just op fuse, no need to process the - // parameters. - GET_NODE(x); // x - GET_NODE(w); // Y - GET_NODE(fc_bias); // bias - GET_NODE(fc_out); // Out - GET_NODE(mul); // MUL op - GET_NODE(elementwise_add); // ELEMENT_ADD op - GET_NODE(mul_out); // tmp -#undef GET_NODE + GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern); // Create an FC Node. OpDesc desc; - std::string fc_x_in = x->Name(); + std::string fc_x_in = subgraph.at(x)->Name(); std::string fc_Y_in = w->Name(); std::string fc_bias_in = fc_bias->Name(); std::string fc_out_out = fc_out->Name(); @@ -73,7 +61,8 @@ std::unique_ptr FCFusePass::ApplyImpl( auto fc_node = g->CreateOpNode(&desc); // OpDesc will be copied. GraphSafeRemoveNodes(graph.get(), {mul, elementwise_add, mul_out}); - IR_NODE_LINK_TO(x, fc_node); + PADDLE_ENFORCE(subgraph.count(x)); + IR_NODE_LINK_TO(subgraph.at(x), fc_node); IR_NODE_LINK_TO(w, fc_node); IR_NODE_LINK_TO(fc_bias, fc_node); IR_NODE_LINK_TO(fc_node, fc_out); diff --git a/paddle/fluid/framework/ir/fc_gru_fuse_pass.cc b/paddle/fluid/framework/ir/fc_gru_fuse_pass.cc index 90d8d5c042fccd8ca5ddf4f1303b2ce766786732..a902b0b50cf27ff84877053aca2ff921cd00b833 100644 --- a/paddle/fluid/framework/ir/fc_gru_fuse_pass.cc +++ b/paddle/fluid/framework/ir/fc_gru_fuse_pass.cc @@ -20,52 +20,43 @@ namespace paddle { namespace framework { namespace ir { -static void BuildPattern(PDPattern* pattern, const std::string& name_scope, - bool with_fc_bias) { - PDNode* x = pattern->NewNode(name_scope, "x") - ->assert_is_op_input("mul") - ->assert_var_not_persistable(); - auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias); - fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse. - patterns::GRU(pattern, name_scope, fc_out); - VLOG(3) << "fc_gru pattern \n" << pattern->DotString(); -} - static int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope, bool with_fc_bias) { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); - BuildPattern(pattern, name_scope, with_fc_bias); + // Create pattern. + patterns::FC fc_pattern(pattern, name_scope); + patterns::GRU gru_pattern(pattern, name_scope); + + PDNode* x = + pattern->NewNode(patterns::UniqueKey("x"))->assert_var_not_persistable(); + + auto* fc_out = fc_pattern(x, with_fc_bias); + fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse. + gru_pattern(fc_out); // Create New OpDesc - auto gru_creater = [&](int gru, int x, int weight_x, int weight_h, int bias, - int hidden, int fc_bias) { -#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x); - GET_NODE(x); - GET_NODE(weight_x); - GET_NODE(weight_h); - GET_NODE(bias); - GET_NODE(hidden); - GET_NODE(gru); + auto gru_creater = [&](Node* gru, Node* x, Node* weight_x, Node* weight_h, + Node* bias, Node* hidden, Node* fc_bias) { OpDesc op_desc; op_desc.SetType("fusion_gru"); #define NEW_NAME(x) name_scope + "/at." #x ".new" -#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()}); +#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()}); SET_IN(X, x); SET_IN(WeightX, weight_x); SET_IN(WeightH, weight_h); if (with_fc_bias) { - op_desc.SetInput("Bias", {NEW_NAME(bias) + bias_n->Name()}); + op_desc.SetInput("Bias", {NEW_NAME(bias) + bias->Name()}); } else { SET_IN(Bias, bias); } #undef SET_IN op_desc.SetInput("H0", {}); - op_desc.SetOutput("Hidden", {hidden_n->Name()}); - op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse")); + op_desc.SetOutput("Hidden", {hidden->Name()}); + op_desc.SetAttr("is_reverse", gru->Op()->GetAttr("is_reverse")); // TODO(TJ): This should be a option for infer op_desc.SetAttr("use_seq", true); @@ -82,14 +73,12 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, PADDLE_ENFORCE(scope); if (with_fc_bias) { // Fusion GRU bias = fcbias + grubias - auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias_n->Name()); + auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias->Name()); auto* out_bias_tensor = fusion_bias_var->GetMutable(); PADDLE_ENFORCE(fusion_bias_var); - GET_NODE(fc_bias); - PADDLE_ENFORCE(fc_bias_n); - auto* gru_bias_var = scope->FindVar(bias_n->Name()); - auto* fc_bias_var = scope->FindVar(fc_bias_n->Name()); + auto* gru_bias_var = scope->FindVar(bias->Name()); + auto* fc_bias_var = scope->FindVar(fc_bias->Name()); PADDLE_ENFORCE(gru_bias_var); PADDLE_ENFORCE(fc_bias_var); const auto& gru_bias_tenosr = gru_bias_var->Get(); @@ -113,11 +102,11 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, #undef NEW_NAME #undef NEW_IMTERMEDIATE_OUT - IR_NODE_LINK_TO(x_n, op); - IR_NODE_LINK_TO(weight_x_n, op); - IR_NODE_LINK_TO(weight_h_n, op); - IR_NODE_LINK_TO(bias_n, op); // actually should link to new bias if have - IR_NODE_LINK_TO(op, hidden_n); + IR_NODE_LINK_TO(x, op); + IR_NODE_LINK_TO(weight_x, op); + IR_NODE_LINK_TO(weight_h, op); + IR_NODE_LINK_TO(bias, op); // actually should link to new bias if have + IR_NODE_LINK_TO(op, hidden); // h0? return op; }; @@ -125,42 +114,35 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { -#define GET_NODE(name__) \ - std::string name__##key = name_scope + "/" + #name__; \ - auto* name__##n = pattern->RetrieveNode(name__##key); \ - PADDLE_ENFORCE(name__##n); \ - PADDLE_ENFORCE(subgraph.count(name__##n)); \ - Node* name__##_n = subgraph.at(name__##n); \ - int name__ __attribute__((unused)) = name__##_n->id(); - - GET_NODE(x); - GET_NODE(w); // fc weight - GET_NODE(mul); - GET_NODE(fc_out); - GET_NODE(Weight); - GET_NODE(gru); - GET_NODE(Bias); - GET_NODE(Hidden); + auto* x_n = subgraph.at(x); + GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, gru_pattern); + GET_IR_NODE_FROM_SUBGRAPH(gru, gru, gru_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, gru_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, gru_pattern); // nodes need be removed - GET_NODE(BatchGate); - GET_NODE(BatchResetHiddenPrev); - GET_NODE(BatchHidden); + GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, gru_pattern); + GET_IR_NODE_FROM_SUBGRAPH(BatchResetHiddenPrev, BatchGate, gru_pattern); + GET_IR_NODE_FROM_SUBGRAPH(BatchHidden, BatchGate, gru_pattern); if (with_fc_bias) { - GET_NODE(mul_out); - GET_NODE(fc_bias); - GET_NODE(elementwise_add); - gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias); + GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern); + + gru_creater(gru, x_n, w, Weight, Bias, Hidden, fc_bias); // Remove unneeded nodes. std::unordered_set marked_nodes( - {mul_n, gru_n, elementwise_add_n, fc_bias_n, fc_out_n, mul_out_n, - BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n}); + {mul, gru, elementwise_add, fc_bias, fc_out, mul_out, BatchGate, + BatchResetHiddenPrev, BatchHidden}); GraphSafeRemoveNodes(graph, marked_nodes); } else { - gru_creater(gru, x, w, Weight, Bias, Hidden, -1); + gru_creater(gru, x_n, w, Weight, Bias, Hidden, nullptr); // Remove unneeded nodes. std::unordered_set marked_nodes( - {mul_n, gru_n, BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n}); + {mul, gru, BatchGate, BatchResetHiddenPrev, BatchHidden}); GraphSafeRemoveNodes(graph, marked_nodes); } #undef GET_NODE diff --git a/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc b/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc index 3e09613699e04bc05abf19e81e9a4ea5b41a6733..aa95d3e9f6c8221f6e48d192b73ad5135539dc75 100644 --- a/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc +++ b/paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc @@ -20,45 +20,29 @@ namespace paddle { namespace framework { namespace ir { -static std::string GenNodeName(const std::string& prefix, - const std::string& name) { - return prefix + "/" + name; -} +int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope, + bool with_fc_bias) { + GraphPatternDetector gpd; + auto* pattern = gpd.mutable_pattern(); -static void BuildPattern(PDPattern* pattern, const std::string& name_scope, - bool with_fc_bias) { - PDNode* x = pattern->NewNode(name_scope, "x") + // Build pattern + PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x")) ->assert_is_op_input("mul") ->assert_var_not_persistable(); - auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias); - fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse. - patterns::LSTM(pattern, name_scope, fc_out); - // LOG(INFO) << "\n" << pattern->DotString(); -} + patterns::FC fc_pattern(pattern, name_scope); -static int BuildFusion(Graph* graph, const std::string& name_scope, - Scope* scope, bool with_fc_bias) { - GraphPatternDetector gpd; - auto* pattern = gpd.mutable_pattern(); - - BuildPattern(pattern, name_scope, with_fc_bias); + // fc_out is a tmp var, will be removed after fuse, so marked as intermediate. + auto* fc_out = fc_pattern(x, with_fc_bias)->AsIntermediate(); + patterns::LSTM lstm_pattern(pattern, name_scope); + lstm_pattern(fc_out); // Create New OpDesc - auto lstm_creator = [&](int lstm, int input, int weight_x, int weight_h, - int bias, int hidden, int cell, int xx, int fc_bias) { -#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x); - GET_NODE(input); - GET_NODE(weight_x); - GET_NODE(weight_h); - GET_NODE(bias); - GET_NODE(hidden); - GET_NODE(cell); - GET_NODE(xx); - GET_NODE(lstm); - + auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x, + Node* weight_h, Node* bias, Node* hidden, Node* cell, + Node* xx, Node* fc_bias) { OpDesc op_desc; op_desc.SetType("fusion_lstm"); -#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()}); +#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()}); SET_IN(X, input); SET_IN(WeightX, weight_x); SET_IN(WeightH, weight_h); @@ -67,17 +51,16 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, if (with_fc_bias) { // Add FC-bias with LSTM-bias and create a new weight PADDLE_ENFORCE(scope); - const std::string& new_bias_var = name_scope + "_bias.new"; + const std::string& new_bias_var = patterns::UniqueKey("NewBias"); auto* bias_var = scope->Var(new_bias_var); PADDLE_ENFORCE(bias_var); auto* bias_tensor = bias_var->GetMutable(); - auto* lstm_bias_var = scope->FindVar(bias_n->Name()); + auto* lstm_bias_var = scope->FindVar(bias->Name()); PADDLE_ENFORCE(lstm_bias_var); const auto& lstm_bias_tensor = lstm_bias_var->Get(); bias_tensor->Resize(lstm_bias_tensor.dims()); - GET_NODE(fc_bias); - auto* fc_bias_var = scope->FindVar(fc_bias_n->Name()); + auto* fc_bias_var = scope->FindVar(fc_bias->Name()); const auto& fc_bias_tensor = fc_bias_var->Get(); auto* data = bias_tensor->mutable_data(platform::CPUPlace()); @@ -88,31 +71,36 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, } op_desc.SetInput("Bias", {new_bias_var}); } -#undef GET_NODE // Create temp variables. - scope->Var(name_scope + "/BatchedInput.new") - ->GetMutable(); - scope->Var(name_scope + "/BatchCellPreAct.new") - ->GetMutable(); - scope->Var(name_scope + "/BatchedGate.new") - ->GetMutable(); + const std::string BatchedInput = patterns::UniqueKey("BatchedInput"); + const std::string BatchedCellPreAct = + patterns::UniqueKey("BatchedCellPreAct"); + const std::string BatchedGate = patterns::UniqueKey("BatchedGate"); + + scope->Var(BatchedInput)->GetMutable(); + scope->Var(BatchedCellPreAct)->GetMutable(); + scope->Var(BatchedGate)->GetMutable(); op_desc.SetInput("H0", {}); op_desc.SetInput("C0", {}); - op_desc.SetOutput("Hidden", {hidden_n->Name()}); - op_desc.SetOutput("Cell", {cell_n->Name()}); - op_desc.SetOutput("XX", {xx_n->Name()}); - op_desc.SetOutput("BatchedGate", {name_scope + "/BatchedGate.new"}); - op_desc.SetOutput("BatchCellPreAct", {name_scope + "/BatchCellPreAct.new"}); - op_desc.SetOutput("BatchedInput", {name_scope + "/BatchedInput.new"}); - op_desc.SetAttr("is_reverse", lstm_n->Op()->GetAttr("is_reverse")); - op_desc.SetAttr("use_peepholes", lstm_n->Op()->GetAttr("use_peepholes")); + op_desc.SetOutput("Hidden", {hidden->Name()}); + op_desc.SetOutput("Cell", {cell->Name()}); + op_desc.SetOutput("XX", {xx->Name()}); + op_desc.SetOutput("BatchedGate", {BatchedGate}); + op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct}); + op_desc.SetOutput("BatchedInput", {BatchedInput}); + op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse")); + op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes")); // TODO(TJ): get from attr op_desc.SetAttr("use_seq", true); -#define TMP_NAME(x) "at.new.tmp." #x -#define OP_SET_OUT(x) op_desc.SetOutput(#x, {TMP_NAME(x)}) + PADDLE_ENFORCE(graph->Has(kParamScopeAttr)); + auto* scope = graph->Get(kParamScopeAttr); +#define OP_SET_OUT(x) \ + const std::string x = patterns::UniqueKey(#x); \ + op_desc.SetOutput(#x, {x}); \ + scope->Var(x)->GetMutable() OP_SET_OUT(BatchedCell); OP_SET_OUT(BatchedHidden); OP_SET_OUT(ReorderedH0); @@ -120,22 +108,11 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, #undef OP_SET_OUT auto* op = graph->CreateOpNode(&op_desc); - PADDLE_ENFORCE(graph->Has(kParamScopeAttr)); - auto* scope = graph->Get(kParamScopeAttr); - -#define TMP_NEW(x) scope->Var(TMP_NAME(x))->GetMutable() - TMP_NEW(BatchedCell); - TMP_NEW(BatchedHidden); - TMP_NEW(ReorderedH0); - TMP_NEW(ReorderedC0); -#undef TMP_NEW -#undef TMP_NAME - - IR_NODE_LINK_TO(input_n, op); - IR_NODE_LINK_TO(weight_x_n, op); - IR_NODE_LINK_TO(weight_h_n, op); - IR_NODE_LINK_TO(bias_n, op); - IR_NODE_LINK_TO(op, hidden_n); + IR_NODE_LINK_TO(input, op); + IR_NODE_LINK_TO(weight_x, op); + IR_NODE_LINK_TO(weight_h, op); + IR_NODE_LINK_TO(bias, op); + IR_NODE_LINK_TO(op, hidden); return op; }; @@ -143,39 +120,31 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { -#define GET_NODE(name__) \ - std::string name__##key = name_scope + "/" + #name__; \ - auto* name__##n = pattern->RetrieveNode(name__##key); \ - PADDLE_ENFORCE(name__##n); \ - PADDLE_ENFORCE(subgraph.count(name__##n)); \ - Node* name__##_n = subgraph.at(name__##n); \ - int name__ __attribute__((unused)) = name__##_n->id(); - - GET_NODE(x); - GET_NODE(w); - GET_NODE(mul); - GET_NODE(fc_out); - GET_NODE(Weight); - GET_NODE(lstm); - GET_NODE(Bias); - GET_NODE(Hidden); - GET_NODE(Cell); - + GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern); + GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern); + GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern); if (with_fc_bias) { - GET_NODE(fc_bias); - GET_NODE(elementwise_add); - lstm_creator(lstm, x, w, Weight, Bias, Hidden, Cell, fc_out, fc_bias); + GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern); + GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern); + lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out, + fc_bias); // Remove unneeded nodes. std::unordered_set marked_nodes( - {mul_n, lstm_n, elementwise_add_n}); + {mul, lstm, elementwise_add, fc_bias}); GraphSafeRemoveNodes(graph, marked_nodes); } else { - lstm_creator(lstm, x, w, Weight, Bias, Hidden, Cell, fc_out, -1); + GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern); + lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out, + nullptr); // Remove unneeded nodes. - std::unordered_set marked_nodes({mul_n, lstm_n}); + std::unordered_set marked_nodes({mul, lstm}); GraphSafeRemoveNodes(graph, marked_nodes); } -#undef GET_NODE ++fusion_count; }; diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.cc b/paddle/fluid/framework/ir/graph_pattern_detector.cc index 5ca75095158649c95371248c115054ff68faab9d..11d5998aafe1f325b94ef1a5ea1c13c72c13f5c9 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.cc +++ b/paddle/fluid/framework/ir/graph_pattern_detector.cc @@ -21,11 +21,17 @@ #include "paddle/fluid/framework/ir/graph_traits.h" #include "paddle/fluid/framework/ir/graph_viz_pass.h" #include "paddle/fluid/platform/enforce.h" +#include "paddle/fluid/string/pretty_log.h" +#include "paddle/fluid/string/printf.h" namespace paddle { namespace framework { namespace ir { +using string::PrettyLogEndl; +using string::PrettyLog; +using string::Style; + size_t PDPattern::id_ = 0UL; PDNode* PDPattern::NewNode(const std::string& name) { @@ -82,7 +88,7 @@ void GraphPatternDetector::operator()(Graph* graph, ValidateByNodeRole(&subgraphs); if (subgraphs.empty()) return; - LOG(INFO) << "detect " << subgraphs.size() << " subgraph matches the pattern"; + PrettyLogEndl(Style::detail(), "--- detect %d subgraphs", subgraphs.size()); int id = 0; for (auto& g : subgraphs) { VLOG(3) << "optimizing #" << id++ << " subgraph"; @@ -106,8 +112,7 @@ bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph& graph) { for (auto& pdnode : pattern_.nodes()) { if (!pdnodes2nodes_.count(pdnode.get())) { VLOG(4) << pdnode->name() << " can't find matched Node, early stop"; - - return false; + // return false; } } for (auto& item : pdnodes2nodes_) { @@ -517,87 +522,122 @@ bool VarLinksFromOp(Node* node, const std::string& op_type) { return false; } -PDNode* patterns::FC(PDPattern* pattern, const std::string& name_scope, - PDNode* x, bool with_bias) { - // mul op - auto* mul_op = pattern->NewNode(name_scope, "mul")->assert_is_op("mul"); - auto* mul_weight_var = pattern->NewNode(name_scope, "w") - ->AsInput() - ->assert_is_persistable_var() - ->assert_is_op_input("mul", "Y"); - - PDNode* fc_out{nullptr}; - if (with_bias) { - PDNode* elementwise_add_op{nullptr}; - PDNode *mul_out_var{nullptr}, *bias{nullptr}; - elementwise_add_op = pattern->NewNode(name_scope, "elementwise_add") - ->assert_is_op("elementwise_add"); - // intermediate variable, will be removed in the IR after fuse. - mul_out_var = pattern->NewNode(name_scope, "mul_out") - ->AsIntermediate() - ->assert_is_only_output_of_op("mul") - ->assert_is_op_input("elementwise_add"); - // bias - bias = pattern->NewNode(name_scope, "fc_bias") - ->AsInput() - ->assert_is_op_input("elementwise_add"); - // output - fc_out = pattern->NewNode(name_scope, "fc_out") - ->AsOutput() - ->assert_is_op_output("elementwise_add"); - mul_op->LinksFrom({x, mul_weight_var}).LinksTo({mul_out_var}); - elementwise_add_op->LinksFrom({mul_out_var, bias}).LinksTo({fc_out}); - } else { - fc_out = pattern->NewNode(name_scope, "fc_out") - ->AsOutput() - ->assert_is_op_output("mul"); - mul_op->LinksFrom({mul_weight_var, x}).LinksTo({fc_out}); +PDNode* patterns::ConvReLU::operator()( + paddle::framework::ir::PDNode* conv_input) { + // Create Operators + conv_input->assert_is_op_input("conv2d", "Input"); + auto* conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d"); + auto* relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu"); + // Create variables + // Filter + auto* conv_weight_var = pattern->NewNode(conv_weight_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("conv2d", "Filter"); + // Bias + auto* conv_bias_var = pattern->NewNode(conv_bias_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("conv2d", "Bias"); + // intermediate variable, will be removed in the IR after fuse. + auto* conv_out_var = pattern->NewNode(conv_out_repr()) + ->AsIntermediate() + ->assert_is_only_output_of_op("conv2d") + ->assert_is_op_input("relu"); + // output + auto* relu_out_var = pattern->NewNode(relu_out_repr()) + ->AsOutput() + ->assert_is_op_output("relu"); + + conv_op->LinksFrom({conv_input, conv_weight_var, conv_bias_var}) + .LinksTo({conv_out_var}); + relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var}); + return relu_out_var; +} + +PDNode* patterns::FC::operator()(paddle::framework::ir::PDNode* x, + bool with_bias) { + // Create shared nodes. + x->assert_is_op_input("mul", "X"); + auto* mul = pattern->NewNode(mul_repr())->assert_is_op("mul"); + + auto* mul_w_var = pattern->NewNode(w_repr()) + ->AsInput() + ->assert_is_persistable_var() + ->assert_is_op_input("mul", "Y"); + + auto* mul_out_var = + pattern->NewNode(mul_out_repr())->assert_is_op_output("mul"); + + if (!with_bias) { // not with bias + // Add links. + mul->LinksFrom({x, mul_w_var}).LinksTo({mul_out_var}); + return mul_out_var; + + } else { // with bias + mul_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); + // Create operators. + auto* elementwise_add = pattern->NewNode(elementwise_add_repr()) + ->assert_is_op("elementwise_add"); + // Create variables. + auto* bias = pattern->NewNode(bias_repr()) + ->assert_is_op_input("elementwise_add") + ->AsInput(); + + auto* fc_out = pattern->NewNode(Out_repr()) + ->AsOutput() + ->assert_is_op_output("elementwise_add"); + + mul->LinksFrom({mul_w_var, x}).LinksTo({mul_out_var}); + elementwise_add->LinksFrom({mul_out_var, bias}).LinksTo({fc_out}); + return fc_out; } - return fc_out; } -#define NEW_NODE(op__, arg__, io__) \ - auto* arg__ = pattern->NewNode(name_scope, #arg__) \ - ->assert_is_op_##io__(#op__, #arg__); - -PDNode* patterns::LSTM(PDPattern* pattern, const std::string& name_scope, - PDNode* x) { +PDNode* patterns::LSTM::operator()(PDNode* x) { x->assert_is_op_input("lstm", "Input"); - auto* lstm_op = pattern->NewNode(name_scope, "lstm")->assert_is_op("lstm"); + auto* lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm"); +#define NEW_NODE(arg__, io__) \ + auto* arg__ = \ + pattern->NewNode(arg__##_repr())->assert_is_op_##io__("lstm", #arg__); // Currently, the H0 and C0 are optional // TODO(Superjomn) upgrade the fuse framework to support optional. // NEW_NODE(H0, input); // NEW_NODE(C0, input); - NEW_NODE(lstm, Weight, input); - NEW_NODE(lstm, Bias, input); + NEW_NODE(Weight, input); + NEW_NODE(Bias, input); - NEW_NODE(lstm, Hidden, output); - NEW_NODE(lstm, Cell, output); - NEW_NODE(lstm, BatchGate, output); - NEW_NODE(lstm, BatchCellPreAct, output); + NEW_NODE(Hidden, output); + NEW_NODE(Cell, output); + NEW_NODE(BatchGate, output); + NEW_NODE(BatchCellPreAct, output); +#undef NEW_NODE lstm_op->LinksFrom({x, Weight, Bias}); lstm_op->LinksTo({Hidden, Cell, BatchGate, BatchCellPreAct}); return Hidden; } -PDNode* patterns::GRU(PDPattern* pattern, const std::string& name_scope, - PDNode* x) { +PDNode* patterns::GRU::operator()(PDNode* x) { x->assert_is_op_input("gru", "Input"); - auto* gru_op = pattern->NewNode(name_scope, "gru")->assert_is_op("gru"); + auto* gru_op = pattern->NewNode(gru_repr())->assert_is_op("gru"); +#define NEW_NODE(arg__, io__) \ + auto* arg__ = \ + pattern->NewNode(arg__##_repr())->assert_is_op_##io__("gru", #arg__); - NEW_NODE(gru, Weight, input); + NEW_NODE(Weight, input); // TODO(Superjomn): upgrade the fuse framework to support optional. // H0 and bias are optional - NEW_NODE(gru, Bias, input); // also optional + NEW_NODE(Bias, input); // also optional // NEW_NODE(H0, input); - NEW_NODE(gru, Hidden, output); + NEW_NODE(Hidden, output); // below are intermediate - NEW_NODE(gru, BatchGate, output); - NEW_NODE(gru, BatchResetHiddenPrev, output); - NEW_NODE(gru, BatchHidden, output); + NEW_NODE(BatchGate, output); + NEW_NODE(BatchResetHiddenPrev, output); + NEW_NODE(BatchHidden, output); +#undef NEW_NODE BatchGate->AsIntermediate(); BatchResetHiddenPrev->AsIntermediate(); @@ -607,7 +647,6 @@ PDNode* patterns::GRU(PDPattern* pattern, const std::string& name_scope, gru_op->LinksTo({Hidden, BatchGate, BatchResetHiddenPrev, BatchHidden}); return Hidden; } -#undef NEW_NODE } // namespace ir } // namespace framework diff --git a/paddle/fluid/framework/ir/graph_pattern_detector.h b/paddle/fluid/framework/ir/graph_pattern_detector.h index 71e4c36d9b6327ff419179ca7ed10332f448e245..371384dc56eec91db1f621c0ebb65113e7a5a5cc 100644 --- a/paddle/fluid/framework/ir/graph_pattern_detector.h +++ b/paddle/fluid/framework/ir/graph_pattern_detector.h @@ -286,22 +286,170 @@ void GraphSafeRemoveNodes(Graph* graph, const std::unordered_set& nodes); // Some pre-defined patterns those can be reused in multiple passes. +// The related Fluid Layer or Op should be one pattern here for better reusage +// accross different fusion. namespace patterns { +struct KeyCounter { + static KeyCounter& Instance() { + static KeyCounter x; + return x; + } + + int IncCounter(const std::string& key) { return dic_[key]++; } + + private: + std::unordered_map dic_; +}; + +// Generate a unique PDNode's name with name_scope and id. +// The format is {name_scope}/{repr}/{id}/{name} +static std::string PDNodeName(const std::string& name_scope, + const std::string& repr, size_t id, + const std::string& name) { + return string::Sprintf("%s/%s/%d/%s", name_scope, repr, id, name); +} +// Generate a unique PDNode's name. +// The format is {name_scope}/{repr}/{id} +static std::string PDNodeName(const std::string& name_scope, + const std::string& repr) { + return string::Sprintf("%s/%s/%d", name_scope, repr, + KeyCounter::Instance().IncCounter(repr)); +} +// Generate a unique key. It can be used for a universally unique temporary +// name. +// The format is {repr}/{id} +static std::string UniqueKey(const std::string& repr) { + return string::Sprintf("%s/%d", repr, + KeyCounter::Instance().IncCounter(repr)); +} + +// Declare a PDNode in a pattern, will create two methods: +// std::string xxx_repr(); return this PDNode's string id. +// PDNode* xxx_n(); return the corresponding PDNode. +#define PATTERN_DECL_NODE(name__) \ + std::string name__##_repr() const { \ + return PDNodeName(name_scope_, repr_, id_, #name__); \ + } \ + PDNode* name__##_n() const { return pattern->RetrieveNode(name__##_repr()); } + +// Get an ir::Node* from the matched subgraph. +// var: variable. +// arg: the argument declared by PATTERN_DECL_NODE in a pattern definition. +// pat: the pattern object. +#define GET_IR_NODE_FROM_SUBGRAPH(var, arg, pat) \ + PADDLE_ENFORCE(subgraph.count(pat.arg##_n()), \ + "Node not found for PDNode %s", pat.arg##_repr()); \ + Node* var = subgraph.at(pat.arg##_n()); \ + PADDLE_ENFORCE(var, "node %s not exists in the sub-graph", #arg) + +// The base class of all the patterns. +struct PatternBase { + PatternBase(PDPattern* pattern, const std::string& name_scope, + const std::string& repr) + : pattern(pattern), + name_scope_(name_scope), + repr_(repr), + id_(KeyCounter::Instance().IncCounter(repr)) {} + + PDPattern* pattern; + + protected: + std::string name_scope_; + std::string repr_; + size_t id_; +}; + +// CONV with ReLU +// op: conv + relu +// named nodes: +// conv_input, conv_weight, +// conv_bias, conv_out, conv, +// relu_out, relu +struct ConvReLU : public PatternBase { + ConvReLU(PDPattern* pattern, const std::string& name_scope) + : PatternBase(pattern, name_scope, "conv_relu") {} + + PDNode* operator()(PDNode* conv_input); + + // declare operator node's name + PATTERN_DECL_NODE(conv); + PATTERN_DECL_NODE(relu); + // declare variable node's name + PATTERN_DECL_NODE(conv_weight); + PATTERN_DECL_NODE(conv_bias); + PATTERN_DECL_NODE(conv_out); + PATTERN_DECL_NODE(relu_out); +}; + // FC with bias // op: mul + elementwise_add // named nodes: // mul, elementwise_add // w, mul_out, bias, fc_out -PDNode* FC(PDPattern* pattern, const std::string& name_scope, PDNode* x, - bool with_bias); +struct FC : public PatternBase { + FC(PDPattern* pattern, const std::string& name_scope) + : PatternBase(pattern, name_scope, "fc") {} + + PDNode* operator()(PDNode* x, bool with_bias); + + // declare operator node's name + PATTERN_DECL_NODE(fc); + PATTERN_DECL_NODE(mul); + PATTERN_DECL_NODE(elementwise_add); + // declare variable node's name + PATTERN_DECL_NODE(w); + PATTERN_DECL_NODE(mul_out); // (x,w) -> mul_out + PATTERN_DECL_NODE(bias); + PATTERN_DECL_NODE(Out); +}; + +struct LSTM : public PatternBase { + LSTM(PDPattern* pattern, const std::string& name_scope) + : PatternBase(pattern, name_scope, "lstm") {} + + PDNode* operator()(PDNode* x); -PDNode* LSTM(PDPattern* pattern, const std::string& name_scope, PDNode* x); + // Operators + PATTERN_DECL_NODE(lstm); + + // Inputs + PATTERN_DECL_NODE(Input); + PATTERN_DECL_NODE(H0); + PATTERN_DECL_NODE(C0); + PATTERN_DECL_NODE(Weight); + PATTERN_DECL_NODE(Bias); + + // Outputs + PATTERN_DECL_NODE(Hidden); + PATTERN_DECL_NODE(Cell); + PATTERN_DECL_NODE(BatchGate); + PATTERN_DECL_NODE(BatchCellPreAct); +}; -PDNode* GRU(PDPattern* pattern, const std::string& name_scope, PDNode* x); +struct GRU : public PatternBase { + GRU(PDPattern* pattern, const std::string& name_scope) + : PatternBase(pattern, name_scope, "lstm") {} + + PDNode* operator()(PDNode* x); + + // Operators + PATTERN_DECL_NODE(gru); + + // Inputs + PATTERN_DECL_NODE(Bias); + PATTERN_DECL_NODE(Weight); + + // Outputs + PATTERN_DECL_NODE(BatchGate); + PATTERN_DECL_NODE(BatchResetHiddenPrev); + PATTERN_DECL_NODE(BatchHidden); + PATTERN_DECL_NODE(Hidden); +}; } // namespace patterns +// Link two ir::Nodes from each other. #define IR_NODE_LINK_TO(a, b) \ a->outputs.push_back(b); \ b->inputs.push_back(a); diff --git a/paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc b/paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc index e1a441d09aaa3647c4b2a582210a2c7e2b64e0da..a7d5161c35db804703415066990f34da8109fbd9 100644 --- a/paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc +++ b/paddle/fluid/framework/ir/seq_concat_fc_fuse_pass.cc @@ -192,6 +192,8 @@ std::unique_ptr SeqConcatFcFusePass::ApplyImpl( auto* id = subgraph.at(pattern.RetrieveNode(#id)); \ PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id); + int fuse_count{0}; + detector(graph.get(), [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* graph) { VLOG(4) << "get one concat pattern"; @@ -239,8 +241,12 @@ std::unique_ptr SeqConcatFcFusePass::ApplyImpl( marked_nodes.erase(sequence_expand1_in); marked_nodes.erase(fc_out); GraphSafeRemoveNodes(graph, marked_nodes); + + ++fuse_count; }); + AddStatis(fuse_count); + return graph; } diff --git a/paddle/fluid/framework/lod_tensor.cc b/paddle/fluid/framework/lod_tensor.cc index adeb26e4e78693eb9760ec1e12e4b71ba3115d5b..1e7da9a69c7cbf8c13306656599a759515802b76 100644 --- a/paddle/fluid/framework/lod_tensor.cc +++ b/paddle/fluid/framework/lod_tensor.cc @@ -21,6 +21,7 @@ limitations under the License. */ #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/var_type.h" +#include "paddle/fluid/framework/version.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/memory/memory.h" @@ -251,8 +252,8 @@ void AppendLoD(LoD *lod, const LoD &lod_length) { void SerializeToStream(std::ostream &os, const LoDTensor &tensor, const platform::DeviceContext &dev_ctx) { { // the 1st field, uint32_t version for LoDTensor - constexpr uint32_t version = 0; - os.write(reinterpret_cast(&version), sizeof(version)); + os.write(reinterpret_cast(&kCurTensorVersion), + sizeof(kCurTensorVersion)); } { // the 2st field, LoD information @@ -281,6 +282,8 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor, // the 1st field, unit32_t version for LoDTensor uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); + PADDLE_ENFORCE(framework::IsTensorVersionSupported(version), + "tensor version %u is not supported.", version); PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); } { diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc index d58d6e4f3e684b97fcc1121e51355bdf3aae3fce..b7fae7171a57666a8fb4613a7cbe3aa15997b638 100644 --- a/paddle/fluid/framework/operator.cc +++ b/paddle/fluid/framework/operator.cc @@ -464,35 +464,35 @@ class RuntimeInferShapeContext : public InferShapeContext { : op_(op), scope_(scope) {} bool HasInput(const std::string& name) const override { - if (!op_.HasInputs(name)) { + // has only one input + const auto& ins = op_.Inputs(); + auto it = ins.find(name); + if (it == ins.end()) { return false; } - auto& ins = Inputs(name); - size_t length = ins.size(); - if (length == 0) { + const auto& in = it->second; + if (in.size() == 0 || in[0] == kEmptyVarName) { return false; } - PADDLE_ENFORCE_EQ(length, 1UL, + PADDLE_ENFORCE_EQ(in.size(), 1UL, "Input %s should not have more than one inputs", name); - auto ipt = ins[0]; - auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); - return var != nullptr; + return scope_.FindVar(in[0]) != nullptr; } bool HasOutput(const std::string& name) const override { - if (!op_.HasOutputs(name)) { + // has only one output + const auto& outs = op_.Outputs(); + auto it = outs.find(name); + if (it == outs.end()) { return false; } - auto& outs = Outputs(name); - size_t length = outs.size(); - if (length == 0) { + const auto& out = it->second; + if (out.size() == 0 || out[0] == kEmptyVarName) { return false; } - PADDLE_ENFORCE_EQ(length, 1UL, - "Output %s should not have more than one inputs", name); - auto ipt = outs[0]; - auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt); - return var != nullptr; + PADDLE_ENFORCE_EQ(out.size(), 1UL, + "Output %s should not have more than one outputs", name); + return scope_.FindVar(out[0]) != nullptr; } bool HasInputs(const std::string& name) const override { diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index 81cb24bdda6b87a3d708cf5047dce05d5020a0d5..5b8c75a93de2ddd8f7260d2191c22a5945b3d2d9 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -352,7 +352,10 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes( ParallelExecutor::~ParallelExecutor() { if (member_->own_local_scope_) { for (size_t i = 1; i < member_->local_scopes_.size(); ++i) { - member_->global_scope_->DeleteScope(member_->local_scopes_[i]); + Scope *local_scope = member_->local_scopes_[i]; + if (member_->global_scope_->HasKid(local_scope)) { + member_->global_scope_->DeleteScope(local_scope); + } } } } diff --git a/paddle/fluid/framework/program_desc.cc b/paddle/fluid/framework/program_desc.cc index a63944eaee6132c1082947fddcad4e0d72e26df1..589905828f7793c614c0fe12259e9ba5ab11ceac 100644 --- a/paddle/fluid/framework/program_desc.cc +++ b/paddle/fluid/framework/program_desc.cc @@ -15,6 +15,7 @@ limitations under the License. */ #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/feed_fetch_type.h" +#include "paddle/fluid/framework/version.h" namespace paddle { namespace framework { @@ -38,7 +39,10 @@ proto::ProgramDesc *ProgramDesc::Proto() { return &desc_; } +int64_t ProgramDesc::Version() const { return desc_.version().version(); } + ProgramDesc::ProgramDesc() { + desc_.mutable_version()->set_version(kCurProgramVersion); auto *block = desc_.mutable_blocks()->Add(); block->set_idx(kRootBlockIndex); block->set_parent_idx(kNoneBlockIndex); diff --git a/paddle/fluid/framework/program_desc.h b/paddle/fluid/framework/program_desc.h index a0e81cade18c0ca5eb1b98fee8325ae2d917d1a2..2ec0e9d7a0969d44f88c7407bfb8cd4646530147 100644 --- a/paddle/fluid/framework/program_desc.h +++ b/paddle/fluid/framework/program_desc.h @@ -57,6 +57,8 @@ class ProgramDesc { proto::ProgramDesc *Proto(); + int64_t Version() const; + // The output variable of feed_op is referenced as feed_target. // This function is used to collect the output variable's name of all // feed_ops. diff --git a/paddle/fluid/framework/program_desc_test.cc b/paddle/fluid/framework/program_desc_test.cc index 925ea98dbe62e4da91689f6e56c135e51c24a8a3..7e689a37da8a16bd9b1ac6650b9322d2eb5a2c85 100644 --- a/paddle/fluid/framework/program_desc_test.cc +++ b/paddle/fluid/framework/program_desc_test.cc @@ -87,8 +87,17 @@ TEST(ProgramDesc, copy_ctor) { ASSERT_EQ(op_origin->Inputs(), op_copy->Inputs()); ASSERT_EQ(op_origin->Outputs(), op_copy->Outputs()); - ASSERT_EQ(op_copy->Proto()->SerializeAsString(), - op_origin->Proto()->SerializeAsString()); + ASSERT_EQ(op_origin->Proto()->attrs().size(), + op_copy->Proto()->attrs().size()); + for (auto it = op_origin->Proto()->attrs().begin(); + it != op_origin->Proto()->attrs().end(); ++it) { + for (auto it_2 = op_copy->Proto()->attrs().begin(); + it_2 != op_copy->Proto()->attrs().end(); ++it_2) { + if (it->name() == it_2->name()) { + ASSERT_TRUE(it_2->SerializeAsString() == it->SerializeAsString()); + } + } + } if (op->Type() == "op_with_subblock") { ASSERT_EQ(1, op->GetBlockAttrId("sub_block")); diff --git a/paddle/fluid/framework/rw_lock.h b/paddle/fluid/framework/rw_lock.h index a068d3543d9d2abec203f86362a8be5ba135d04d..da163835e8652ae479121bd67f2eed77332b2740 100644 --- a/paddle/fluid/framework/rw_lock.h +++ b/paddle/fluid/framework/rw_lock.h @@ -56,5 +56,76 @@ struct RWLock { }; #endif +class RWLockGuard { + public: + enum Status { kUnLock, kWRLock, kRDLock }; + + RWLockGuard(RWLock* rw_lock, Status init_status) + : lock_(rw_lock), status_(Status::kUnLock) { + switch (init_status) { + case Status::kRDLock: { + RDLock(); + break; + } + case Status::kWRLock: { + WRLock(); + break; + } + case Status::kUnLock: { + break; + } + } + } + + void WRLock() { + switch (status_) { + case Status::kUnLock: { + lock_->WRLock(); + status_ = Status::kWRLock; + break; + } + case Status::kWRLock: { + break; + } + case Status::kRDLock: { + PADDLE_THROW( + "Please unlock read lock first before invoking write lock."); + break; + } + } + } + + void RDLock() { + switch (status_) { + case Status::kUnLock: { + lock_->RDLock(); + status_ = Status::kRDLock; + break; + } + case Status::kRDLock: { + break; + } + case Status::kWRLock: { + PADDLE_THROW( + "Please unlock write lock first before invoking read lock."); + break; + } + } + } + + void UnLock() { + if (status_ != Status::kUnLock) { + lock_->UNLock(); + status_ = Status::kUnLock; + } + } + + ~RWLockGuard() { UnLock(); } + + private: + RWLock* lock_; + Status status_; +}; + } // namespace framework } // namespace paddle diff --git a/paddle/fluid/framework/scope.cc b/paddle/fluid/framework/scope.cc index 50f374e3703a97f6c1fdb4b14fdeb0b603f9ac86..2be655b89a4caf2bf9874dcab6bc0bdb2856a026 100644 --- a/paddle/fluid/framework/scope.cc +++ b/paddle/fluid/framework/scope.cc @@ -72,6 +72,12 @@ void Scope::DropKids() { kids_.clear(); } +bool Scope::HasKid(const Scope* scope) const { + std::unique_lock lock(mutex_); + auto it = std::find(this->kids_.begin(), this->kids_.end(), scope); + return it != this->kids_.end(); +} + std::vector Scope::LocalVarNames() const { std::unique_lock lock(mutex_); std::vector known_vars; diff --git a/paddle/fluid/framework/scope.h b/paddle/fluid/framework/scope.h index e246241c0abfbc7bdcaf38d073cc58fc36a4f737..b6165a595d537c314a95685e8b1edbc42e387ab7 100644 --- a/paddle/fluid/framework/scope.h +++ b/paddle/fluid/framework/scope.h @@ -71,6 +71,9 @@ class Scope { /// Drop all kids scopes belonged to this scope. void DropKids(); + /// Find if a scope exists in the kid scopes + bool HasKid(const Scope* scope) const; + // enumerate all the variables current contains. std::vector LocalVarNames() const; diff --git a/paddle/fluid/framework/version.cc b/paddle/fluid/framework/version.cc new file mode 100644 index 0000000000000000000000000000000000000000..81c0392bf3cc7378cec06a9de3ae81f2b221ecec --- /dev/null +++ b/paddle/fluid/framework/version.cc @@ -0,0 +1,36 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/version.h" +#include + +namespace paddle { +namespace framework { +bool IsProgramVersionSupported(int64_t version) { + static int num_supported = + sizeof(kSupportedProgramVersion) / sizeof(kSupportedProgramVersion[0]); + return std::find(kSupportedProgramVersion, + kSupportedProgramVersion + num_supported, + version) != kSupportedProgramVersion + num_supported; +} + +bool IsTensorVersionSupported(uint32_t version) { + static int num_supported = + sizeof(kSupportedTensorVersion) / sizeof(kSupportedTensorVersion[0]); + return std::find(kSupportedTensorVersion, + kSupportedTensorVersion + num_supported, + version) != kSupportedTensorVersion + num_supported; +} +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/version.h b/paddle/fluid/framework/version.h new file mode 100644 index 0000000000000000000000000000000000000000..9945bc58c69df8456ff3d1aa0c777970bdbdbf98 --- /dev/null +++ b/paddle/fluid/framework/version.h @@ -0,0 +1,47 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include + +#pragma once + +namespace paddle { +namespace framework { + +// Note: +// Program and Tensor that pass the IsXXXVersionSupported should +// be supported by the current codes. Otherwise, it's a compatibility +// bug. + +// The program version the current codes generate. +constexpr int64_t kCurProgramVersion = 0; + +// The program version that was generated by previous or current codes +// and supported by current codes. +constexpr int64_t kSupportedProgramVersion[] = {0}; + +// Due to historical reasons, tensor version use uint32_t. +// The tensor version the current codes generate. +constexpr uint32_t kCurTensorVersion = 0; + +// The tensor version that was generated by previous or current codes +// and supported by current codes. +constexpr uint32_t kSupportedTensorVersion[] = {0}; + +bool IsProgramVersionSupported(int64_t version); + +bool IsTensorVersionSupported(uint32_t version); + +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/version_test.cc b/paddle/fluid/framework/version_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..e8c5f256000522af976bbf487741a586f1abc439 --- /dev/null +++ b/paddle/fluid/framework/version_test.cc @@ -0,0 +1,30 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/version.h" +#include "gtest/gtest.h" + +namespace paddle { +namespace framework { +TEST(Version, Basic) { + EXPECT_TRUE(IsProgramVersionSupported(0)); + EXPECT_FALSE(IsProgramVersionSupported(1)); + EXPECT_FALSE(IsProgramVersionSupported(-1)); + + EXPECT_TRUE(IsTensorVersionSupported(0)); + EXPECT_FALSE(IsTensorVersionSupported(1)); + EXPECT_FALSE(IsTensorVersionSupported(-1)); +} +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/inference/CMakeLists.txt b/paddle/fluid/inference/CMakeLists.txt index 2006e3b24f71d0ae32b4e2ae34f1a1e4d3a82f91..efb91bcf75a3cb99a67d5a3251b1d42fc4b04170 100644 --- a/paddle/fluid/inference/CMakeLists.txt +++ b/paddle/fluid/inference/CMakeLists.txt @@ -55,6 +55,7 @@ if(NOT APPLE) endif() if(WITH_TESTING) - # both tests/book and analysis depends the models that generated by python/paddle/fluid/tests/book + # tests/book depends the models that generated by python/paddle/fluid/tests/book add_subdirectory(tests/book) + add_subdirectory(tests/api) endif() diff --git a/paddle/fluid/inference/analysis/CMakeLists.txt b/paddle/fluid/inference/analysis/CMakeLists.txt index a115bc8f4a3326502762afb0d4f399d1f9674694..c2a1c6634bd8f8de0796456e91cb3c530d4c6823 100644 --- a/paddle/fluid/inference/analysis/CMakeLists.txt +++ b/paddle/fluid/inference/analysis/CMakeLists.txt @@ -1,6 +1,6 @@ cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass) set(analysis_deps - framework_proto proto_desc ir_pass_manager graph pass paddle_fluid_api executor) + framework_proto proto_desc ir_pass_manager graph pass paddle_fluid_api executor pretty_log) cc_library(analysis SRCS pass_manager.cc node.cc data_flow_graph.cc graph_traits.cc subgraph_splitter.cc analyzer.cc @@ -40,27 +40,7 @@ function (inference_analysis_test TARGET) endif(WITH_TESTING) endfunction(inference_analysis_test) -function (inference_download_and_uncompress install_dir url gz_filename) - message(STATUS "Download inference test stuff ${gz_filename} from ${url}") - execute_process(COMMAND bash -c "mkdir -p ${install_dir}") - execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${url}") - execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${gz_filename}") - message(STATUS "finish downloading ${gz_filename}") -endfunction(inference_download_and_uncompress) - -set(DITU_RNN_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fmodel.tar.gz") -set(DITU_RNN_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/ditu_rnn_fluid%2Fdata.txt.tar.gz") -set(DITU_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/ditu_rnn" CACHE PATH "Ditu RNN model and data root." FORCE) -if (NOT EXISTS ${DITU_INSTALL_DIR} AND WITH_TESTING) - inference_download_and_uncompress(${DITU_INSTALL_DIR} ${DITU_RNN_MODEL_URL} "ditu_rnn_fluid%2Fmodel.tar.gz") - inference_download_and_uncompress(${DITU_INSTALL_DIR} ${DITU_RNN_DATA_URL} "ditu_rnn_fluid%2Fdata.txt.tar.gz") -endif() - -inference_analysis_test(test_analyzer SRCS analyzer_tester.cc - EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor - ARGS --infer_ditu_rnn_model=${DITU_INSTALL_DIR}/model - --infer_ditu_rnn_data=${DITU_INSTALL_DIR}/data.txt) - +inference_analysis_test(test_analyzer SRCS analyzer_tester.cc EXTRA_DEPS paddle_inference_api) inference_analysis_test(test_data_flow_graph SRCS data_flow_graph_tester.cc) inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc) inference_analysis_test(test_fluid_to_ir_pass SRCS fluid_to_ir_pass_tester.cc) @@ -71,46 +51,3 @@ inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_ inference_analysis_test(test_pass_manager SRCS pass_manager_tester.cc) inference_analysis_test(test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc) inference_analysis_test(test_model_store_pass SRCS model_store_pass_tester.cc) - -set(CHINESE_NER_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner_model.tar.gz") -set(CHINESE_NER_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/chinese_ner-data.txt.tar.gz") -set(CHINESE_NER_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/chinese_ner" CACHE PATH "Chinese ner model and data root." FORCE) -if (NOT EXISTS ${CHINESE_NER_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE) - inference_download_and_uncompress(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_MODEL_URL} "chinese_ner_model.tar.gz") - inference_download_and_uncompress(${CHINESE_NER_INSTALL_DIR} ${CHINESE_NER_DATA_URL} "chinese_ner-data.txt.tar.gz") -endif() - -inference_analysis_test(test_analyzer_ner SRCS analyzer_ner_tester.cc - EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor - ARGS --infer_model=${CHINESE_NER_INSTALL_DIR}/model - --infer_data=${CHINESE_NER_INSTALL_DIR}/data.txt) - -set(LAC_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/lac_model.tar.gz") -set(LAC_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/lac_data.txt.tar.gz") -set(LAC_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/lac" CACHE PATH "LAC model and data root." FORCE) -if (NOT EXISTS ${LAC_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE) - inference_download_and_uncompress(${LAC_INSTALL_DIR} ${LAC_MODEL_URL} "lac_model.tar.gz") - inference_download_and_uncompress(${LAC_INSTALL_DIR} ${LAC_DATA_URL} "lac_data.txt.tar.gz") -endif() - -inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc - EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor - ARGS --infer_model=${LAC_INSTALL_DIR}/model - --infer_data=${LAC_INSTALL_DIR}/data.txt) - - -set(TEXT_CLASSIFICATION_MODEL_URL "http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz") -set(TEXT_CLASSIFICATION_DATA_URL "http://paddle-inference-dist.bj.bcebos.com/text_classification_data.txt.tar.gz") -set(TEXT_CLASSIFICATION_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/text_classification" CACHE PATH "Text Classification model and data root." FORCE) - -if (NOT EXISTS ${TEXT_CLASSIFICATION_INSTALL_DIR} AND WITH_TESTING AND WITH_INFERENCE) - inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_MODEL_URL} "text-classification-Senta.tar.gz") - inference_download_and_uncompress(${TEXT_CLASSIFICATION_INSTALL_DIR} ${TEXT_CLASSIFICATION_DATA_URL} "text_classification_data.txt.tar.gz") -endif() - -inference_analysis_test(test_text_classification SRCS analyzer_text_classification_tester.cc - EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor - ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/text-classification-Senta - --infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt - --topn=1 # Just run top 1 batch. - ) diff --git a/paddle/fluid/inference/analysis/analyzer.h b/paddle/fluid/inference/analysis/analyzer.h index 399afbe64a56393176795ecdd1ac70bfedd5c91a..9bdbefc07cbc4bf7a4714927c84855837610430e 100644 --- a/paddle/fluid/inference/analysis/analyzer.h +++ b/paddle/fluid/inference/analysis/analyzer.h @@ -72,6 +72,9 @@ class Analyzer : public OrderedRegistry { "mul_gru_fuse_pass", // "seq_concat_fc_fuse_pass", // "fc_fuse_pass", // +#ifdef PADDLE_WITH_MKLDNN + "conv_relu_mkldnn_fuse_pass", // +#endif }}; std::unordered_set disabled_ir_passes_; diff --git a/paddle/fluid/inference/analysis/analyzer_tester.cc b/paddle/fluid/inference/analysis/analyzer_tester.cc index a496ae41aa0b5c3bed1e1b372f9270a528b23516..3b5be7f3ee33c73a9704bafa9f1b736c8a3cd9ea 100644 --- a/paddle/fluid/inference/analysis/analyzer_tester.cc +++ b/paddle/fluid/inference/analysis/analyzer_tester.cc @@ -16,21 +16,9 @@ #include #include -#include // NOLINT -#include "paddle/fluid/framework/ir/fuse_pass_base.h" -#include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/inference/analysis/ut_helper.h" -#include "paddle/fluid/inference/api/analysis_predictor.h" -#include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" -#include "paddle/fluid/inference/utils/singleton.h" - -DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN"); -DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN"); -DEFINE_int32(batch_size, 10, "batch size."); -DEFINE_int32(repeat, 1, "Running the inference program repeat times."); -DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); namespace paddle { namespace inference { @@ -91,286 +79,8 @@ void TestWord2vecPrediction(const std::string &model_path) { } } -namespace { - -struct DataRecord { - std::vector>> link_step_data_all; - std::vector> week_data_all, minute_data_all; - std::vector lod1, lod2, lod3; - std::vector> rnn_link_data, rnn_week_datas, - rnn_minute_datas; - size_t batch_iter{0}; - size_t batch_size{1}; - DataRecord() = default; - explicit DataRecord(const std::string &path, int batch_size = 1) - : batch_size(batch_size) { - Load(path); - } - DataRecord NextBatch() { - DataRecord data; - size_t batch_end = batch_iter + batch_size; - // NOTE skip the final batch, if no enough data is provided. - if (batch_end <= link_step_data_all.size()) { - data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, - link_step_data_all.begin() + batch_end); - data.week_data_all.assign(week_data_all.begin() + batch_iter, - week_data_all.begin() + batch_end); - data.minute_data_all.assign(minute_data_all.begin() + batch_iter, - minute_data_all.begin() + batch_end); - // Prepare LoDs - data.lod1.push_back(0); - data.lod2.push_back(0); - data.lod3.push_back(0); - CHECK(!data.link_step_data_all.empty()) << "empty"; - CHECK(!data.week_data_all.empty()); - CHECK(!data.minute_data_all.empty()); - CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size()); - CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size()); - for (size_t j = 0; j < data.link_step_data_all.size(); j++) { - for (const auto &d : data.link_step_data_all[j]) { - data.rnn_link_data.push_back(d); - } - data.rnn_week_datas.push_back(data.week_data_all[j]); - data.rnn_minute_datas.push_back(data.minute_data_all[j]); - // calculate lod - data.lod1.push_back(data.lod1.back() + - data.link_step_data_all[j].size()); - data.lod3.push_back(data.lod3.back() + 1); - for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) { - data.lod2.push_back(data.lod2.back() + - data.link_step_data_all[j].size()); - } - } - } - batch_iter += batch_size; - return data; - } - void Load(const std::string &path) { - std::ifstream file(path); - std::string line; - int num_lines = 0; - while (std::getline(file, line)) { - num_lines++; - std::vector data; - split(line, ':', &data); - std::vector> link_step_data; - std::vector link_datas; - split(data[0], '|', &link_datas); - for (auto &step_data : link_datas) { - std::vector tmp; - split_to_float(step_data, ',', &tmp); - link_step_data.push_back(tmp); - } - // load week data - std::vector week_data; - split_to_float(data[2], ',', &week_data); - // load minute data - std::vector minute_data; - split_to_float(data[1], ',', &minute_data); - link_step_data_all.push_back(std::move(link_step_data)); - week_data_all.push_back(std::move(week_data)); - minute_data_all.push_back(std::move(minute_data)); - } - } -}; -void PrepareInputs(std::vector *input_slots, DataRecord *data, - int batch_size) { - PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor, - week_tensor, minute_tensor; - lod_attention_tensor.name = "data_lod_attention"; - init_zero_tensor.name = "cell_init"; - lod_tensor_tensor.name = "data"; - week_tensor.name = "week"; - minute_tensor.name = "minute"; - auto one_batch = data->NextBatch(); - std::vector rnn_link_data_shape( - {static_cast(one_batch.rnn_link_data.size()), - static_cast(one_batch.rnn_link_data.front().size())}); - lod_attention_tensor.shape.assign({1, 2}); - lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2}); - init_zero_tensor.shape.assign({batch_size, 15}); - init_zero_tensor.lod.assign({one_batch.lod3}); - lod_tensor_tensor.shape = rnn_link_data_shape; - lod_tensor_tensor.lod.assign({one_batch.lod1}); - // clang-format off - week_tensor.shape.assign( - {static_cast(one_batch.rnn_week_datas.size()), - static_cast(one_batch.rnn_week_datas.front().size())}); - week_tensor.lod.assign({one_batch.lod3}); - minute_tensor.shape.assign( - {static_cast(one_batch.rnn_minute_datas.size()), - static_cast(one_batch.rnn_minute_datas.front().size())}); - minute_tensor.lod.assign({one_batch.lod3}); - // clang-format on - // assign data - TensorAssignData(&lod_attention_tensor, - std::vector>({{0, 0}})); - std::vector tmp_zeros(batch_size * 15, 0.); - TensorAssignData(&init_zero_tensor, {tmp_zeros}); - TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data); - TensorAssignData(&week_tensor, one_batch.rnn_week_datas); - TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas); - // Set inputs. - auto init_zero_tensor1 = init_zero_tensor; - init_zero_tensor1.name = "hidden_init"; - input_slots->assign({week_tensor, init_zero_tensor, minute_tensor, - init_zero_tensor1, lod_attention_tensor, - lod_tensor_tensor}); - for (auto &tensor : *input_slots) { - tensor.dtype = PaddleDType::FLOAT32; - } -} - -} // namespace - -const float ditu_rnn_target_data[] = { - 104.711, 11.2431, 1.35422, 0, 0, 0, 0, 0, - 27.7039, 1.41486, 7.09526, 0, 0, 0, 0, 0, - 7.6481, 6.5324, 56.383, 2.88018, 8.92918, 132.007, 4.27429, 2.02934, - 14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0, - 80.0249, 4.77739, 0, 0, 0, 0, 0, 0, - 47.5643, 2.67029, 8.76252, 0, 0, 0, 0, 0, - 51.8822, 4.4411, 0, 0, 0, 0, 0, 0, - 10.7286, 12.0595, 10.6672, 0, 0, 0, 0, 0, - 93.5771, 3.84641, 0, 0, 0, 0, 0, 0, - 169.426, 0, 0, 0, 0, 0, 0, 0}; -void CompareResult(const std::vector &outputs, - const std::vector &base_outputs) { - PADDLE_ENFORCE_GT(outputs.size(), 0); - PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size()); - for (size_t i = 0; i < outputs.size(); i++) { - auto &out = outputs[i]; - auto &base_out = base_outputs[i]; - size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, - [](int a, int b) { return a * b; }); - size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(), - 1, [](int a, int b) { return a * b; }); - PADDLE_ENFORCE_EQ(size, size1); - PADDLE_ENFORCE_GT(size, 0); - float *data = static_cast(out.data.data()); - float *base_data = static_cast(base_out.data.data()); - for (size_t i = 0; i < size; i++) { - EXPECT_NEAR(data[i], base_data[i], 1e-3); - } - } -} -// Test with a really complicate model. -void TestDituRNNPrediction(bool use_analysis, bool activate_ir, - int num_threads) { - AnalysisConfig config; - config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__"; - config.param_file = FLAGS_infer_ditu_rnn_model + "/param"; - config.use_gpu = false; - config.device = 0; - config.specify_input_name = true; - config.enable_ir_optim = activate_ir; - PADDLE_ENFORCE(config.ir_mode == - AnalysisConfig::IrPassMode::kExclude); // default - config.ir_passes.clear(); // Do not exclude any pass. - int batch_size = FLAGS_batch_size; - int num_times = FLAGS_repeat; - - auto base_predictor = - CreatePaddlePredictor(config); - auto predictor = - CreatePaddlePredictor( - config); - std::vector input_slots; - DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size); - // Prepare inputs. - PrepareInputs(&input_slots, &data, batch_size); - std::vector outputs, base_outputs; - - base_predictor->Run(input_slots, &base_outputs); - - if (num_threads == 1) { - // Prepare inputs. - Timer timer; - timer.tic(); - for (int i = 0; i < num_times; i++) { - predictor->Run(input_slots, &outputs); - } - PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times); - CompareResult(outputs, base_outputs); - } else { - std::vector threads; - std::vector> predictors; - // TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled - // because AttentionLSTM's hard code nodeid will be damanged. - for (int tid = 0; tid < num_threads; ++tid) { - predictors.emplace_back( - CreatePaddlePredictor( - config)); - } - for (int tid = 0; tid < num_threads; ++tid) { - threads.emplace_back([&, tid]() { - // Each thread should have local input_slots and outputs. - std::vector input_slots; - DataRecord data(FLAGS_infer_ditu_rnn_data, batch_size); - PrepareInputs(&input_slots, &data, batch_size); - std::vector outputs; - Timer timer; - timer.tic(); - for (int i = 0; i < num_times; i++) { - predictors[tid]->Run(input_slots, &outputs); - } - PrintTime(batch_size, num_times, num_threads, tid, - timer.toc() / num_times); - CompareResult(outputs, base_outputs); - }); - } - for (int i = 0; i < num_threads; ++i) { - threads[i].join(); - } - } - - if (use_analysis && activate_ir) { - AnalysisPredictor *analysis_predictor = - dynamic_cast(predictor.get()); - auto &fuse_statis = analysis_predictor->analysis_argument() - .Get>( - framework::ir::kFuseStatisAttr); - for (auto &item : fuse_statis) { - LOG(INFO) << "fused " << item.first << " " << item.second; - } - - int num_ops = 0; - for (auto &node : - analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) { - if (node->IsFunction()) { - ++num_ops; - } - } - LOG(INFO) << "has num ops: " << num_ops; - - ASSERT_TRUE(fuse_statis.count("fc_fuse")); - EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); - EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM - EXPECT_EQ(num_ops, - 13); // After graph optimization, only 13 operators exists. - } -} - -// Inference with analysis and IR, easy for profiling independently. -TEST(Analyzer, DituRNN) { - TestDituRNNPrediction(true, true, FLAGS_num_threads); -} - -// Other unit-tests of DituRNN, test different options of use_analysis, -// activate_ir and multi-threads. -TEST(Analyzer, DituRNN_tests) { - int num_threads[2] = {1, 4}; - for (auto i : num_threads) { - // Directly infer with the original model. - TestDituRNNPrediction(false, false, i); - // Inference with the original model with the analysis turned on, the - // analysis - // module will transform the program to a data flow graph. - TestDituRNNPrediction(true, false, i); - // Inference with analysis and IR. The IR module will fuse some large - // kernels. - TestDituRNNPrediction(true, true, i); - } +TEST(Analyzer, word2vec_without_analysis) { + TestWord2vecPrediction(FLAGS_inference_model_dir); } } // namespace analysis diff --git a/paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc b/paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc deleted file mode 100644 index 65169f8cfcc5bf1e989609666f6e0ba03e42e5ba..0000000000000000000000000000000000000000 --- a/paddle/fluid/inference/analysis/analyzer_text_classification_tester.cc +++ /dev/null @@ -1,118 +0,0 @@ -// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -#include "paddle/fluid/inference/analysis/analyzer.h" -#include -#include // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files. -#include -#include -#include "paddle/fluid/framework/ir/pass.h" -#include "paddle/fluid/inference/analysis/ut_helper.h" -#include "paddle/fluid/inference/api/helper.h" -#include "paddle/fluid/inference/api/paddle_inference_api.h" -#include "paddle/fluid/inference/api/paddle_inference_pass.h" -#include "paddle/fluid/inference/api/timer.h" - -DEFINE_string(infer_model, "", "Directory of the inference model."); -DEFINE_string(infer_data, "", "Path of the dataset."); -DEFINE_int32(batch_size, 1, "batch size."); -DEFINE_int32(repeat, 1, "How many times to repeat run."); -DEFINE_int32(topn, -1, "Run top n batches of data to save time"); - -namespace paddle { -namespace inference { - -struct DataReader { - explicit DataReader(const std::string &path) - : file(new std::ifstream(path)) {} - - bool NextBatch(PaddleTensor *tensor, int batch_size) { - PADDLE_ENFORCE_EQ(batch_size, 1); - std::string line; - tensor->lod.clear(); - tensor->lod.emplace_back(std::vector({0})); - std::vector data; - - for (int i = 0; i < batch_size; i++) { - if (!std::getline(*file, line)) return false; - inference::split_to_int64(line, ' ', &data); - } - tensor->lod.front().push_back(data.size()); - - tensor->data.Resize(data.size() * sizeof(int64_t)); - memcpy(tensor->data.data(), data.data(), data.size() * sizeof(int64_t)); - tensor->shape.clear(); - tensor->shape.push_back(data.size()); - tensor->shape.push_back(1); - return true; - } - - std::unique_ptr file; -}; - -void Main(int batch_size) { - // shape -- - // Create Predictor -- - AnalysisConfig config; - config.model_dir = FLAGS_infer_model; - config.use_gpu = false; - config.enable_ir_optim = true; - auto predictor = - CreatePaddlePredictor( - config); - - std::vector input_slots(1); - // one batch starts - // data -- - auto &input = input_slots[0]; - input.dtype = PaddleDType::INT64; - - inference::Timer timer; - double sum = 0; - std::vector output_slots; - - int num_batches = 0; - for (int t = 0; t < FLAGS_repeat; t++) { - DataReader reader(FLAGS_infer_data); - while (reader.NextBatch(&input, FLAGS_batch_size)) { - if (FLAGS_topn > 0 && num_batches > FLAGS_topn) break; - timer.tic(); - CHECK(predictor->Run(input_slots, &output_slots)); - sum += timer.toc(); - ++num_batches; - } - } - PrintTime(batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat); - - // Get output - LOG(INFO) << "get outputs " << output_slots.size(); - - for (auto &output : output_slots) { - LOG(INFO) << "output.shape: " << to_string(output.shape); - // no lod ? - CHECK_EQ(output.lod.size(), 0UL); - LOG(INFO) << "output.dtype: " << output.dtype; - std::stringstream ss; - for (int i = 0; i < 5; i++) { - ss << static_cast(output.data.data())[i] << " "; - } - LOG(INFO) << "output.data summary: " << ss.str(); - // one batch ends - } -} - -TEST(text_classification, basic) { Main(FLAGS_batch_size); } - -} // namespace inference -} // namespace paddle diff --git a/paddle/fluid/inference/analysis/data_flow_graph.cc b/paddle/fluid/inference/analysis/data_flow_graph.cc index 100a7504b8526b3587858dd7783913757ba09895..8c7d58678fd29cb25d13d64a08e6c6f26f242d8b 100644 --- a/paddle/fluid/inference/analysis/data_flow_graph.cc +++ b/paddle/fluid/inference/analysis/data_flow_graph.cc @@ -440,6 +440,7 @@ ExtractInputAndOutputOfSubGraph(std::vector &graph) { // NOLINT } return false; }; + for (auto &node : graph) { for (auto *in : node->inlinks) { // The Value that is written by nodes inside a sub-graph shouldn't be the @@ -459,6 +460,7 @@ ExtractInputAndOutputOfSubGraph(std::vector &graph) { // NOLINT std::vector(outputs.begin(), outputs.end())); } +// Filter the Intermediate results of the subgraph node. void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph) { std::vector op_nodes; for (auto &node : GraphTraits(*graph).nodes_in_TS()) { @@ -480,9 +482,11 @@ void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph) { for (auto *out : op_nodes[i]->outlinks) { if (follow_up_input_names.count(out->name())) { filtered_subgraph_outlinks.push_back(out); + } else { + out->SetDeleted(); } } - PADDLE_ENFORCE_GE(filtered_subgraph_outlinks.size(), 1UL); + // The filtered_subgraph_outlinks may be empty. op_nodes[i]->outlinks = filtered_subgraph_outlinks; } } diff --git a/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc b/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc index 8579845d51e80d73d220465d25b70944f5ad9bf2..5652940ec6d4cc7ba9a1d3a3e65f7dca1690d8c4 100644 --- a/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc +++ b/paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.cc @@ -106,20 +106,23 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph, // collect inputs std::unordered_set input_names; + std::unordered_set input_names_with_id; for (auto *x : func->inlinks) { input_names.insert(x->name()); + input_names_with_id.insert(x->name() + std::to_string(x->id())); } desc.SetInput( "Xs", std::vector(input_names.begin(), input_names.end())); std::unordered_set output_names; + std::unordered_set output_names_with_id; for (auto *x : func->outlinks) { output_names.insert(x->name()); + output_names_with_id.insert(x->name() + std::to_string(x->id())); } - std::vector output_temp(output_names.begin(), - output_names.end()); - desc.SetOutput("Ys", output_temp); + desc.SetOutput( + "Ys", std::vector(output_names.begin(), output_names.end())); desc.SetType("tensorrt_engine"); std::unordered_map output_name_map; @@ -153,11 +156,12 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph, std::vector replaced_names; for (int k = 0; k < in_var->arguments_size(); k++) { std::string arg_value = in_var->arguments(k); - if (input_names.count(arg_value)) { + std::string arg_value_with_id = + arg_value + std::to_string(var2id[arg_value]); + if (input_names_with_id.count(arg_value_with_id)) { replaced_names.push_back(arg_value); } else { - replaced_names.push_back(arg_value + - std::to_string(var2id[arg_value])); + replaced_names.push_back(arg_value_with_id); } } in_var->clear_arguments(); @@ -176,11 +180,12 @@ void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph, std::vector replaced_names; for (int k = 0; k < out_var->arguments_size(); k++) { std::string arg_value = out_var->arguments(k); - if (output_names.count(arg_value)) { - output_name_map[arg_value] = - arg_value + std::to_string(var2id[arg_value]); + std::string arg_value_with_id = + arg_value + std::to_string(var2id[arg_value]); + if (output_names_with_id.count(arg_value_with_id)) { + output_name_map[arg_value] = arg_value_with_id; } - replaced_names.push_back(arg_value + std::to_string(var2id[arg_value])); + replaced_names.push_back(arg_value_with_id); } out_var->clear_arguments(); for (size_t k = 0; k < replaced_names.size(); k++) { diff --git a/paddle/fluid/inference/analysis/ir_pass_manager.cc b/paddle/fluid/inference/analysis/ir_pass_manager.cc index ea0f2241d7dbab8f79ec9349effbe96112748e34..e76708baf4b39afb0febbcf3ff71281dfbfc8627 100644 --- a/paddle/fluid/inference/analysis/ir_pass_manager.cc +++ b/paddle/fluid/inference/analysis/ir_pass_manager.cc @@ -14,13 +14,18 @@ #include "paddle/fluid/inference/analysis/ir_pass_manager.h" #include +#include #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace inference { namespace analysis { +using string::PrettyLogEndl; +using string::PrettyLog; +using string::Style; IRPassManager::IRPassManager(const ProgramDesc &program, framework::Scope *scope) @@ -33,13 +38,16 @@ IRPassManager::IRPassManager(const ProgramDesc &program, void IRPassManager::Apply(const std::vector &passes) { // Apply all the passes std::string pre_pass; + int pass_num = 0; for (const std::string &pass_name : passes) { - LOG(WARNING) << "Running IR pass [" << pass_name << "]"; + PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass_name); auto pass = framework::ir::PassRegistry::Instance().Get(pass_name); if (pass_name == "graph_viz_pass") { - std::string dot_file_path = - "ir_" + (pre_pass.empty() ? "origin" : pre_pass) + ".dot"; + std::string dot_file_path = std::to_string(pass_num) + "_ir_" + + (pre_pass.empty() ? "origin" : pre_pass) + + ".dot"; pass->Set("graph_viz_path", new std::string(std::move(dot_file_path))); + pass_num++; } graph_ = pass->Apply(std::move(graph_)); pre_pass = pass_name; diff --git a/paddle/fluid/inference/analysis/pass_manager.cc b/paddle/fluid/inference/analysis/pass_manager.cc index 759b2b96a1944c060ac98b6865b58ba2f6369607..a6ac0ee49f8f408faa7a17bf5ef5d2799a9a6238 100644 --- a/paddle/fluid/inference/analysis/pass_manager.cc +++ b/paddle/fluid/inference/analysis/pass_manager.cc @@ -14,6 +14,7 @@ limitations under the License. */ #include "paddle/fluid/inference/analysis/pass_manager.h" #include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h" +#include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace inference { @@ -22,7 +23,7 @@ namespace analysis { bool PassManager::Initialize(Argument* argument) { argument_ = argument; for (auto& pass : data_) { - LOG(WARNING) << "Initializing pass [" << pass->repr() << "]"; + VLOG(3) << "Initializing pass [" << pass->repr() << "]"; if (!pass->Initialize(argument)) { LOG(ERROR) << "Failed to initialize pass [" << pass->repr() << "]"; return false; @@ -33,9 +34,10 @@ bool PassManager::Initialize(Argument* argument) { void DfgPassManager::RunAll() { PADDLE_ENFORCE(argument_); - LOG(INFO) << "Total " << data_.size() << " Analysys passes"; + VLOG(3) << "Total " << data_.size() << " Analysys passes"; for (auto& pass : data_) { - LOG(WARNING) << "Running Analysis pass [" << pass->repr() << "]"; + string::PrettyLogEndl(string::Style::H1(), "* Running Analysis pass [%s]", + pass->repr()); pass->Run(argument_->main_dfg.get()); } } diff --git a/paddle/fluid/inference/analysis/subgraph_splitter.cc b/paddle/fluid/inference/analysis/subgraph_splitter.cc index 670a8de667494c655bed15aa3e4ce8265448635a..b879067d2f2f6294c50e0adb21f9399a7c36698a 100644 --- a/paddle/fluid/inference/analysis/subgraph_splitter.cc +++ b/paddle/fluid/inference/analysis/subgraph_splitter.cc @@ -74,13 +74,141 @@ void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) { node_map.at(b)->attr(kUnionFindParent).Int32() = a_ancestor; } +// This is a simple representation of a graph. +// The BriefNode hold the pointer of the Node. +// This is to avoid changing the original graph +// in the process of trt graph analysis. +struct BriefNode { + explicit BriefNode(Node *n) { node = n; } + Node *node; + std::vector inlinks; + std::vector outlinks; +}; + +// Union two adjacent BriefNode. +// Suppose we have two adjacent nodes src and dst. +// We will perform the following operations: +// 1. add all inputs(except src) of dst to src inlinks. +// 2. add all outputs of dst to src outlinks. +// 3. change all the dst's inputs and outputs +// corresponding inlinks and outlinks to src node. +// 4. delete all dst's inlinks and outlinks. +void UnionContractedNodes(const std::unordered_map &node_map, + int src_id, int dst_id) { + // merge the two adjacent nodes into one node. + BriefNode *src_node = node_map.at(src_id); + BriefNode *dst_node = node_map.at(dst_id); + + std::unordered_set inputs(src_node->inlinks.begin(), + src_node->inlinks.end()); + std::unordered_set outputs; + + for (auto *n : src_node->outlinks) { + if (n != dst_node) outputs.insert(n); + } + + // Add the inlinks and outlinks of dst node to src node. + std::vector dst_in_nodes = dst_node->inlinks; + for (BriefNode *node : dst_in_nodes) { + if (node != src_node) { + inputs.insert(node); + } + } + + std::vector dst_out_nodes = dst_node->outlinks; + for (BriefNode *node : dst_out_nodes) { + outputs.insert(node); + } + +// update the dst and src node's inlinks and outlinks. +#ifdef __clang__ + src_node->inlinks = std::vector(inputs.begin(), inputs.end()); + src_node->outlinks = std::vector(outputs.begin(), outputs.end()); + dst_node->inlinks.clear(); + dst_node->outlinks.clear(); +#else + src_node->inlinks = + std::move(std::vector(inputs.begin(), inputs.end())); + src_node->outlinks = + std::move(std::vector(outputs.begin(), outputs.end())); + dst_node->inlinks.clear(); + dst_node->outlinks.clear(); +#endif + + auto inlink_or_outlink_cleaner = [&](std::vector &nodes) { + for (auto *&n : nodes) { + if (n == src_node || n == dst_node) { + n = src_node; + } + } + }; + // Change all the dst inputs and outputs corresponding inlink and + // outlink to the src node. + for (auto *node : src_node->inlinks) { + inlink_or_outlink_cleaner(node->outlinks); + } + + for (auto *node : src_node->outlinks) { + inlink_or_outlink_cleaner(node->inlinks); + } +} + +// FlexibleDFS +// If reverse is true, do reverse dfs. +// If enter func is not nullptr, calls enter(node) before visiting any children +// of node. +// If leave func not nullptr, calls leave(node) after visiting all parents of +// node. +void FlexibleDFS(const std::vector &source, bool reverse, + const std::function &enter, + const std::function &leave) { + typedef struct { + const BriefNode *node; + bool leave; + } FNode; + + std::vector stack; + for (auto &node : source) { + stack.push_back(FNode{node, false}); + } + std::unordered_set visited; + while (!stack.empty()) { + auto fnode = stack.back(); + stack.pop_back(); + + if (fnode.leave) { + if (leave && !leave(fnode.node)) return; + } + if (visited.count(fnode.node)) continue; + visited.insert(fnode.node); + + if (enter && !enter(fnode.node)) return; + + if (leave) stack.push_back(FNode{fnode.node, true}); + const std::vector iter_nodes = + reverse == true ? fnode.node->inlinks : fnode.node->outlinks; + for (const BriefNode *node : iter_nodes) { + if (!visited.count(node)) { + stack.push_back(FNode{node, false}); + } + } + } +} + std::vector> SubGraphSplitter::ExtractSubGraphs() { + // Run the Extract algorithm to find all subgraphs. std::vector marked_nodes; + // We use brief_node_map to represent the original graph in order to avoid + // changing the original graph. + std::unordered_map brief_node_map; + for (auto &node : GraphTraits(*graph_).nodes_in_TS()) { + brief_node_map[node.id()] = new BriefNode(&node); if (node.attr(kMarkerAttrName).Bool()) { marked_nodes.push_back(&node); } } + // extract sub-graphs in the marked node set, use Union Find algorithm. node_map_t node_map; // id to ptr for (auto *n : marked_nodes) { @@ -88,11 +216,73 @@ std::vector> SubGraphSplitter::ExtractSubGraphs() { n->attr(kUnionFindParent).Int32() = n->id(); node_map[n->id()] = n; } - std::unordered_set visited; - for (auto *n : marked_nodes) { - for (auto *out : n->outlinks) { - if (node_map.count(out->id())) { - UnionFindCombine(node_map, n->id(), out->id()); + + // create breif node map + for (auto &itr : brief_node_map) { + for (Node *node : itr.second->node->inlinks) { + itr.second->inlinks.push_back(brief_node_map[node->id()]); + } + + for (Node *node : itr.second->node->outlinks) { + itr.second->outlinks.push_back(brief_node_map[node->id()]); + } + } + + for (auto &itr : brief_node_map) { + BriefNode *brief_node = itr.second; + + if (!brief_node->node->attr(kMarkerAttrName).Bool()) { + VLOG(4) << brief_node->node->id() << " node not a trt candicate."; + continue; + } + + // Our algorithm must guarantee that: + // 1. The graph is always directed acyclic graph(DAG). + // 2. If there is a path in the subgraph from X to Y (X and Y are both + // nodes in the subgraph), then all paths from X to Y are in the + // subgraph. + // + // In order to achieve the above guarantee. + // For adjacent nodes src -> dst. + // 1. Get all dst input nodes except src. + // 2. Reverse DFS from those input nodes + // 3. If there is a path from input nodes to src, + // then the src and dst nodes can not be fused into one node, + // otherwise it can be done. + + while (true) { + std::unordered_set contract_nodes; + for (auto *out : brief_node->outlinks) { + // must be an trt candidate + if (!out->node->attr(kMarkerAttrName).Bool()) continue; + // get all dst input nodes except src. + std::vector source_nodes; + for (auto *n : out->inlinks) { + if (n != brief_node) { + source_nodes.push_back(n); + } + } + + // Reverse DFS from the source_nodes. + bool have_excess_path = false; + FlexibleDFS(source_nodes, true, nullptr, + [&have_excess_path, brief_node](const BriefNode *n) { + if (n == brief_node) { + have_excess_path = true; + return false; + } + return true; + }); + if (have_excess_path) continue; + contract_nodes.insert(out); + } + if (contract_nodes.empty()) break; + + for (auto dst_node : contract_nodes) { + UnionFindCombine(node_map, brief_node->node->id(), + dst_node->node->id()); + UnionContractedNodes(brief_node_map, brief_node->node->id(), + dst_node->node->id()); } } } @@ -128,6 +318,7 @@ void SubGraphFuse::ReplaceNodesWithSubGraphs() { auto io = ExtractInputAndOutputOfSubGraph(subgraph); block_node->inlinks = std::move(io.first); block_node->outlinks = std::move(io.second); + for (auto *node : subgraph) { // TODO(Superjomn) need a unified mechanism to treat deleted node in each // pass. diff --git a/paddle/fluid/inference/analysis/subgraph_splitter_tester.cc b/paddle/fluid/inference/analysis/subgraph_splitter_tester.cc index 39cc433b40fad17f4f12359d4e907a250a88bd63..531a170512f727d891aa6644ee08a60c25f16876 100644 --- a/paddle/fluid/inference/analysis/subgraph_splitter_tester.cc +++ b/paddle/fluid/inference/analysis/subgraph_splitter_tester.cc @@ -82,7 +82,7 @@ TEST(SubGraphSplitter, Fuse) { // At least one nodes should be deleted. ASSERT_EQ(dfg.nodes.size(), count0 + 1); // added a new FunctionBlock - ASSERT_EQ(6, count1); + ASSERT_EQ(11, count1); } } // namespace analysis diff --git a/paddle/fluid/inference/api/analysis_predictor.cc b/paddle/fluid/inference/api/analysis_predictor.cc index 2a9a7aed480e76edbac4d5ba6d7bc3b8b2dc5006..684e0ce0e292d852d4601ebd1ccd920382e42c8b 100644 --- a/paddle/fluid/inference/api/analysis_predictor.cc +++ b/paddle/fluid/inference/api/analysis_predictor.cc @@ -77,6 +77,9 @@ bool AnalysisPredictor::Init( OptimizeInferenceProgram(); ctx_ = executor_->Prepare(*inference_program_, 0); + if (config_._use_mkldnn) { + executor_->EnableMKLDNN(*inference_program_); + } VLOG(5) << "to create variables"; PADDLE_ENFORCE(scope_.get()); diff --git a/paddle/fluid/inference/api/api.cc b/paddle/fluid/inference/api/api.cc index 5f1e1b548c7b7daa66932571d7053701bc0bd1f6..c71769a32f604358fe68c927546591310649f116 100644 --- a/paddle/fluid/inference/api/api.cc +++ b/paddle/fluid/inference/api/api.cc @@ -9,8 +9,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include #include "paddle/fluid/inference/api/paddle_inference_api.h" +#include "paddle/fluid/platform/enforce.h" namespace paddle { @@ -64,13 +64,15 @@ PaddleBuf& PaddleBuf::operator=(PaddleBuf&& other) { void PaddleBuf::Resize(size_t length) { // Only the owned memory can be reset, the external memory can't be changed. - if (length_ == length) return; + if (length_ >= length) return; if (memory_owned_) { Free(); + data_ = malloc(length); + length_ = length; + memory_owned_ = true; + } else { + PADDLE_THROW("The memory is allocated externally, can not Resized"); } - data_ = new char[length]; - length_ = length; - memory_owned_ = true; } void PaddleBuf::Reset(void* data, size_t length) { @@ -82,8 +84,8 @@ void PaddleBuf::Reset(void* data, size_t length) { void PaddleBuf::Free() { if (memory_owned_ && data_) { - assert(length_ > 0); - delete[] static_cast(data_); + PADDLE_ENFORCE_GT(length_, 0); + free(static_cast(data_)); data_ = nullptr; length_ = 0; } diff --git a/paddle/fluid/inference/api/api_impl.cc b/paddle/fluid/inference/api/api_impl.cc index bd9b4b1a814f995e3979105f5b9830b95fd8ea7d..2e9e10139fa7008a46c3782960dfd44d3228cc26 100644 --- a/paddle/fluid/inference/api/api_impl.cc +++ b/paddle/fluid/inference/api/api_impl.cc @@ -106,6 +106,9 @@ bool NativePaddlePredictor::Init( } ctx_ = executor_->Prepare(*inference_program_, 0); + if (config_._use_mkldnn) { + executor_->EnableMKLDNN(*inference_program_); + } executor_->CreateVariables(*inference_program_, sub_scope_ ? sub_scope_ : scope_.get(), 0); @@ -262,7 +265,7 @@ void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch, if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) { buffer.Resize(sizeof(T) * data.size()); } - std::memcpy(buffer.data(), data.data(), buffer.length()); + std::memcpy(buffer.data(), data.data(), sizeof(T) * data.size()); // copy LoD for (const auto &level : fetch.lod()) { output->lod.emplace_back(level); diff --git a/paddle/fluid/inference/api/helper.h b/paddle/fluid/inference/api/helper.h index f6893be428feacbba85bab380e22972848eaeb93..8e359a67738c0df180933421b45f15b39fd0e78c 100644 --- a/paddle/fluid/inference/api/helper.h +++ b/paddle/fluid/inference/api/helper.h @@ -123,10 +123,16 @@ std::string DescribeTensor(const PaddleTensor &tensor) { } void PrintTime(int batch_size, int repeat, int num_threads, int tid, - double latency) { + double latency, int epoch = 1) { LOG(INFO) << "====== batch_size: " << batch_size << ", repeat: " << repeat << ", threads: " << num_threads << ", thread id: " << tid << ", latency: " << latency << "ms ======"; + if (epoch > 1) { + int samples = batch_size * epoch; + LOG(INFO) << "====== sample number: " << samples + << ", average latency of each sample: " << latency / samples + << "ms ======"; + } } } // namespace inference diff --git a/paddle/fluid/inference/api/paddle_inference_api.h b/paddle/fluid/inference/api/paddle_inference_api.h index 995da11e4a30eca72a91a53d3293aa8b033b012b..55a07ca705f9fafa9ea223a867300bd14e10c364 100644 --- a/paddle/fluid/inference/api/paddle_inference_api.h +++ b/paddle/fluid/inference/api/paddle_inference_api.h @@ -45,7 +45,7 @@ class PaddleBuf { PaddleBuf(void* data, size_t length) : data_(data), length_(length), memory_owned_{false} {} // Own memory. - PaddleBuf(size_t length) + explicit PaddleBuf(size_t length) : data_(new char[length]), length_(length), memory_owned_(true) {} // Resize to `length` bytes. void Resize(size_t length); @@ -121,6 +121,8 @@ struct NativeConfig : public PaddlePredictor::Config { bool use_gpu{false}; int device{0}; float fraction_of_gpu_memory{-1.f}; // Negative to notify initialization. + // NOTE: NOT use it, just for the internal test, will discard later + bool _use_mkldnn{false}; // Specify the variable's name of each input. bool specify_input_name{false}; diff --git a/paddle/fluid/inference/io.cc b/paddle/fluid/inference/io.cc index cef7b2a7e3a29da05628d7540f5545dc9adda27e..e246a06fd079d837ac321197914c9f70b528f2c8 100644 --- a/paddle/fluid/inference/io.cc +++ b/paddle/fluid/inference/io.cc @@ -20,6 +20,7 @@ limitations under the License. */ #include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/version.h" #include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/pybind/pybind.h" @@ -124,6 +125,9 @@ std::unique_ptr Load(framework::Executor* executor, std::unique_ptr main_program( new framework::ProgramDesc(program_desc_str)); + PADDLE_ENFORCE(framework::IsProgramVersionSupported(main_program->Version()), + "model version %ld is not supported.", + main_program->Version()); LoadPersistables(executor, scope, *main_program, dirname, ""); return main_program; @@ -138,6 +142,9 @@ std::unique_ptr Load( std::unique_ptr main_program( new framework::ProgramDesc(program_desc_str)); + PADDLE_ENFORCE(framework::IsProgramVersionSupported(main_program->Version()), + "model version %ld is not supported.", + main_program->Version()); LoadPersistables(executor, scope, *main_program, "", param_filename); return main_program; diff --git a/paddle/fluid/inference/tensorrt/convert/activation_op.cc b/paddle/fluid/inference/tensorrt/convert/activation_op.cc index e1cace9cc1b06f036f52e82b7b86c99a02d50f50..8168cdff1b85fc05d22fbec7fac6ab8892f3a907 100644 --- a/paddle/fluid/inference/tensorrt/convert/activation_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/activation_op.cc @@ -35,6 +35,8 @@ class ReluOpConverter : public OpConverter { engine_, Activation, *const_cast(input_tensor), nvinfer1::ActivationType::kRELU); auto output_name = op_desc.Output("Out")[0]; + layer->setName(("relu (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { // the test framework can not determine which is the // output, so place the declaration inside. diff --git a/paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc b/paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc index 94f8b0ae5606d39a722ffe28501645c9b6fc5d2e..3330af2da6c97ad153dcecd86be4b441eac62b5e 100644 --- a/paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/batch_norm_op.cc @@ -116,6 +116,8 @@ class BatchNormOpConverter : public OpConverter { scale_weights.get(), power_weights.get()); auto output_name = op_desc.Output("Y").front(); + layer->setName(("batch_norm (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->weight_map[op_desc.Input("Bias").front()] = std::move(combile_bias_tensor); engine_->weight_map[op_desc.Input("Scale").front()] = diff --git a/paddle/fluid/inference/tensorrt/convert/concat_op.cc b/paddle/fluid/inference/tensorrt/convert/concat_op.cc index bb9627bf957b63993b2c8d23e7ec8122eb004eaf..a11dfa1e8f2dacfad067d025678911200db500fb 100644 --- a/paddle/fluid/inference/tensorrt/convert/concat_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/concat_op.cc @@ -42,6 +42,8 @@ class ConcatOpConverter : public OpConverter { axis = axis - 1; // Remove batch dim layer->setAxis(axis); auto output_name = op_desc.Output("Out")[0]; + layer->setName(("concat (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { // the test framework can not determine which is the // output, so place the declaration inside. diff --git a/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc b/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc index 841a95db38ce7cf0cb5961ff04cb569ee2633e6f..0a37d3968c39d2c244bbd82161afddf6330e421d 100644 --- a/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/conv2d_op.cc @@ -78,8 +78,10 @@ class Conv2dOpConverter : public OpConverter { layer->setNbGroups(groups); auto output_name = op_desc.Output("Output").front(); + layer->setName(("conv2d (Output: " + output_name + ")").c_str()); engine_->weight_map[op_desc.Input("Filter").front()] = std::move(weight_tensor); + layer->getOutput(0)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { engine_->DeclareOutput(output_name); diff --git a/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc b/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc index 60a72b4eb5c75b5cd12305f13763a9a1a567213f..0a6ce568f194f03c7259e1ebf28dd6ce4df2d594 100644 --- a/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/elementwise_op.cc @@ -89,6 +89,8 @@ class ElementwiseWeightOpConverter : public OpConverter { shift_weights.get(), scale_weights.get(), power_weights.get()); auto output_name = op_desc.Output("Out")[0]; + layer->setName(("elementwise_add (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->weight_map[op_desc.Input("Y").front()] = std::move(weight_tensor); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { // the test framework can not determine which is the @@ -137,6 +139,8 @@ class ElementwiseTensorOpConverter : public OpConverter { *const_cast(Y), op_pair->second); auto output_name = op_desc.Output("Out")[0]; + layer->setName(("elementwise (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { // the test framework can not determine which is the // output, so place the declaration inside. diff --git a/paddle/fluid/inference/tensorrt/convert/fc_op.cc b/paddle/fluid/inference/tensorrt/convert/fc_op.cc index ad98d85aae9cf594922aca00c43718ccfbce2278..7c21ecd95da07b498eed2ab1bbdcc0e8cd184787 100644 --- a/paddle/fluid/inference/tensorrt/convert/fc_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/fc_op.cc @@ -107,6 +107,8 @@ class FcOpConverter : public OpConverter { n_output, tmp_weight.get(), bias.get()); auto output_name = op_desc.Output("Out").front(); + layer->setName(("fc (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); engine_->weight_map[op_desc.Input("Y").front()] = std::move(tmp); if (test_mode) { diff --git a/paddle/fluid/inference/tensorrt/convert/pool2d_op.cc b/paddle/fluid/inference/tensorrt/convert/pool2d_op.cc index 73f1b28ddf73403862e55d102a259d7b6cf67b1f..f9bb66a6e9f81a10368db7710108c319860e940a 100644 --- a/paddle/fluid/inference/tensorrt/convert/pool2d_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/pool2d_op.cc @@ -72,6 +72,8 @@ class Pool2dOpConverter : public OpConverter { layer->setPadding(nv_paddings); auto output_name = op_desc.Output("Out")[0]; + layer->setName(("pool2d (Output: " + output_name + ")").c_str()); + layer->getOutput(0)->setName(output_name.c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { engine_->DeclareOutput(output_name); diff --git a/paddle/fluid/inference/tests/api/CMakeLists.txt b/paddle/fluid/inference/tests/api/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..e397457061662c8afb9760ef52406c22caaeb213 --- /dev/null +++ b/paddle/fluid/inference/tests/api/CMakeLists.txt @@ -0,0 +1,73 @@ +set(INFERENCE_URL "http://paddle-inference-dist.bj.bcebos.com") +set(INFERENCE_DEMO_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo") +set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor) +function (inference_download_and_uncompress install_dir filename) + message(STATUS "Download inference test stuff from ${INFERENCE_URL}/${filename}") + execute_process(COMMAND bash -c "mkdir -p ${install_dir}") + execute_process(COMMAND bash -c "cd ${install_dir} && wget -q ${INFERENCE_URL}/${filename}") + execute_process(COMMAND bash -c "cd ${install_dir} && tar xzf ${filename}") + message(STATUS "finish downloading ${filename}") +endfunction(inference_download_and_uncompress) + +function(download_model_and_data install_dir model_name data_name) + if (NOT EXISTS ${install_dir} AND WITH_INFERENCE) + inference_download_and_uncompress(${install_dir} ${model_name}) + inference_download_and_uncompress(${install_dir} ${data_name}) + endif() +endfunction() + +# RNN1 +set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1") +download_model_and_data(${RNN1_INSTALL_DIR} "rnn1%2Fmodel.tar.gz" "rnn1%2Fdata.txt.tar.gz") +inference_analysis_test(test_analyzer_rnn1 SRCS analyzer_rnn1_tester.cc + EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} + ARGS --infer_model=${RNN1_INSTALL_DIR}/model + --infer_data=${RNN1_INSTALL_DIR}/data.txt) + +# RNN2 +set(RNN2_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn2") +download_model_and_data(${RNN2_INSTALL_DIR} "rnn2_model.tar.gz" "rnn2_data.txt.tar.gz") +inference_analysis_test(test_analyzer_rnn2 SRCS analyzer_rnn2_tester.cc + EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} + ARGS --infer_model=${RNN2_INSTALL_DIR}/model + --infer_data=${RNN2_INSTALL_DIR}/data.txt) + +# chinese_ner +set(CHINESE_NER_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/chinese_ner") +download_model_and_data(${CHINESE_NER_INSTALL_DIR} "chinese_ner_model.tar.gz" "chinese_ner-data.txt.tar.gz") +inference_analysis_test(test_analyzer_ner SRCS analyzer_ner_tester.cc + EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} + ARGS --infer_model=${CHINESE_NER_INSTALL_DIR}/model + --infer_data=${CHINESE_NER_INSTALL_DIR}/data.txt) + +# lac +set(LAC_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/lac") +download_model_and_data(${LAC_INSTALL_DIR} "lac_model.tar.gz" "lac_data.txt.tar.gz") +inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc + EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} + ARGS --infer_model=${LAC_INSTALL_DIR}/model + --infer_data=${LAC_INSTALL_DIR}/data.txt) + +# text_classification +set(TEXT_CLASSIFICATION_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/text_classification") +download_model_and_data(${TEXT_CLASSIFICATION_INSTALL_DIR} "text-classification-Senta.tar.gz" "text_classification_data.txt.tar.gz") +inference_analysis_test(test_analyzer_text_classification SRCS analyzer_text_classification_tester.cc + EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} + ARGS --infer_model=${TEXT_CLASSIFICATION_INSTALL_DIR}/model + --infer_data=${TEXT_CLASSIFICATION_INSTALL_DIR}/data.txt) + +# ocr +set(OCR_MODEL_URL "http://paddlemodels.cdn.bcebos.com/inference-vis-demos%2Focr.tar.gz") +set(OCR_INSTALL_DIR "${THIRD_PARTY_PATH}/inference_demo/ocr") +if (NOT EXISTS ${OCR_INSTALL_DIR} AND WITH_INFERENCE) + get_filename_component(filename ${OCR_MODEL_URL} NAME) + message(STATUS "Download inference test stuff ${filename} from ${OCR_MODEL_URL}") + execute_process(COMMAND bash -c "mkdir -p ${OCR_INSTALL_DIR}") + execute_process(COMMAND bash -c "cd ${OCR_INSTALL_DIR} && wget -q ${OCR_MODEL_URL}") + execute_process(COMMAND bash -c "cd ${OCR_INSTALL_DIR} && tar xzf ${filename}") + message(STATUS "finish downloading ${filename}") +endif() +inference_analysis_test(test_analyzer_ocr SRCS analyzer_vis_tester.cc + EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} + ARGS --infer_model=${OCR_INSTALL_DIR}/model + --infer_data=${OCR_INSTALL_DIR}/data.txt) diff --git a/paddle/fluid/inference/analysis/analyzer_lac_tester.cc b/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc similarity index 67% rename from paddle/fluid/inference/analysis/analyzer_lac_tester.cc rename to paddle/fluid/inference/tests/api/analyzer_lac_tester.cc index 522d870db8583aac4006e8cdb7909625c3feb34b..bf893e32569f4b50a583ab6f43cb214ec3620e09 100644 --- a/paddle/fluid/inference/analysis/analyzer_lac_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_lac_tester.cc @@ -12,21 +12,7 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "paddle/fluid/inference/analysis/analyzer.h" -#include -#include "paddle/fluid/framework/ir/fuse_pass_base.h" -#include "paddle/fluid/inference/analysis/ut_helper.h" -#include "paddle/fluid/inference/api/analysis_predictor.h" -#include "paddle/fluid/inference/api/helper.h" -#include "paddle/fluid/inference/api/paddle_inference_pass.h" -#include "paddle/fluid/platform/profiler.h" - -DEFINE_string(infer_model, "", "model path for LAC"); -DEFINE_string(infer_data, "", "data file for LAC"); -DEFINE_int32(batch_size, 1, "batch size."); -DEFINE_int32(burning, 0, "Burning before repeat."); -DEFINE_int32(repeat, 1, "Running the inference program repeat times."); -DEFINE_bool(test_all_data, false, "Test the all dataset in data file."); +#include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { @@ -117,34 +103,6 @@ void GetOneBatch(std::vector *input_slots, DataRecord *data, input_slots->assign({input_tensor}); } -void BenchAllData(const std::string &model_path, const std::string &data_file, - const int batch_size, const int repeat) { - NativeConfig config; - config.model_dir = model_path; - config.use_gpu = false; - config.device = 0; - config.specify_input_name = true; - std::vector input_slots, outputs_slots; - DataRecord data(data_file, batch_size); - auto predictor = - CreatePaddlePredictor(config); - GetOneBatch(&input_slots, &data, batch_size); - for (int i = 0; i < FLAGS_burning; i++) { - predictor->Run(input_slots, &outputs_slots); - } - Timer timer; - double sum = 0; - for (int i = 0; i < repeat; i++) { - for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) { - GetOneBatch(&input_slots, &data, batch_size); - timer.tic(); - predictor->Run(input_slots, &outputs_slots); - sum += timer.toc(); - } - } - PrintTime(batch_size, repeat, 1, 0, sum / repeat); -} - const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39, @@ -152,48 +110,38 @@ const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, void TestLACPrediction(const std::string &model_path, const std::string &data_file, const int batch_size, - const int repeat, bool test_all_data, - bool use_analysis = false) { - NativeConfig config; - config.model_dir = model_path; - config.use_gpu = false; - config.device = 0; - config.specify_input_name = true; + const int repeat, bool use_analysis = false) { + AnalysisConfig cfg; + cfg.model_dir = model_path; + cfg.use_gpu = false; + cfg.device = 0; + cfg.specify_input_name = true; + cfg.enable_ir_optim = true; + std::vector input_slots, outputs_slots; DataRecord data(data_file, batch_size); GetOneBatch(&input_slots, &data, batch_size); std::unique_ptr predictor; if (use_analysis) { - AnalysisConfig cfg; - cfg.model_dir = model_path; - cfg.use_gpu = false; - cfg.device = 0; - cfg.specify_input_name = true; - cfg.enable_ir_optim = true; predictor = CreatePaddlePredictor(cfg); } else { predictor = - CreatePaddlePredictor(config); + CreatePaddlePredictor(cfg); } for (int i = 0; i < FLAGS_burning; i++) { predictor->Run(input_slots, &outputs_slots); } Timer timer; - if (test_all_data) { - double sum = 0; - LOG(INFO) << "Total number of samples: " << data.datasets.size(); - for (int i = 0; i < repeat; i++) { - for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) { - GetOneBatch(&input_slots, &data, batch_size); - timer.tic(); - predictor->Run(input_slots, &outputs_slots); - sum += timer.toc(); - } + if (FLAGS_test_all_data) { + LOG(INFO) << "test all data"; + std::vector> input_slots_all; + for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) { + GetOneBatch(&input_slots, &data, batch_size); + input_slots_all.emplace_back(input_slots); } - PrintTime(batch_size, repeat, 1, 0, sum / repeat); - LOG(INFO) << "Average latency of each sample: " - << sum / repeat / data.datasets.size() << " ms"; + LOG(INFO) << "total number of samples: " << data.datasets.size(); + TestPrediction(cfg, input_slots_all, &outputs_slots, FLAGS_num_threads); return; } timer.tic(); @@ -218,19 +166,10 @@ void TestLACPrediction(const std::string &model_path, if (use_analysis) { // run once for comparion as reference auto ref_predictor = - CreatePaddlePredictor(config); + CreatePaddlePredictor(cfg); std::vector ref_outputs_slots; ref_predictor->Run(input_slots, &ref_outputs_slots); - EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size()); - auto &ref_out = ref_outputs_slots[0]; - size_t ref_size = - std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1, - [](int a, int b) { return a * b; }); - EXPECT_EQ(size, ref_size); - int64_t *pdata_ref = static_cast(ref_out.data.data()); - for (size_t i = 0; i < size; ++i) { - EXPECT_EQ(pdata_ref[i], pdata[i]); - } + CompareResult(ref_outputs_slots, outputs_slots); AnalysisPredictor *analysis_predictor = dynamic_cast(predictor.get()); @@ -259,13 +198,13 @@ void TestLACPrediction(const std::string &model_path, TEST(Analyzer_LAC, native) { LOG(INFO) << "LAC with native"; TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size, - FLAGS_repeat, FLAGS_test_all_data); + FLAGS_repeat); } TEST(Analyzer_LAC, analysis) { LOG(INFO) << "LAC with analysis"; TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size, - FLAGS_repeat, FLAGS_test_all_data, true); + FLAGS_repeat, true); } } // namespace analysis diff --git a/paddle/fluid/inference/analysis/analyzer_ner_tester.cc b/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc similarity index 73% rename from paddle/fluid/inference/analysis/analyzer_ner_tester.cc rename to paddle/fluid/inference/tests/api/analyzer_ner_tester.cc index 661b047ed7cb70545267e468d8c2c48596a2994c..f8c651e32f7e2ce1d8ced0e6774ffd555d351167 100644 --- a/paddle/fluid/inference/analysis/analyzer_ner_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_ner_tester.cc @@ -12,20 +12,7 @@ // See the License for the specific language governing permissions and // limitations under the License. -#include "paddle/fluid/inference/analysis/analyzer.h" -#include -#include "paddle/fluid/framework/ir/fuse_pass_base.h" -#include "paddle/fluid/inference/analysis/ut_helper.h" -#include "paddle/fluid/inference/api/analysis_predictor.h" -#include "paddle/fluid/inference/api/helper.h" -#include "paddle/fluid/inference/api/paddle_inference_pass.h" -#include "paddle/fluid/platform/profiler.h" - -DEFINE_string(infer_model, "", "model path"); -DEFINE_string(infer_data, "", "data path"); -DEFINE_int32(batch_size, 10, "batch size."); -DEFINE_int32(repeat, 1, "Running the inference program repeat times."); -DEFINE_bool(test_all_data, false, "Test the all dataset in data file."); +#include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { @@ -113,49 +100,35 @@ const int chinese_ner_result_data[] = {30, 45, 41, 48, 17, 26, 48, 39, 38, 16, 25}; void TestChineseNERPrediction(bool use_analysis) { - NativeConfig config; - config.prog_file = FLAGS_infer_model + "/__model__"; - config.param_file = FLAGS_infer_model + "/param"; - config.use_gpu = false; - config.device = 0; - config.specify_input_name = true; + AnalysisConfig cfg; + cfg.prog_file = FLAGS_infer_model + "/__model__"; + cfg.param_file = FLAGS_infer_model + "/param"; + cfg.use_gpu = false; + cfg.device = 0; + cfg.specify_input_name = true; + cfg.enable_ir_optim = true; std::vector input_slots, outputs; std::unique_ptr predictor; Timer timer; if (use_analysis) { - AnalysisConfig cfg; - cfg.prog_file = FLAGS_infer_model + "/__model__"; - cfg.param_file = FLAGS_infer_model + "/param"; - cfg.use_gpu = false; - cfg.device = 0; - cfg.specify_input_name = true; - cfg.enable_ir_optim = true; predictor = CreatePaddlePredictor(cfg); } else { predictor = - CreatePaddlePredictor(config); + CreatePaddlePredictor(cfg); } if (FLAGS_test_all_data) { LOG(INFO) << "test all data"; - double sum = 0; - size_t num_samples; - for (int i = 0; i < FLAGS_repeat; i++) { - DataRecord data(FLAGS_infer_data, FLAGS_batch_size); - num_samples = data.num_samples; - for (size_t bid = 0; bid < num_samples; ++bid) { - PrepareInputs(&input_slots, &data, FLAGS_batch_size); - timer.tic(); - predictor->Run(input_slots, &outputs); - sum += timer.toc(); - } + DataRecord data(FLAGS_infer_data, FLAGS_batch_size); + std::vector> input_slots_all; + for (size_t bid = 0; bid < data.num_samples / FLAGS_batch_size; ++bid) { + PrepareInputs(&input_slots, &data, FLAGS_batch_size); + input_slots_all.emplace_back(input_slots); } - LOG(INFO) << "total number of samples: " << num_samples; - PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat); - LOG(INFO) << "average latency of each sample: " - << sum / FLAGS_repeat / num_samples; + LOG(INFO) << "total number of samples: " << data.num_samples; + TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads); return; } // Prepare inputs. @@ -181,19 +154,10 @@ void TestChineseNERPrediction(bool use_analysis) { if (use_analysis) { // run once for comparion as reference auto ref_predictor = - CreatePaddlePredictor(config); + CreatePaddlePredictor(cfg); std::vector ref_outputs_slots; ref_predictor->Run(input_slots, &ref_outputs_slots); - EXPECT_EQ(ref_outputs_slots.size(), outputs.size()); - auto &ref_out = ref_outputs_slots[0]; - size_t ref_size = - std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1, - [](int a, int b) { return a * b; }); - EXPECT_EQ(size, ref_size); - int64_t *pdata_ref = static_cast(ref_out.data.data()); - for (size_t i = 0; i < size; ++i) { - EXPECT_EQ(pdata_ref[i], result[i]); - } + CompareResult(ref_outputs_slots, outputs); AnalysisPredictor *analysis_predictor = dynamic_cast(predictor.get()); diff --git a/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc b/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..df96be544eaf51c52aa5592966f499fad91aab82 --- /dev/null +++ b/paddle/fluid/inference/tests/api/analyzer_rnn1_tester.cc @@ -0,0 +1,236 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/tests/api/tester_helper.h" + +namespace paddle { +namespace inference { + +using namespace framework; // NOLINT + +struct DataRecord { + std::vector>> link_step_data_all; + std::vector> week_data_all, minute_data_all; + std::vector lod1, lod2, lod3; + std::vector> rnn_link_data, rnn_week_datas, + rnn_minute_datas; + size_t batch_iter{0}; + size_t batch_size{1}; + DataRecord() = default; + explicit DataRecord(const std::string &path, int batch_size = 1) + : batch_size(batch_size) { + Load(path); + } + DataRecord NextBatch() { + DataRecord data; + size_t batch_end = batch_iter + batch_size; + // NOTE skip the final batch, if no enough data is provided. + if (batch_end <= link_step_data_all.size()) { + data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, + link_step_data_all.begin() + batch_end); + data.week_data_all.assign(week_data_all.begin() + batch_iter, + week_data_all.begin() + batch_end); + data.minute_data_all.assign(minute_data_all.begin() + batch_iter, + minute_data_all.begin() + batch_end); + // Prepare LoDs + data.lod1.push_back(0); + data.lod2.push_back(0); + data.lod3.push_back(0); + CHECK(!data.link_step_data_all.empty()) << "empty"; + CHECK(!data.week_data_all.empty()); + CHECK(!data.minute_data_all.empty()); + CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size()); + CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size()); + for (size_t j = 0; j < data.link_step_data_all.size(); j++) { + for (const auto &d : data.link_step_data_all[j]) { + data.rnn_link_data.push_back(d); + } + data.rnn_week_datas.push_back(data.week_data_all[j]); + data.rnn_minute_datas.push_back(data.minute_data_all[j]); + // calculate lod + data.lod1.push_back(data.lod1.back() + + data.link_step_data_all[j].size()); + data.lod3.push_back(data.lod3.back() + 1); + for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) { + data.lod2.push_back(data.lod2.back() + + data.link_step_data_all[j].size()); + } + } + } + batch_iter += batch_size; + return data; + } + void Load(const std::string &path) { + std::ifstream file(path); + std::string line; + int num_lines = 0; + while (std::getline(file, line)) { + num_lines++; + std::vector data; + split(line, ':', &data); + std::vector> link_step_data; + std::vector link_datas; + split(data[0], '|', &link_datas); + for (auto &step_data : link_datas) { + std::vector tmp; + split_to_float(step_data, ',', &tmp); + link_step_data.push_back(tmp); + } + // load week data + std::vector week_data; + split_to_float(data[2], ',', &week_data); + // load minute data + std::vector minute_data; + split_to_float(data[1], ',', &minute_data); + link_step_data_all.push_back(std::move(link_step_data)); + week_data_all.push_back(std::move(week_data)); + minute_data_all.push_back(std::move(minute_data)); + } + } +}; +void PrepareInputs(std::vector *input_slots, DataRecord *data, + int batch_size) { + PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor, + week_tensor, minute_tensor; + lod_attention_tensor.name = "data_lod_attention"; + init_zero_tensor.name = "cell_init"; + lod_tensor_tensor.name = "data"; + week_tensor.name = "week"; + minute_tensor.name = "minute"; + auto one_batch = data->NextBatch(); + std::vector rnn_link_data_shape( + {static_cast(one_batch.rnn_link_data.size()), + static_cast(one_batch.rnn_link_data.front().size())}); + lod_attention_tensor.shape.assign({1, 2}); + lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2}); + init_zero_tensor.shape.assign({batch_size, 15}); + init_zero_tensor.lod.assign({one_batch.lod3}); + lod_tensor_tensor.shape = rnn_link_data_shape; + lod_tensor_tensor.lod.assign({one_batch.lod1}); + // clang-format off + week_tensor.shape.assign( + {static_cast(one_batch.rnn_week_datas.size()), + static_cast(one_batch.rnn_week_datas.front().size())}); + week_tensor.lod.assign({one_batch.lod3}); + minute_tensor.shape.assign( + {static_cast(one_batch.rnn_minute_datas.size()), + static_cast(one_batch.rnn_minute_datas.front().size())}); + minute_tensor.lod.assign({one_batch.lod3}); + // clang-format on + // assign data + TensorAssignData(&lod_attention_tensor, + std::vector>({{0, 0}})); + std::vector tmp_zeros(batch_size * 15, 0.); + TensorAssignData(&init_zero_tensor, {tmp_zeros}); + TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data); + TensorAssignData(&week_tensor, one_batch.rnn_week_datas); + TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas); + // Set inputs. + auto init_zero_tensor1 = init_zero_tensor; + init_zero_tensor1.name = "hidden_init"; + input_slots->assign({week_tensor, init_zero_tensor, minute_tensor, + init_zero_tensor1, lod_attention_tensor, + lod_tensor_tensor}); + for (auto &tensor : *input_slots) { + tensor.dtype = PaddleDType::FLOAT32; + } +} + +// Test with a really complicate model. +void TestRNN1Prediction(bool use_analysis, bool activate_ir, int num_threads) { + AnalysisConfig config; + config.prog_file = FLAGS_infer_model + "/__model__"; + config.param_file = FLAGS_infer_model + "/param"; + config.use_gpu = false; + config.device = 0; + config.specify_input_name = true; + config.enable_ir_optim = activate_ir; + PADDLE_ENFORCE(config.ir_mode == + AnalysisConfig::IrPassMode::kExclude); // default + config.ir_passes.clear(); // Do not exclude any pass. + + int batch_size = FLAGS_batch_size; + + auto base_predictor = + CreatePaddlePredictor(config); + auto predictor = + CreatePaddlePredictor( + config); + std::vector input_slots; + DataRecord data(FLAGS_infer_data, batch_size); + // Prepare inputs. + PrepareInputs(&input_slots, &data, batch_size); + std::vector outputs, base_outputs; + + base_predictor->Run(input_slots, &base_outputs); + + std::vector> input_slots_all; + input_slots_all.emplace_back(input_slots); + if (num_threads == 1) { + TestOneThreadPrediction(config, input_slots_all, &outputs); + CompareResult(outputs, base_outputs); + } else { + // only return the output of first thread + TestMultiThreadPrediction(config, input_slots_all, &outputs, num_threads); + } + + if (use_analysis && activate_ir) { + AnalysisPredictor *analysis_predictor = + dynamic_cast(predictor.get()); + auto &fuse_statis = analysis_predictor->analysis_argument() + .Get>( + framework::ir::kFuseStatisAttr); + for (auto &item : fuse_statis) { + LOG(INFO) << "fused " << item.first << " " << item.second; + } + + int num_ops = 0; + for (auto &node : + analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) { + if (node->IsFunction()) { + ++num_ops; + } + } + LOG(INFO) << "has num ops: " << num_ops; + + ASSERT_TRUE(fuse_statis.count("fc_fuse")); + EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); + EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM + EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1); + EXPECT_EQ(num_ops, + 13); // After graph optimization, only 13 operators exists. + } +} + +// Inference with analysis and IR, easy for profiling independently. +TEST(Analyzer, rnn1) { TestRNN1Prediction(true, true, FLAGS_num_threads); } + +// Other unit-tests of RNN1, test different options of use_analysis, +// activate_ir and multi-threads. +TEST(Analyzer, RNN_tests) { + int num_threads[2] = {1, 4}; + for (auto i : num_threads) { + // Directly infer with the original model. + TestRNN1Prediction(false, false, i); + // Inference with the original model with the analysis turned on, the + // analysis module will transform the program to a data flow graph. + TestRNN1Prediction(true, false, i); + // Inference with analysis and IR. The IR module will fuse some large + // kernels. + TestRNN1Prediction(true, true, i); + } +} + +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc b/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..c40ea58eea9c10a85acf84108f1d081a779f526d --- /dev/null +++ b/paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc @@ -0,0 +1,181 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/analysis/analyzer.h" + +#include +#include +#include // NOLINT +#include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/framework/ir/pass.h" +#include "paddle/fluid/inference/analysis/ut_helper.h" +#include "paddle/fluid/inference/api/analysis_predictor.h" +#include "paddle/fluid/inference/api/helper.h" +#include "paddle/fluid/inference/api/paddle_inference_api.h" +#include "paddle/fluid/inference/api/paddle_inference_pass.h" + +DEFINE_string(infer_model, "", "model path"); +DEFINE_string(infer_data, "", "data path"); +DEFINE_int32(batch_size, 1, "batch size."); +DEFINE_int32(repeat, 1, "Running the inference program repeat times."); +DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); + +namespace paddle { +namespace inference { + +using namespace framework; // NOLINT + +struct DataRecord { + std::vector>> link_step_data_all; + std::vector lod; + std::vector> rnn_link_data; + std::vector result_data; + size_t batch_iter{0}; + size_t batch_size{1}; + DataRecord() = default; + explicit DataRecord(const std::string &path, int batch_size = 1) + : batch_size(batch_size) { + Load(path); + } + DataRecord NextBatch() { + DataRecord data; + size_t batch_end = batch_iter + batch_size; + // NOTE skip the final batch, if no enough data is provided. + if (batch_end <= link_step_data_all.size()) { + data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, + link_step_data_all.begin() + batch_end); + // Prepare LoDs + data.lod.push_back(0); + CHECK(!data.link_step_data_all.empty()) << "empty"; + for (size_t j = 0; j < data.link_step_data_all.size(); j++) { + for (const auto &d : data.link_step_data_all[j]) { + data.rnn_link_data.push_back(d); + // calculate lod + data.lod.push_back(data.lod.back() + 11); + } + } + } + batch_iter += batch_size; + return data; + } + void Load(const std::string &path) { + std::ifstream file(path); + std::string line; + int num_lines = 0; + while (std::getline(file, line)) { + num_lines++; + std::vector data; + split(line, ':', &data); + if (num_lines % 2) { // feature + std::vector feature_data; + split(data[1], ' ', &feature_data); + std::vector> link_step_data; + int feature_count = 1; + std::vector feature; + for (auto &step_data : feature_data) { + std::vector tmp; + split_to_float(step_data, ',', &tmp); + feature.insert(feature.end(), tmp.begin(), tmp.end()); + if (feature_count % 11 == 0) { // each sample has 11 features + link_step_data.push_back(feature); + feature.clear(); + } + feature_count++; + } + link_step_data_all.push_back(std::move(link_step_data)); + } else { // result + std::vector tmp; + split_to_float(data[1], ',', &tmp); + result_data.insert(result_data.end(), tmp.begin(), tmp.end()); + } + } + } +}; +void PrepareInputs(std::vector *input_slots, DataRecord *data, + int batch_size) { + PaddleTensor feed_tensor; + feed_tensor.name = "feed"; + auto one_batch = data->NextBatch(); + int token_size = one_batch.rnn_link_data.size(); + // each token has 11 features, each feature's dim is 54. + std::vector rnn_link_data_shape({token_size * 11, 54}); + feed_tensor.shape = rnn_link_data_shape; + feed_tensor.lod.assign({one_batch.lod}); + feed_tensor.dtype = PaddleDType::FLOAT32; + TensorAssignData(&feed_tensor, one_batch.rnn_link_data); + // Set inputs. + input_slots->assign({feed_tensor}); +} + +void CompareResult(const std::vector &outputs, + const std::vector &base_result) { + PADDLE_ENFORCE_GT(outputs.size(), 0); + for (size_t i = 0; i < outputs.size(); i++) { + auto &out = outputs[i]; + size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, + [](int a, int b) { return a * b; }); + PADDLE_ENFORCE_GT(size, 0); + float *data = static_cast(out.data.data()); + for (size_t i = 0; i < size; i++) { + EXPECT_NEAR(data[i], base_result[i], 1e-3); + } + } +} +// Test with a really complicate model. +void TestRNN2Prediction() { + AnalysisConfig config; + config.prog_file = FLAGS_infer_model + "/__model__"; + config.param_file = FLAGS_infer_model + "/param"; + config.use_gpu = false; + config.device = 0; + config.specify_input_name = true; + config.enable_ir_optim = true; + PADDLE_ENFORCE(config.ir_mode == + AnalysisConfig::IrPassMode::kExclude); // default + + int batch_size = FLAGS_batch_size; + int num_times = FLAGS_repeat; + + auto base_predictor = + CreatePaddlePredictor(config); + auto predictor = + CreatePaddlePredictor( + config); + std::vector input_slots; + DataRecord data(FLAGS_infer_data, batch_size); + PrepareInputs(&input_slots, &data, batch_size); + std::vector outputs, base_outputs; + + Timer timer1; + timer1.tic(); + for (int i = 0; i < num_times; i++) { + base_predictor->Run(input_slots, &base_outputs); + } + PrintTime(batch_size, num_times, 1, 0, timer1.toc() / num_times); + + Timer timer2; + timer2.tic(); + for (int i = 0; i < num_times; i++) { + predictor->Run(input_slots, &outputs); + } + PrintTime(batch_size, num_times, 1, 0, timer2.toc() / num_times); + + CompareResult(base_outputs, data.result_data); + CompareResult(outputs, data.result_data); +} + +TEST(Analyzer, rnn2) { TestRNN2Prediction(); } + +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc b/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..1472c475e4a3061ffcad96925ea215a41a7e63eb --- /dev/null +++ b/paddle/fluid/inference/tests/api/analyzer_text_classification_tester.cc @@ -0,0 +1,99 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/inference/tests/api/tester_helper.h" + +namespace paddle { +namespace inference { + +struct DataReader { + explicit DataReader(const std::string &path) + : file(new std::ifstream(path)) {} + + bool NextBatch(std::vector *input, int batch_size) { + PADDLE_ENFORCE_EQ(batch_size, 1); + std::string line; + PaddleTensor tensor; + tensor.dtype = PaddleDType::INT64; + tensor.lod.emplace_back(std::vector({0})); + std::vector data; + + for (int i = 0; i < batch_size; i++) { + if (!std::getline(*file, line)) return false; + inference::split_to_int64(line, ' ', &data); + } + tensor.lod.front().push_back(data.size()); + + tensor.data.Resize(data.size() * sizeof(int64_t)); + memcpy(tensor.data.data(), data.data(), data.size() * sizeof(int64_t)); + tensor.shape.push_back(data.size()); + tensor.shape.push_back(1); + input->assign({tensor}); + return true; + } + + std::unique_ptr file; +}; + +void Main(int batch_size) { + // shape -- + // Create Predictor -- + AnalysisConfig config; + config.model_dir = FLAGS_infer_model; + config.use_gpu = false; + config.enable_ir_optim = true; + + std::vector input_slots, output_slots; + DataReader reader(FLAGS_infer_data); + std::vector> input_slots_all; + + if (FLAGS_test_all_data) { + LOG(INFO) << "test all data"; + int num_batches = 0; + while (reader.NextBatch(&input_slots, FLAGS_batch_size)) { + input_slots_all.emplace_back(input_slots); + ++num_batches; + } + LOG(INFO) << "total number of samples: " << num_batches * FLAGS_batch_size; + TestPrediction(config, input_slots_all, &output_slots, FLAGS_num_threads); + return; + } + + // one batch starts + // data -- + reader.NextBatch(&input_slots, FLAGS_batch_size); + input_slots_all.emplace_back(input_slots); + TestPrediction(config, input_slots_all, &output_slots, FLAGS_num_threads); + + // Get output + LOG(INFO) << "get outputs " << output_slots.size(); + + for (auto &output : output_slots) { + LOG(INFO) << "output.shape: " << to_string(output.shape); + // no lod ? + CHECK_EQ(output.lod.size(), 0UL); + LOG(INFO) << "output.dtype: " << output.dtype; + std::stringstream ss; + for (int i = 0; i < 5; i++) { + ss << static_cast(output.data.data())[i] << " "; + } + LOG(INFO) << "output.data summary: " << ss.str(); + // one batch ends + } +} + +TEST(text_classification, basic) { Main(FLAGS_batch_size); } + +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc b/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc new file mode 100644 index 0000000000000000000000000000000000000000..a207c41b7140c806b4c1fdc7f24a317b165c9aef --- /dev/null +++ b/paddle/fluid/inference/tests/api/analyzer_vis_tester.cc @@ -0,0 +1,133 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include "paddle/fluid/inference/tests/api/tester_helper.h" + +namespace paddle { +namespace inference { +namespace analysis { + +struct Record { + std::vector data; + std::vector shape; +}; + +Record ProcessALine(const std::string &line) { + VLOG(3) << "process a line"; + std::vector columns; + split(line, '\t', &columns); + CHECK_EQ(columns.size(), 2UL) + << "data format error, should be \t"; + + Record record; + std::vector data_strs; + split(columns[0], ' ', &data_strs); + for (auto &d : data_strs) { + record.data.push_back(std::stof(d)); + } + + std::vector shape_strs; + split(columns[1], ' ', &shape_strs); + for (auto &s : shape_strs) { + record.shape.push_back(std::stoi(s)); + } + VLOG(3) << "data size " << record.data.size(); + VLOG(3) << "data shape size " << record.shape.size(); + return record; +} + +/* + * Use the native and analysis fluid engine to inference the demo. + * ocr, mobilenet and se_resnext50 + */ +void TestVisualPrediction(bool use_mkldnn) { + std::unique_ptr predictor; + AnalysisConfig cfg; + cfg.param_file = FLAGS_infer_model + "/__params__"; + cfg.prog_file = FLAGS_infer_model + "/__model__"; + cfg.use_gpu = false; + cfg._use_mkldnn = use_mkldnn; + cfg.device = 0; + cfg.enable_ir_optim = true; + // TODO(TJ): fix fusion gru + cfg.ir_passes.push_back("fc_gru_fuse_pass"); +#ifdef PADDLE_WITH_MKLDNN + // disable mkldnn fuse since it should have some bugs + cfg.ir_passes.push_back("conv_relu_mkldnn_fuse_pass"); +#endif + predictor = + CreatePaddlePredictor(cfg); + + // Only have single batch of data. + std::string line; + std::ifstream file(FLAGS_infer_data); + std::getline(file, line); + auto record = ProcessALine(line); + file.close(); + + // Inference. + PaddleTensor input; + input.shape = record.shape; + input.data = + PaddleBuf(record.data.data(), record.data.size() * sizeof(float)); + input.dtype = PaddleDType::FLOAT32; + + std::vector outputs_slots; + Timer timer; + timer.tic(); + for (int i = 0; i < FLAGS_repeat; i++) { + predictor->Run({input}, &outputs_slots); + } + PrintTime(/*batch size*/ 1, FLAGS_repeat, /*num threads*/ 1, /*thread id*/ 0, + timer.toc() / FLAGS_repeat); + + VLOG(3) << "output.size " << outputs_slots.size(); + + // run native as reference + auto ref_predictor = + CreatePaddlePredictor(cfg); + std::vector ref_outputs_slots; + ref_predictor->Run({input}, &ref_outputs_slots); + CompareResult(outputs_slots, ref_outputs_slots); + // print what are fused + AnalysisPredictor *analysis_predictor = + dynamic_cast(predictor.get()); + auto &fuse_statis = analysis_predictor->analysis_argument() + .Get>( + framework::ir::kFuseStatisAttr); + for (auto &item : fuse_statis) { + LOG(INFO) << "fused " << item.first << " " << item.second; + } + int num_ops = 0; + for (auto &node : + analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) { + if (node->IsFunction()) { + ++num_ops; + } + } + LOG(INFO) << "has num ops: " << num_ops; +} + +TEST(Analyzer_vis, analysis) { TestVisualPrediction(/*use_mkldnn*/ false); } +#ifdef PADDLE_WITH_MKLDNN +TEST(Analyzer_vis, analysis_mkldnn) { + TestVisualPrediction(/*use_mkldnn*/ true); +} +#endif + +} // namespace analysis +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/inference/tests/api/tester_helper.h b/paddle/fluid/inference/tests/api/tester_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..43e97614e3ad9c14c8deee9f340757f373eb593e --- /dev/null +++ b/paddle/fluid/inference/tests/api/tester_helper.h @@ -0,0 +1,141 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include // NOLINT +#include +#include "paddle/fluid/framework/ir/fuse_pass_base.h" +#include "paddle/fluid/inference/analysis/analyzer.h" +#include "paddle/fluid/inference/analysis/ut_helper.h" +#include "paddle/fluid/inference/api/analysis_predictor.h" +#include "paddle/fluid/inference/api/helper.h" +#include "paddle/fluid/inference/api/paddle_inference_pass.h" +#include "paddle/fluid/platform/profiler.h" + +DEFINE_string(infer_model, "", "model path"); +DEFINE_string(infer_data, "", "data file"); +DEFINE_int32(batch_size, 1, "batch size."); +DEFINE_int32(burning, 0, "Burning before repeat."); +DEFINE_int32(repeat, 1, "Running the inference program repeat times."); +DEFINE_bool(test_all_data, false, "Test the all dataset in data file."); +DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads."); + +namespace paddle { +namespace inference { + +void CompareResult(const std::vector &outputs, + const std::vector &ref_outputs) { + EXPECT_GT(outputs.size(), 0); + EXPECT_EQ(outputs.size(), ref_outputs.size()); + for (size_t i = 0; i < outputs.size(); i++) { + auto &out = outputs[i]; + auto &ref_out = ref_outputs[i]; + size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, + [](int a, int b) { return a * b; }); + size_t ref_size = + std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1, + [](int a, int b) { return a * b; }); + EXPECT_GT(size, 0); + EXPECT_EQ(size, ref_size); + EXPECT_EQ(out.dtype, ref_out.dtype); + switch (out.dtype) { + case PaddleDType::INT64: { + int64_t *pdata = static_cast(out.data.data()); + int64_t *pdata_ref = static_cast(ref_out.data.data()); + for (size_t j = 0; j < size; ++j) { + EXPECT_EQ(pdata_ref[j], pdata[j]); + } + break; + } + case PaddleDType::FLOAT32: { + float *pdata = static_cast(out.data.data()); + float *pdata_ref = static_cast(ref_out.data.data()); + for (size_t j = 0; j < size; ++j) { + EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3); + } + break; + } + } + } +} + +void TestOneThreadPrediction( + AnalysisConfig config, const std::vector> inputs, + std::vector *outputs) { + int batch_size = FLAGS_batch_size; + int num_times = FLAGS_repeat; + auto predictor = + CreatePaddlePredictor( + config); + Timer timer; + timer.tic(); + for (int i = 0; i < num_times; i++) { + for (size_t j = 0; j < inputs.size(); j++) { + predictor->Run(inputs[j], outputs); + } + } + PrintTime(batch_size, num_times, 1, 0, timer.toc() / num_times, + inputs.size()); +} + +void TestMultiThreadPrediction( + AnalysisConfig config, const std::vector> inputs, + std::vector *outputs, int num_threads) { + int batch_size = FLAGS_batch_size; + int num_times = FLAGS_repeat; + std::vector threads; + std::vector> predictors; + // TODO(yanchunwei): Bug here, the analyzer phase can't be parallelled + // because AttentionLSTM's hard code nodeid will be damanged. + for (int tid = 0; tid < num_threads; ++tid) { + predictors.emplace_back( + CreatePaddlePredictor( + config)); + } + for (int tid = 0; tid < num_threads; ++tid) { + threads.emplace_back([&, tid]() { + // Each thread should have local inputs and outputs. + // The inputs of each thread are all the same. + std::vector> inputs_tid = inputs; + std::vector outputs_tid; + Timer timer; + timer.tic(); + for (int i = 0; i < num_times; i++) { + for (size_t j = 0; j < inputs_tid.size(); j++) { + predictors[tid]->Run(inputs_tid[j], &outputs_tid); + } + } + PrintTime(batch_size, num_times, num_threads, tid, + timer.toc() / num_times, inputs_tid.size()); + }); + } + for (int i = 0; i < num_threads; ++i) { + threads[i].join(); + } +} + +void TestPrediction(AnalysisConfig config, + const std::vector> inputs, + std::vector *outputs, int num_threads) { + if (num_threads == 1) { + TestOneThreadPrediction(config, inputs, outputs); + } else { + TestMultiThreadPrediction(config, inputs, outputs, num_threads); + } +} + +} // namespace inference +} // namespace paddle diff --git a/paddle/fluid/operators/attention_lstm_op.cc b/paddle/fluid/operators/attention_lstm_op.cc index 39b0c856996c11c6efdb530f1396afd5731c778d..9b943440a869e213db4ed761cfe7c508bc5e94ae 100644 --- a/paddle/fluid/operators/attention_lstm_op.cc +++ b/paddle/fluid/operators/attention_lstm_op.cc @@ -24,28 +24,28 @@ namespace operators { void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE(ctx->HasInput("X"), - "Input(X) of AttentionLSTM should not be null."); + "Assert only one Input(X) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasInput("C0"), - "Input(C0) of AttentionLSTM should not be null."); + "Assert only one Input(C0) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"), - "Input(LSTMWeight) of AttentionLSTM should not be null."); + "Assert only one Input(LSTMWeight) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasInput("LSTMBias"), - "Input(LSTMBias) of AttentionLSTM should not be null."); + "Assert only one Input(LSTMBias) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"), - "Input(AttentionWeight) of AttentionLSTM should not be null."); + "Assert only one Input(AttentionWeight) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasOutput("Hidden"), - "Output(Hidden) of AttentionLSTM should not be null."); + "Assert only one Output(Hidden) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasOutput("Cell"), - "Output(Cell) of AttentionLSTM should not be null."); + "Assert only one Output(Cell) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"), - "Output(AttentionedX) of AttentionLSTM should not be null."); + "Assert only one Output(AttentionedX) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"), - "Output(AttentionFCOut) of AttentionLSTM should not be null."); + "Assert only one Output(AttentionFCOut) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasOutput("LSTMX"), - "Output(LSTMX) of AttentionLSTM should not be null."); + "Assert only one Output(LSTMX) of AttentionLSTM."); PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"), - "Output(LSTMOUT) of AttentionLSTM should not be null."); + "Assert only one Output(LSTMOUT) of AttentionLSTM."); auto x_dims = ctx->GetInputDim("X"); const int M = x_dims[1]; diff --git a/paddle/fluid/operators/conv_cudnn_op.cu.cc b/paddle/fluid/operators/conv_cudnn_op.cu.cc index 22cbf680c0670552fb014043c69fcadc56863529..4a7a6bcf7154d5680de751e3c933be46fb09fd74 100644 --- a/paddle/fluid/operators/conv_cudnn_op.cu.cc +++ b/paddle/fluid/operators/conv_cudnn_op.cu.cc @@ -118,7 +118,6 @@ class CUDNNConvOpKernel : public framework::OpKernel { output_channels / groups * output_height * output_width * output_depth; int group_offset_filter = filter->numel() / groups; // ------------------- cudnn conv workspace --------------------- - void* cudnn_workspace = nullptr; size_t workspace_size_in_bytes; // final workspace to allocate. size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES; if (user_workspace_size > 0) { @@ -159,20 +158,18 @@ class CUDNNConvOpKernel : public framework::OpKernel { PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit, "workspace_size to be allocated exceeds the limit"); - // Allocate on GPU memory - platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); - cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv forward --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; for (int i = 0; i < groups; i++) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( - handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, - cudnn_filter_desc, filter_data + i * group_offset_filter, - cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes, - &beta, cudnn_output_desc, output_data + i * group_offset_out)); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( + handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, + cudnn_filter_desc, filter_data + i * group_offset_filter, + cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes, + &beta, cudnn_output_desc, output_data + i * group_offset_out)); + }; + dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes); } - // Release the cudnn workspace - paddle::memory::Free(gpu, cudnn_workspace); } }; @@ -314,11 +311,7 @@ class CUDNNConvGradOpKernel : public framework::OpKernel { cudnn_filter_desc, filter_algo, &tmp_size)); workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size); } - // ------------------- cudnn conv workspace --------------------- - // Already on GPU - void* cudnn_workspace = nullptr; - platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); - cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); + // ------------------- cudnn conv backward data --------------------- ScalingParamType alpha = 1.0f, beta = 0.0f; if (input_grad) { @@ -326,12 +319,15 @@ class CUDNNConvGradOpKernel : public framework::OpKernel { // Because beta is zero, it is unnecessary to reset input_grad. for (int i = 0; i < groups; i++) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( - handle, &alpha, cudnn_filter_desc, - filter_data + i * group_offset_filter, cudnn_output_grad_desc, - output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo, - cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc, - input_grad_data + i * group_offset_in)); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( + handle, &alpha, cudnn_filter_desc, + filter_data + i * group_offset_filter, cudnn_output_grad_desc, + output_grad_data + i * group_offset_out, cudnn_conv_desc, + data_algo, cudnn_workspace, workspace_size_in_bytes, &beta, + cudnn_input_desc, input_grad_data + i * group_offset_in)); + }; + dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes); } } // ------------------- cudnn conv backward filter --------------------- @@ -339,16 +335,17 @@ class CUDNNConvGradOpKernel : public framework::OpKernel { T* filter_grad_data = filter_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset filter_grad. for (int i = 0; i < groups; i++) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( - handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in, - cudnn_output_grad_desc, output_grad_data + i * group_offset_out, - cudnn_conv_desc, filter_algo, cudnn_workspace, - workspace_size_in_bytes, &beta, cudnn_filter_desc, - filter_grad_data + i * group_offset_filter)); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( + handle, &alpha, cudnn_input_desc, + input_data + i * group_offset_in, cudnn_output_grad_desc, + output_grad_data + i * group_offset_out, cudnn_conv_desc, + filter_algo, cudnn_workspace, workspace_size_in_bytes, &beta, + cudnn_filter_desc, filter_grad_data + i * group_offset_filter)); + }; + dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes); } } - // Release the cudnn workspace - paddle::memory::Free(gpu, cudnn_workspace); } }; diff --git a/paddle/fluid/operators/conv_mkldnn_op.cc b/paddle/fluid/operators/conv_mkldnn_op.cc index c5cbadc892904dc064b49ebc461944c4671a69da..eae65968285703f5882d910e29bc5d8e1511cba6 100644 --- a/paddle/fluid/operators/conv_mkldnn_op.cc +++ b/paddle/fluid/operators/conv_mkldnn_op.cc @@ -130,12 +130,13 @@ class ConvMKLDNNHandler : public platform::MKLDNNHandler { std::shared_ptr AcquireWeightsMemoryFromPrimitive( const std::shared_ptr user_weights_memory_p, - std::vector& pipeline) { // NOLINT + std::vector& pipeline, // NOLINT + bool is_persistent = false) { auto user_weights_pd = user_weights_memory_p->get_primitive_desc(); auto weights_pd = conv_pd_->weights_primitive_desc(); return this->AcquireMemory(weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p", - pipeline); + pipeline, is_persistent); } std::shared_ptr AcquireBiasMemoryFromPrimitive( @@ -266,6 +267,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); + const bool is_test = ctx.Attr("is_test"); + auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); @@ -296,10 +299,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { std::vector strides = ctx.Attr>("strides"); std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); + bool fuse_relu = ctx.Attr("fuse_relu"); + bool fuse_eltwise = ctx.Attr("fuse_eltwise"); int groups = ctx.Attr("groups"); - // TODO(pzelazko-intel) add support for group convolution and dilation - PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet"); + // TODO: add support for dilation PADDLE_ENFORCE( dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1, "dilation in convolution is not implemented yet"); @@ -310,6 +314,19 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { std::vector src_tz = paddle::framework::vectorize2int(input->dims()); std::vector weights_tz = paddle::framework::vectorize2int(filter->dims()); + int g = std::max(groups, 1); + if (g > 1) { + int o = weights_tz[0]; + int i = weights_tz[1]; + int h = weights_tz[2]; + int w = weights_tz[3]; + weights_tz.resize(5); + weights_tz[0] = g; + weights_tz[1] = o / g; + weights_tz[2] = i; + weights_tz[3] = h; + weights_tz[4] = w; + } std::vector dst_tz = paddle::framework::vectorize2int(output->dims()); // Get unique name for storing MKLDNN primitives @@ -323,7 +340,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { auto user_src_md = platform::MKLDNNMemDesc( {src_tz}, platform::MKLDNNGetDataType(), input->format()); auto user_weights_md = platform::MKLDNNMemDesc( - {weights_tz}, platform::MKLDNNGetDataType(), filter->format()); + {weights_tz}, platform::MKLDNNGetDataType(), + (g == 1) ? filter->format() : mkldnn::memory::format::goihw); /* create memory descriptor for convolution without specified format * ('any') which lets a primitive (convolution in this case) choose @@ -336,7 +354,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { auto src_md = platform::MKLDNNMemDesc( src_tz, platform::MKLDNNGetDataType(), chosen_memory_format); auto weights_md = platform::MKLDNNMemDesc( - weights_tz, platform::MKLDNNGetDataType(), chosen_memory_format); + weights_tz, platform::MKLDNNGetDataType(), + (g == 1) ? chosen_memory_format : mkldnn::memory::format::goihw); std::vector bias_tz; // TODO(mgallus): avoid empty vector creation. // Currently used whenever bias is != nullptr. auto dst_md = platform::MKLDNNMemDesc( @@ -349,10 +368,12 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { auto bias_md = platform::MKLDNNMemDesc( bias_tz, platform::MKLDNNGetDataType(), memory::format::x); conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md, - strides, paddings, mkldnn_engine); + strides, paddings, mkldnn_engine, + fuse_relu, fuse_eltwise); } else { - conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, - paddings, mkldnn_engine); + conv_pd = + ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings, + mkldnn_engine, fuse_relu, fuse_eltwise); } // Save conv_pd/src_memory/weights_memory for backward pass dev_ctx.SetBlob(key_conv_pd, conv_pd); @@ -371,7 +392,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { auto src_memory_p = handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline); auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive( - user_weights_memory_p, pipeline); + user_weights_memory_p, pipeline, is_test); auto dst_memory_p = handler.AcquireDstMemoryFromPrimitive(to_void_cast(output_data)); @@ -402,11 +423,36 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { } private: + mkldnn::primitive_attr CreatePostOps(bool fuse_relu, + bool fuse_eltwise) const { + mkldnn::primitive_attr conv_attr; + mkldnn::post_ops post_operations; + // Fusion with Elementwise layer relies on adding a sum post-operation with + // the scale parameter. It is assumed that when fuse_eltwise is true, the + // Output tensor contains the data coming from residual connection. The + // result of this post_op is: Output = scale * Output + Conv_Out. + if (fuse_eltwise) { + post_operations.append_sum(1.0f); + } + // Fusion with ReLU layer is executed through the PostOps feature. Create a + // PostOps object and configure it to execute an eltwise relu operation. + if (fuse_relu) { + constexpr float scale = 1.0f; + constexpr float negative_slope = 0.0f; + constexpr float placeholder = 0.0f; + post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu, + negative_slope, placeholder); + } + conv_attr.set_post_ops(post_operations); + return conv_attr; + } + std::unique_ptr ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights, const memory::desc& dst, const std::vector& strides, const std::vector& paddings, - const mkldnn::engine& engine) const { + const mkldnn::engine& engine, const bool fuse_relu, + const bool fuse_eltwise) const { memory::dims stride_dims = {strides[0], strides[1]}; memory::dims padding_dims = {paddings[0], paddings[1]}; @@ -415,8 +461,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { dst, stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero); - auto p_conv_pd = - new mkldnn::convolution_forward::primitive_desc(conv_desc, engine); + mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise); + + auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc( + conv_desc, conv_attr, engine); return std::unique_ptr( p_conv_pd); @@ -427,7 +475,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { const memory::desc& bias, const memory::desc& dst, const std::vector& strides, const std::vector& paddings, - const mkldnn::engine& engine) const { + const mkldnn::engine& engine, const bool fuse_relu, + const bool fuse_eltwise) const { memory::dims stride_dims = {strides[0], strides[1]}; memory::dims padding_dims = {paddings[0], paddings[1]}; @@ -436,8 +485,10 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel { bias, dst, stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero); - auto p_conv_pd = - new mkldnn::convolution_forward::primitive_desc(conv_desc, engine); + mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise); + + auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc( + conv_desc, conv_attr, engine); return std::unique_ptr( p_conv_pd); diff --git a/paddle/fluid/operators/conv_op.cc b/paddle/fluid/operators/conv_op.cc index 61ca80877a6dfcdf30a0ff346342116e36eec6f2..8f84bf71a7f77606bed6672f0830e3fc80165a42 100644 --- a/paddle/fluid/operators/conv_op.cc +++ b/paddle/fluid/operators/conv_op.cc @@ -109,6 +109,7 @@ framework::OpKernelType ConvOp::GetExpectedKernelType( } void Conv2DOpMaker::Make() { + AddAttr("is_test", "").SetDefault(false); AddInput( "Input", "(Tensor) The input tensor of convolution operator. " @@ -161,6 +162,13 @@ void Conv2DOpMaker::Make() { AddAttr("use_mkldnn", "(bool, default false) Only used in mkldnn kernel") .SetDefault(false); + AddAttr("fuse_relu", "(bool, default false) Only used in mkldnn kernel") + .SetDefault(false); + AddAttr("fuse_eltwise", + "(bool, default false) Only used in mkldnn kernel. Used " + "whenever convolution output is connected via skip connection " + "to a previous layer.") + .SetDefault(false); AddAttr( "data_format", "(string, default NCHW) Only used in " diff --git a/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc b/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc index 82fff68e7557b3f0b44e6faf2a50e5a0ecbba589..73831611d01b8c5b8d2d9f7f15634a0094e4a608 100644 --- a/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc +++ b/paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc @@ -76,7 +76,6 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel { conv_desc.descriptor(paddings, strides, dilations); // ------------------- cudnn conv workspace --------------------- - void* cudnn_workspace = nullptr; size_t workspace_size_in_bytes; // final workspace to allocate. size_t workspace_size_limit = kConvCUDNNWorkspaceLimitBytes; if (user_workspace_size > 0) { @@ -100,25 +99,21 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel { handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc, cudnn_output_desc, algo, &workspace_size_in_bytes)); - // Allocate on GPU memory - platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); - cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); - // ------------------- cudnn conv transpose forward --------------------- int input_offset = input->numel() / input->dims()[0] / groups; int output_offset = output->numel() / output->dims()[0] / groups; int filter_offset = filter->numel() / groups; T alpha = 1.0f, beta = 0.0f; for (int g = 0; g < groups; g++) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( - handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g, - cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc, - algo, cudnn_workspace, workspace_size_in_bytes, &beta, - cudnn_output_desc, output_data + output_offset * g)); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData( + handle, &alpha, cudnn_filter_desc, filter_data + filter_offset * g, + cudnn_input_desc, input_data + input_offset * g, cudnn_conv_desc, + algo, cudnn_workspace, workspace_size_in_bytes, &beta, + cudnn_output_desc, output_data + output_offset * g)); + }; + dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes); } - - // Release the cudnn workspace - paddle::memory::Free(gpu, cudnn_workspace); } }; @@ -206,11 +201,6 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel { std::max(workspace_size_in_bytes, bwd_filter_ws_size); } - // ------------------- cudnn conv workspace --------------------- - // Already on GPU - void* cudnn_workspace = nullptr; - platform::CUDAPlace gpu = boost::get(ctx.GetPlace()); - cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes); // ------------------- cudnn conv backward data --------------------- // FIXME(typhoonzero): template type T may not be the same as cudnn call. int input_offset = input->numel() / input->dims()[0] / groups; @@ -222,12 +212,15 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel { T* input_grad_data = input_grad->mutable_data(ctx.GetPlace()); // Because beta is zero, it is unnecessary to reset input_grad. for (int g = 0; g < groups; g++) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( - handle, &alpha, cudnn_output_desc, - output_grad_data + output_grad_offset * g, cudnn_filter_desc, - filter_data + filter_offset * g, cudnn_conv_desc, data_algo, - cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc, - input_grad_data + input_offset * g)); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward( + handle, &alpha, cudnn_output_desc, + output_grad_data + output_grad_offset * g, cudnn_filter_desc, + filter_data + filter_offset * g, cudnn_conv_desc, data_algo, + cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc, + input_grad_data + input_offset * g)); + }; + dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes); } } @@ -237,17 +230,17 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel { // Because beta is zero, it is unnecessary to reset filter_grad. // Gradient with respect to the filter for (int g = 0; g < groups; g++) { - CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( - handle, &alpha, cudnn_output_desc, - output_grad_data + output_grad_offset * g, cudnn_input_desc, - input_data + input_offset * g, cudnn_conv_desc, filter_algo, - cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_filter_desc, - filter_grad_data + filter_offset * g)); + auto cudnn_func = [&](void* cudnn_workspace) { + CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter( + handle, &alpha, cudnn_output_desc, + output_grad_data + output_grad_offset * g, cudnn_input_desc, + input_data + input_offset * g, cudnn_conv_desc, filter_algo, + cudnn_workspace, workspace_size_in_bytes, &beta, + cudnn_filter_desc, filter_grad_data + filter_offset * g)); + }; + dev_ctx.RunCudnnFuncWithWorkspace(cudnn_func, workspace_size_in_bytes); } } - - // Release the cudnn workspace - paddle::memory::Free(gpu, cudnn_workspace); } }; diff --git a/paddle/fluid/operators/cross_entropy_op.cc b/paddle/fluid/operators/cross_entropy_op.cc index 578ab63bc380ee62d76e34b7cf3cbd590bfa2eda..66f19fe7ecfa51b2ce917f0c5fcb6d486f1a7307 100644 --- a/paddle/fluid/operators/cross_entropy_op.cc +++ b/paddle/fluid/operators/cross_entropy_op.cc @@ -138,6 +138,11 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { "(bool, default false), a flag indicating whether to " "interpretate the given labels as soft labels.") .SetDefault(false); + AddAttr("ignore_index", + "(int, default -100), Specifies a target value that is" + "ignored and does not contribute to the input gradient." + "Only valid if soft_label is set to False") + .SetDefault(-100); AddComment(R"DOC( CrossEntropy Operator. diff --git a/paddle/fluid/operators/cross_entropy_op.h b/paddle/fluid/operators/cross_entropy_op.h index 36b58d80144d242277f6fc970a3a61a6721d4b50..03974a7fc511b1e1cb5b0eca532b260fdf9bf964 100644 --- a/paddle/fluid/operators/cross_entropy_op.h +++ b/paddle/fluid/operators/cross_entropy_op.h @@ -40,7 +40,7 @@ class CrossEntropyOpKernel : public framework::OpKernel { math::CrossEntropyFunctor()( ctx.template device_context(), &y_2d, &x_2d, &labels_2d, - ctx.Attr("soft_label")); + ctx.Attr("soft_label"), ctx.Attr("ignore_index")); } }; @@ -74,16 +74,22 @@ class XeGradFunctor { const T* dy, // NOLINT const T* x, // NOLINT const int64_t* label, // NOLINT - size_t num_classes) - : dx_(dx), dy_(dy), x_(x), label_(label), num_classes_(num_classes) {} + size_t num_classes, size_t ignore_index) + : dx_(dx), + dy_(dy), + x_(x), + label_(label), + num_classes_(num_classes), + ignore_index_(ignore_index) {} HOSTDEVICE void operator()(size_t sample_id) { auto x_is_true_offset = sample_id * num_classes_ + label_[sample_id]; for (size_t x_offset = sample_id * num_classes_; x_offset < (sample_id + 1) * num_classes_; ++x_offset) { - dx_[x_offset] = x_offset != x_is_true_offset - ? static_cast(0) - : -dy_[sample_id] / x_[x_offset]; + dx_[x_offset] = + (x_offset != x_is_true_offset || label_[sample_id] == ignore_index_) + ? static_cast(0) + : -dy_[sample_id] / x_[x_offset]; } } @@ -93,6 +99,7 @@ class XeGradFunctor { const T* x_; const int64_t* label_; size_t num_classes_; + size_t ignore_index_; }; template @@ -109,6 +116,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { // unnecessary to convert tensors to 2-D views. int rank = x->dims().size(); int64_t class_num = x->dims()[rank - 1]; + int64_t ignore_index = ctx.Attr("ignore_index"); if (ctx.Attr("soft_label")) { XeSoftlabelGradFunctor functor(dx_data, dy->data(), x->data(), label->data(), @@ -118,9 +126,9 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { static_cast(dx->numel())); for_range(functor); } else { - XeGradFunctor functor(dx_data, dy->data(), x->data(), - label->data(), - static_cast(class_num)); + XeGradFunctor functor( + dx_data, dy->data(), x->data(), label->data(), + static_cast(class_num), static_cast(ignore_index)); platform::ForRange for_range( ctx.template device_context(), static_cast(dy->numel())); diff --git a/paddle/fluid/operators/detection/bbox_util.h b/paddle/fluid/operators/detection/bbox_util.h index 0dee1781623d5a62830545c0952e5aadbe37accb..6abeca1da443248d6ad3c1bcc64dd775d77f4ed8 100644 --- a/paddle/fluid/operators/detection/bbox_util.h +++ b/paddle/fluid/operators/detection/bbox_util.h @@ -9,6 +9,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/tensor.h" @@ -21,7 +22,7 @@ namespace operators { */ template inline void BoxToDelta(const int box_num, const framework::Tensor& ex_boxes, - const framework::Tensor& gt_boxes, const T* weights, + const framework::Tensor& gt_boxes, const float* weights, const bool normalized, framework::Tensor* box_delta) { auto ex_boxes_et = framework::EigenTensor::From(ex_boxes); auto gt_boxes_et = framework::EigenTensor::From(gt_boxes); @@ -62,5 +63,35 @@ void Gather(const T* in, const int in_stride, const int* index, const int num, } } +template +void BboxOverlaps(const framework::Tensor& r_boxes, + const framework::Tensor& c_boxes, + framework::Tensor* overlaps) { + auto r_boxes_et = framework::EigenTensor::From(r_boxes); + auto c_boxes_et = framework::EigenTensor::From(c_boxes); + auto overlaps_et = framework::EigenTensor::From(*overlaps); + int r_num = r_boxes.dims()[0]; + int c_num = c_boxes.dims()[0]; + auto zero = static_cast(0.0); + T r_box_area, c_box_area, x_min, y_min, x_max, y_max, inter_w, inter_h, + inter_area; + for (int i = 0; i < r_num; ++i) { + r_box_area = (r_boxes_et(i, 2) - r_boxes_et(i, 0) + 1) * + (r_boxes_et(i, 3) - r_boxes_et(i, 1) + 1); + for (int j = 0; j < c_num; ++j) { + c_box_area = (c_boxes_et(j, 2) - c_boxes_et(j, 0) + 1) * + (c_boxes_et(j, 3) - c_boxes_et(j, 1) + 1); + x_min = std::max(r_boxes_et(i, 0), c_boxes_et(j, 0)); + y_min = std::max(r_boxes_et(i, 1), c_boxes_et(j, 1)); + x_max = std::min(r_boxes_et(i, 2), c_boxes_et(j, 2)); + y_max = std::min(r_boxes_et(i, 3), c_boxes_et(j, 3)); + inter_w = std::max(x_max - x_min + 1, zero); + inter_h = std::max(y_max - y_min + 1, zero); + inter_area = inter_w * inter_h; + overlaps_et(i, j) = inter_area / (r_box_area + c_box_area - inter_area); + } + } +} + } // namespace operators } // namespace paddle diff --git a/paddle/fluid/operators/detection/generate_proposal_labels_op.cc b/paddle/fluid/operators/detection/generate_proposal_labels_op.cc index be06dc19743cfa6f093bcb3f4e9f91af315d4211..d7a53f1bef98ecda3ba7b36323678a11a632a15c 100644 --- a/paddle/fluid/operators/detection/generate_proposal_labels_op.cc +++ b/paddle/fluid/operators/detection/generate_proposal_labels_op.cc @@ -42,10 +42,11 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel { "Input(RpnRois) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("GtClasses"), "Input(GtClasses) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput("IsCrowd"), + "Input(IsCrowd) shouldn't be null."); PADDLE_ENFORCE(ctx->HasInput("GtBoxes"), "Input(GtBoxes) shouldn't be null."); - PADDLE_ENFORCE(ctx->HasInput("ImScales"), - "Input(ImScales) shouldn't be null."); + PADDLE_ENFORCE(ctx->HasInput("ImInfo"), "Input(ImInfo) shouldn't be null."); PADDLE_ENFORCE(ctx->HasOutput("Rois"), "Output(Rois) of RpnTargetAssignOp should not be null"); @@ -64,22 +65,21 @@ class GenerateProposalLabelsOp : public framework::OperatorWithKernel { auto rpn_rois_dims = ctx->GetInputDim("RpnRois"); auto gt_classes_dims = ctx->GetInputDim("GtClasses"); + auto is_crowd_dims = ctx->GetInputDim("IsCrowd"); auto gt_boxes_dims = ctx->GetInputDim("GtBoxes"); - auto im_scales_dims = ctx->GetInputDim("ImScales"); + auto im_info_dims = ctx->GetInputDim("ImInfo"); PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2, "The rank of Input(RpnRois) must be 2."); - PADDLE_ENFORCE_EQ(gt_classes_dims.size(), 1, - "The rank of Input(GtClasses) must be 1."); PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2, "The rank of Input(GtBoxes) must be 2."); - PADDLE_ENFORCE_EQ(im_scales_dims.size(), 1, - "The rank of Input(ImScales) must be 1."); + PADDLE_ENFORCE_EQ(im_info_dims.size(), 2, + "The rank of Input(ImInfo) must be 2."); int class_nums = ctx->Attrs().Get("class_nums"); ctx->SetOutputDim("Rois", {-1, 4}); - ctx->SetOutputDim("LabelsInt32", {-1}); + ctx->SetOutputDim("LabelsInt32", {-1, 1}); ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums}); ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums}); ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums}); @@ -105,45 +105,18 @@ void Concat(const platform::CPUDeviceContext& context, concat_functor(context, inputs, axis, out_tensor); } -template -void BboxOverlaps(const Tensor& r_boxes, const Tensor& c_boxes, - Tensor* overlaps) { - auto r_boxes_et = framework::EigenTensor::From(r_boxes); - auto c_boxes_et = framework::EigenTensor::From(c_boxes); - auto overlaps_et = framework::EigenTensor::From(*overlaps); - int r_num = r_boxes.dims()[0]; - int c_num = c_boxes.dims()[0]; - auto zero = static_cast(0.0); - T r_box_area, c_box_area, x_min, y_min, x_max, y_max, inter_w, inter_h, - inter_area; - for (int i = 0; i < r_num; ++i) { - r_box_area = (r_boxes_et(i, 2) - r_boxes_et(i, 0) + 1) * - (r_boxes_et(i, 3) - r_boxes_et(i, 1) + 1); - for (int j = 0; j < c_num; ++j) { - c_box_area = (c_boxes_et(j, 2) - c_boxes_et(j, 0) + 1) * - (c_boxes_et(j, 3) - c_boxes_et(j, 1) + 1); - x_min = std::max(r_boxes_et(i, 0), c_boxes_et(j, 0)); - y_min = std::max(r_boxes_et(i, 1), c_boxes_et(j, 1)); - x_max = std::min(r_boxes_et(i, 2), c_boxes_et(j, 2)); - y_max = std::min(r_boxes_et(i, 3), c_boxes_et(j, 3)); - inter_w = std::max(x_max - x_min + 1, zero); - inter_h = std::max(y_max - y_min + 1, zero); - inter_area = inter_w * inter_h; - overlaps_et(i, j) = inter_area / (r_box_area + c_box_area - inter_area); - } - } -} - template std::vector> SampleFgBgGt( const platform::CPUDeviceContext& context, Tensor* iou, - const int batch_size_per_im, const float fg_fraction, const float fg_thresh, - const float bg_thresh_hi, const float bg_thresh_lo, - std::minstd_rand engine) { + const Tensor& is_crowd, const int batch_size_per_im, + const float fg_fraction, const float fg_thresh, const float bg_thresh_hi, + const float bg_thresh_lo, std::minstd_rand engine, const bool use_random) { std::vector fg_inds; std::vector bg_inds; std::vector gt_inds; - T* proposal_to_gt_overlaps = iou->mutable_data(context.GetPlace()); + int64_t gt_num = is_crowd.numel(); + const int* crowd_data = is_crowd.data(); + T* proposal_to_gt_overlaps = iou->data(); int64_t row = iou->dims()[0]; int64_t col = iou->dims()[1]; float epsilon = 0.00001; @@ -152,6 +125,9 @@ std::vector> SampleFgBgGt( for (int64_t i = 0; i < row; ++i) { const T* v = proposal_to_gt_overlaps + i * col; T max_overlap = *std::max_element(v, v + col); + if ((i < gt_num) && (crowd_data[i])) { + max_overlap = -1.0; + } if (max_overlap > fg_thresh) { for (int64_t j = 0; j < col; ++j) { T val = proposal_to_gt_overlaps[i * col + j]; @@ -170,17 +146,19 @@ std::vector> SampleFgBgGt( } // Reservoir Sampling + std::uniform_real_distribution uniform(0, 1); int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction); int fg_rois_this_image = fg_inds.size(); int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image); - std::uniform_real_distribution uniform(0, 1); - const int64_t fg_size = static_cast(fg_inds.size()); - if (fg_size > fg_rois_per_this_image) { - for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) { - int rng_ind = std::floor(uniform(engine) * i); - if (rng_ind < fg_rois_per_this_image) { - std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i); - std::iter_swap(gt_inds.begin() + rng_ind, gt_inds.begin() + i); + if (use_random) { + const int64_t fg_size = static_cast(fg_inds.size()); + if (fg_size > fg_rois_per_this_image) { + for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) { + int rng_ind = std::floor(uniform(engine) * i); + if (rng_ind < fg_rois_per_this_image) { + std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i); + std::iter_swap(gt_inds.begin() + rng_ind, gt_inds.begin() + i); + } } } } @@ -192,12 +170,14 @@ std::vector> SampleFgBgGt( int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image; int bg_rois_this_image = bg_inds.size(); int bg_rois_per_this_image = std::min(bg_rois_per_image, bg_rois_this_image); - const int64_t bg_size = static_cast(bg_inds.size()); - if (bg_size > bg_rois_per_this_image) { - for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) { - int rng_ind = std::floor(uniform(engine) * i); - if (rng_ind < fg_rois_per_this_image) - std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i); + if (use_random) { + const int64_t bg_size = static_cast(bg_inds.size()); + if (bg_size > bg_rois_per_this_image) { + for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) { + int rng_ind = std::floor(uniform(engine) * i); + if (rng_ind < fg_rois_per_this_image) + std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i); + } } } std::vector new_bg_inds(bg_inds.begin(), @@ -248,14 +228,14 @@ void GatherBoxesLabels(const platform::CPUDeviceContext& context, template std::vector SampleRoisForOneImage( const platform::CPUDeviceContext& context, Tensor* rpn_rois, - Tensor* gt_classes, Tensor* gt_boxes, Tensor* im_scale, + Tensor* gt_classes, Tensor* is_crowd, Tensor* gt_boxes, Tensor* im_info, const int batch_size_per_im, const float fg_fraction, const float fg_thresh, const float bg_thresh_hi, const float bg_thresh_lo, const std::vector& bbox_reg_weights, const int class_nums, - std::minstd_rand engine) { + std::minstd_rand engine, bool use_random) { auto rpn_rois_et = framework::EigenTensor::From(*rpn_rois); - auto im_scale_data = im_scale->data()[0]; - rpn_rois_et = rpn_rois_et / im_scale_data; + auto im_scale = im_info->data()[2]; + rpn_rois_et = rpn_rois_et / im_scale; Tensor boxes; int proposals_num = gt_boxes->dims()[0] + rpn_rois->dims()[0]; @@ -270,8 +250,8 @@ std::vector SampleRoisForOneImage( // Generate proposal index std::vector> fg_bg_gt = SampleFgBgGt( - context, &proposal_to_gt_overlaps, batch_size_per_im, fg_fraction, - fg_thresh, bg_thresh_hi, bg_thresh_lo, engine); + context, &proposal_to_gt_overlaps, *is_crowd, batch_size_per_im, + fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, engine, use_random); std::vector fg_inds = fg_bg_gt[0]; std::vector bg_inds = fg_bg_gt[1]; std::vector gt_inds = fg_bg_gt[2]; @@ -291,15 +271,15 @@ std::vector SampleRoisForOneImage( // Compute targets Tensor bbox_targets_single; bbox_targets_single.mutable_data(bbox_dim, context.GetPlace()); - BoxToDelta(fg_num, sampled_boxes, sampled_gts, nullptr, false, - &bbox_targets_single); + BoxToDelta(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(), + false, &bbox_targets_single); // Scale rois Tensor sampled_rois; sampled_rois.mutable_data(sampled_boxes.dims(), context.GetPlace()); auto sampled_rois_et = framework::EigenTensor::From(sampled_rois); auto sampled_boxes_et = framework::EigenTensor::From(sampled_boxes); - sampled_rois_et = sampled_boxes_et * im_scale_data; + sampled_rois_et = sampled_boxes_et * im_scale; // Expand box targets Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights; @@ -351,8 +331,9 @@ class GenerateProposalLabelsKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& context) const override { auto* rpn_rois = context.Input("RpnRois"); auto* gt_classes = context.Input("GtClasses"); + auto* is_crowd = context.Input("IsCrowd"); auto* gt_boxes = context.Input("GtBoxes"); - auto* im_scales = context.Input("ImScales"); + auto* im_info = context.Input("ImInfo"); auto* rois = context.Output("Rois"); auto* labels_int32 = context.Output("LabelsInt32"); @@ -369,18 +350,21 @@ class GenerateProposalLabelsKernel : public framework::OpKernel { std::vector bbox_reg_weights = context.Attr>("bbox_reg_weights"); int class_nums = context.Attr("class_nums"); + bool use_random = context.Attr("use_random"); PADDLE_ENFORCE_EQ(rpn_rois->lod().size(), 1UL, "GenerateProposalLabelsOp rpn_rois needs 1 level of LoD"); PADDLE_ENFORCE_EQ( gt_classes->lod().size(), 1UL, "GenerateProposalLabelsOp gt_classes needs 1 level of LoD"); + PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL, + "GenerateProposalLabelsOp is_crowd needs 1 level of LoD"); PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL, "GenerateProposalLabelsOp gt_boxes needs 1 level of LoD"); int64_t n = static_cast(rpn_rois->lod().back().size() - 1); rois->mutable_data({n * batch_size_per_im, kBoxDim}, context.GetPlace()); - labels_int32->mutable_data({n * batch_size_per_im}, + labels_int32->mutable_data({n * batch_size_per_im, 1}, context.GetPlace()); bbox_targets->mutable_data({n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace()); @@ -391,8 +375,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel { std::random_device rnd; std::minstd_rand engine; - int seed = - context.Attr("fix_seed") ? context.Attr("seed") : rnd(); + int seed = rnd(); engine.seed(seed); framework::LoD lod; @@ -403,19 +386,23 @@ class GenerateProposalLabelsKernel : public framework::OpKernel { auto rpn_rois_lod = rpn_rois->lod().back(); auto gt_classes_lod = gt_classes->lod().back(); + auto is_crowd_lod = is_crowd->lod().back(); auto gt_boxes_lod = gt_boxes->lod().back(); for (int i = 0; i < n; ++i) { Tensor rpn_rois_slice = rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]); Tensor gt_classes_slice = gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]); + Tensor is_crowd_slice = + is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]); Tensor gt_boxes_slice = gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]); - Tensor im_scales_slice = im_scales->Slice(i, i + 1); + Tensor im_info_slice = im_info->Slice(i, i + 1); std::vector tensor_output = SampleRoisForOneImage( - dev_ctx, &rpn_rois_slice, >_classes_slice, >_boxes_slice, - &im_scales_slice, batch_size_per_im, fg_fraction, fg_thresh, - bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums, engine); + dev_ctx, &rpn_rois_slice, >_classes_slice, &is_crowd_slice, + >_boxes_slice, &im_info_slice, batch_size_per_im, fg_fraction, + fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums, + engine, use_random); Tensor sampled_rois = tensor_output[0]; Tensor sampled_labels_int32 = tensor_output[1]; Tensor sampled_bbox_targets = tensor_output[2]; @@ -442,7 +429,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel { bbox_inside_weights->set_lod(lod); bbox_outside_weights->set_lod(lod); rois->Resize({num_rois, kBoxDim}); - labels_int32->Resize({num_rois}); + labels_int32->Resize({num_rois, 1}); bbox_targets->Resize({num_rois, kBoxDim * class_nums}); bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums}); bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums}); @@ -455,8 +442,9 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker { // TODO(buxingyuan): Add Document AddInput("RpnRois", "RpnRois."); AddInput("GtClasses", "GtClasses."); + AddInput("IsCrowd", "IsCrowd."); AddInput("GtBoxes", "GtBoxes."); - AddInput("ImScales", "ImScales."); + AddInput("ImInfo", "ImInfo."); AddOutput("Rois", "Rois."); AddOutput("LabelsInt32", "LabelsInt32."); @@ -471,8 +459,7 @@ class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("bg_thresh_lo", "bg_thresh_lo"); AddAttr>("bbox_reg_weights", "bbox_reg_weights"); AddAttr("class_nums", "class_nums"); - AddAttr("fix_seed", "fix_seed").SetDefault(false); - AddAttr("seed", "seed").SetDefault(0); + AddAttr("use_random", "use_random").SetDefault(true); AddComment(R"DOC( Generate Proposals Labels Operator. diff --git a/paddle/fluid/operators/detection/generate_proposals_op.cc b/paddle/fluid/operators/detection/generate_proposals_op.cc index ebe6830eccd87a156768eb0d4b96220bcc9f4edc..c33aa255362bc5234f2813fb93e70c943b03c33f 100644 --- a/paddle/fluid/operators/detection/generate_proposals_op.cc +++ b/paddle/fluid/operators/detection/generate_proposals_op.cc @@ -89,12 +89,11 @@ void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors, } for (int64_t i = 0; i < row; ++i) { - T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len]; - T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1]; + T anchor_width = anchor_data[i * len + 2] - anchor_data[i * len] + 1.0; + T anchor_height = anchor_data[i * len + 3] - anchor_data[i * len + 1] + 1.0; - T anchor_center_x = (anchor_data[i * len + 2] + anchor_data[i * len]) / 2; - T anchor_center_y = - (anchor_data[i * len + 3] + anchor_data[i * len + 1]) / 2; + T anchor_center_x = anchor_data[i * len] + 0.5 * anchor_width; + T anchor_center_y = anchor_data[i * len + 1] + 0.5 * anchor_height; T bbox_center_x = 0, bbox_center_y = 0; T bbox_width = 0, bbox_height = 0; @@ -106,25 +105,31 @@ void BoxCoder(const platform::DeviceContext &ctx, Tensor *all_anchors, bbox_center_y = variances_data[i * len + 1] * bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y; - bbox_width = std::exp(variances_data[i * len + 2] * - bbox_deltas_data[i * len + 2]) * + bbox_width = std::exp(std::min(variances_data[i * len + 2] * + bbox_deltas_data[i * len + 2], + std::log(1000.0 / 16.0))) * anchor_width; - bbox_height = std::exp(variances_data[i * len + 3] * - bbox_deltas_data[i * len + 3]) * + bbox_height = std::exp(std::min(variances_data[i * len + 3] * + bbox_deltas_data[i * len + 3], + std::log(1000.0 / 16.0))) * anchor_height; } else { bbox_center_x = bbox_deltas_data[i * len] * anchor_width + anchor_center_x; bbox_center_y = bbox_deltas_data[i * len + 1] * anchor_height + anchor_center_y; - bbox_width = std::exp(bbox_deltas_data[i * len + 2]) * anchor_width; - bbox_height = std::exp(bbox_deltas_data[i * len + 3]) * anchor_height; + bbox_width = std::exp(std::min(bbox_deltas_data[i * len + 2], + std::log(1000.0 / 16.0))) * + anchor_width; + bbox_height = std::exp(std::min(bbox_deltas_data[i * len + 3], + std::log(1000.0 / 16.0))) * + anchor_height; } proposals_data[i * len] = bbox_center_x - bbox_width / 2; proposals_data[i * len + 1] = bbox_center_y - bbox_height / 2; - proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2; - proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2; + proposals_data[i * len + 2] = bbox_center_x + bbox_width / 2 - 1; + proposals_data[i * len + 3] = bbox_center_y + bbox_height / 2 - 1; } // return proposals; } @@ -156,18 +161,23 @@ void FilterBoxes(const platform::DeviceContext &ctx, Tensor *boxes, float min_size, const Tensor &im_info, Tensor *keep) { const T *im_info_data = im_info.data(); T *boxes_data = boxes->mutable_data(ctx.GetPlace()); - min_size *= im_info_data[2]; + T im_scale = im_info_data[2]; keep->Resize({boxes->dims()[0], 1}); + min_size = std::max(min_size, 1.0f); int *keep_data = keep->mutable_data(ctx.GetPlace()); int keep_len = 0; for (int i = 0; i < boxes->dims()[0]; ++i) { T ws = boxes_data[4 * i + 2] - boxes_data[4 * i] + 1; T hs = boxes_data[4 * i + 3] - boxes_data[4 * i + 1] + 1; + T ws_origin_scale = + (boxes_data[4 * i + 2] - boxes_data[4 * i]) / im_scale + 1; + T hs_origin_scale = + (boxes_data[4 * i + 3] - boxes_data[4 * i + 1]) / im_scale + 1; T x_ctr = boxes_data[4 * i] + ws / 2; T y_ctr = boxes_data[4 * i + 1] + hs / 2; - if (ws >= min_size && hs >= min_size && x_ctr <= im_info_data[1] && - y_ctr <= im_info_data[0]) { + if (ws_origin_scale >= min_size && hs_origin_scale >= min_size && + x_ctr <= im_info_data[1] && y_ctr <= im_info_data[0]) { keep_data[keep_len++] = i; } } @@ -218,8 +228,8 @@ T JaccardOverlap(const T *box1, const T *box2, const bool normalized) { const T inter_ymin = std::max(box1[1], box2[1]); const T inter_xmax = std::min(box1[2], box2[2]); const T inter_ymax = std::min(box1[3], box2[3]); - const T inter_w = inter_xmax - inter_xmin; - const T inter_h = inter_ymax - inter_ymin; + const T inter_w = std::max(0.0f, inter_xmax - inter_xmin + 1); + const T inter_h = std::max(0.0f, inter_ymax - inter_ymin + 1); const T inter_area = inter_w * inter_h; const T bbox1_area = BBoxArea(box1, normalized); const T bbox2_area = BBoxArea(box2, normalized); diff --git a/paddle/fluid/operators/detection/rpn_target_assign_op.cc b/paddle/fluid/operators/detection/rpn_target_assign_op.cc index 88757f25cd9a5789758640de2d9cae0b12350b25..dda423efd35b96f5e1d7c55389818f46ef3d8694 100644 --- a/paddle/fluid/operators/detection/rpn_target_assign_op.cc +++ b/paddle/fluid/operators/detection/rpn_target_assign_op.cc @@ -31,8 +31,14 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel { using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { - PADDLE_ENFORCE(ctx->HasInput("DistMat"), - "Input(DistMat) of RpnTargetAssignOp should not be null"); + PADDLE_ENFORCE(ctx->HasInput("Anchor"), + "Input(Anchor) of RpnTargetAssignOp should not be null"); + PADDLE_ENFORCE(ctx->HasInput("GtBoxes"), + "Input(GtBoxes) of RpnTargetAssignOp should not be null"); + PADDLE_ENFORCE(ctx->HasInput("IsCrowd"), + "Input(Anchor) of RpnTargetAssignOp should not be null"); + PADDLE_ENFORCE(ctx->HasInput("ImInfo"), + "Input(ImInfo) of RpnTargetAssignOp should not be null"); PADDLE_ENFORCE( ctx->HasOutput("LocationIndex"), @@ -43,10 +49,20 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel { PADDLE_ENFORCE( ctx->HasOutput("TargetLabel"), "Output(TargetLabel) of RpnTargetAssignOp should not be null"); - - auto in_dims = ctx->GetInputDim("DistMat"); - PADDLE_ENFORCE_EQ(in_dims.size(), 2, - "The rank of Input(DistMat) must be 2."); + PADDLE_ENFORCE( + ctx->HasOutput("TargetBBox"), + "Output(TargetBBox) of RpnTargetAssignOp should not be null"); + + auto anchor_dims = ctx->GetInputDim("Anchor"); + auto gt_boxes_dims = ctx->GetInputDim("GtBoxes"); + auto is_crowd_dims = ctx->GetInputDim("IsCrowd"); + auto im_info_dims = ctx->GetInputDim("ImInfo"); + PADDLE_ENFORCE_EQ(anchor_dims.size(), 2, + "The rank of Input(Anchor) must be 2."); + PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2, + "The rank of Input(GtBoxes) must be 2."); + PADDLE_ENFORCE_EQ(im_info_dims.size(), 2, + "The rank of Input(ImInfo) must be 2."); ctx->SetOutputDim("LocationIndex", {-1}); ctx->SetOutputDim("ScoreIndex", {-1}); @@ -59,198 +75,383 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel { const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType( - ctx.Input("DistMat")->type()), + ctx.Input("Anchor")->type()), platform::CPUPlace()); } }; template -class RpnTargetAssignKernel : public framework::OpKernel { - public: - void Compute(const framework::ExecutionContext& context) const override { - auto* anchor_t = context.Input("Anchor"); // (H*W*A) * 4 - auto* gt_bbox_t = context.Input("GtBox"); - auto* dist_t = context.Input("DistMat"); +void AppendRpns(LoDTensor* out, int64_t offset, Tensor* to_add) { + auto* out_data = out->data(); + auto* to_add_data = to_add->data(); + memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T)); +} + +template +std::vector FilterStraddleAnchor( + const platform::CPUDeviceContext& context, const Tensor* anchor, + const float rpn_straddle_thresh, T im_height, T im_width) { + std::vector inds_inside; + int anchor_num = anchor->dims()[0]; + auto* anchor_data = anchor->data(); + if (rpn_straddle_thresh >= 0) { + int index; + for (int i = 0; i < anchor_num; ++i) { + index = i * 4; + if ((anchor_data[index + 0] >= -rpn_straddle_thresh) && + (anchor_data[index + 1] >= -rpn_straddle_thresh) && + (anchor_data[index + 2] < im_width + rpn_straddle_thresh) && + (anchor_data[index + 3] < im_height + rpn_straddle_thresh)) { + inds_inside.emplace_back(i); + } + } + } else { + for (int i = 0; i < anchor_num; ++i) { + inds_inside.emplace_back(i); + } + } + int inside_num = inds_inside.size(); + Tensor inds_inside_t; + int* inds_inside_data = + inds_inside_t.mutable_data({inside_num}, context.GetPlace()); + std::copy(inds_inside.begin(), inds_inside.end(), inds_inside_data); + Tensor inside_anchor_t; + T* inside_anchor_data = + inside_anchor_t.mutable_data({inside_num, 4}, context.GetPlace()); + Gather(anchor->data(), 4, inds_inside_data, inside_num, + inside_anchor_data); + std::vector res; + res.emplace_back(inds_inside_t); + res.emplace_back(inside_anchor_t); + return res; +} + +template +Tensor FilterCrowdGt(const platform::CPUDeviceContext& context, + Tensor* gt_boxes, Tensor* is_crowd) { + int gt_num = gt_boxes->dims()[0]; + std::vector not_crowd_inds; + auto* is_crowd_data = is_crowd->data(); + for (int i = 0; i < gt_num; ++i) { + if (is_crowd_data[i] == 0) { + not_crowd_inds.emplace_back(i); + } + } + int ncrowd_num = not_crowd_inds.size(); + Tensor ncrowd_gt_boxes; + T* ncrowd_gt_boxes_data = + ncrowd_gt_boxes.mutable_data({ncrowd_num, 4}, context.GetPlace()); + Gather(gt_boxes->data(), 4, not_crowd_inds.data(), ncrowd_num, + ncrowd_gt_boxes_data); + return ncrowd_gt_boxes; +} + +void ReservoirSampling(const int num, std::vector* inds, + std::minstd_rand engine, bool use_random) { + std::uniform_real_distribution uniform(0, 1); + size_t len = inds->size(); + if (len > static_cast(num)) { + if (use_random) { + for (size_t i = num; i < len; ++i) { + int rng_ind = std::floor(uniform(engine) * i); + if (rng_ind < num) + std::iter_swap(inds->begin() + rng_ind, inds->begin() + i); + } + } + inds->resize(num); + } +} + +template +void ScoreAssign(const T* anchor_by_gt_overlap_data, + const Tensor& anchor_to_gt_max, const Tensor& gt_to_anchor_max, + const int rpn_batch_size_per_im, const float rpn_fg_fraction, + const float rpn_positive_overlap, + const float rpn_negative_overlap, std::vector* fg_inds, + std::vector* bg_inds, std::vector* tgt_lbl, + std::minstd_rand engine, bool use_random) { + float epsilon = 0.00001; + int anchor_num = anchor_to_gt_max.dims()[0]; + int gt_num = gt_to_anchor_max.dims()[0]; + std::vector target_label(anchor_num, -1); + std::vector fg_inds_fake; + std::vector bg_inds_fake; + const T* anchor_to_gt_max_data = anchor_to_gt_max.data(); + const T* gt_to_anchor_max_data = gt_to_anchor_max.data(); + // TODO(buxingyuan): Match with Detectron now + // but it seems here is a bug in two directions assignment + // in which the later one may overwrites the former one. + for (int64_t i = 0; i < anchor_num; ++i) { + bool is_anchors_with_max_overlap = false; + for (int64_t j = 0; j < gt_num; ++j) { + T value = anchor_by_gt_overlap_data[i * gt_num + j]; + T diff = std::abs(value - gt_to_anchor_max_data[j]); + if (diff < epsilon) { + is_anchors_with_max_overlap = true; + break; + } + } + bool is_anchor_great_than_thresh = + (anchor_to_gt_max_data[i] >= rpn_positive_overlap); + if (is_anchors_with_max_overlap || is_anchor_great_than_thresh) { + fg_inds_fake.push_back(i); + } + } - auto* loc_index_t = context.Output("LocationIndex"); - auto* score_index_t = context.Output("ScoreIndex"); - auto* tgt_bbox_t = context.Output("TargetBBox"); - auto* tgt_lbl_t = context.Output("TargetLabel"); + // Reservoir Sampling + int fg_num = static_cast(rpn_fg_fraction * rpn_batch_size_per_im); + ReservoirSampling(fg_num, &fg_inds_fake, engine, use_random); + fg_num = static_cast(fg_inds_fake.size()); + for (int64_t i = 0; i < fg_num; ++i) { + target_label[fg_inds_fake[i]] = 1; + } - auto lod = dist_t->lod().back(); - int64_t batch_num = static_cast(lod.size() - 1); - int64_t anchor_num = dist_t->dims()[1]; - PADDLE_ENFORCE_EQ(anchor_num, anchor_t->dims()[0]); + int bg_num = rpn_batch_size_per_im - fg_num; + for (int64_t i = 0; i < anchor_num; ++i) { + if (anchor_to_gt_max_data[i] < rpn_negative_overlap) { + bg_inds_fake.push_back(i); + } + } + ReservoirSampling(bg_num, &bg_inds_fake, engine, use_random); + bg_num = static_cast(bg_inds_fake.size()); + for (int64_t i = 0; i < bg_num; ++i) { + target_label[bg_inds_fake[i]] = 0; + } - int rpn_batch_size = context.Attr("rpn_batch_size_per_im"); - float pos_threshold = context.Attr("rpn_positive_overlap"); - float neg_threshold = context.Attr("rpn_negative_overlap"); - float fg_fraction = context.Attr("fg_fraction"); + for (int64_t i = 0; i < anchor_num; ++i) { + if (target_label[i] == 1) fg_inds->emplace_back(i); + if (target_label[i] == 0) bg_inds->emplace_back(i); + } + fg_num = fg_inds->size(); + bg_num = bg_inds->size(); + + tgt_lbl->resize(fg_num + bg_num, 0); + std::vector fg_lbl(fg_num, 1); + std::vector bg_lbl(bg_num, 0); + std::copy(fg_lbl.begin(), fg_lbl.end(), tgt_lbl->data()); + std::copy(bg_lbl.begin(), bg_lbl.end(), tgt_lbl->data() + fg_num); +} + +template +std::vector SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx, + const Tensor& anchor_by_gt_overlap, + const int rpn_batch_size_per_im, + const float rpn_positive_overlap, + const float rpn_negative_overlap, + const float rpn_fg_fraction, + std::minstd_rand engine, bool use_random) { + auto* anchor_by_gt_overlap_data = anchor_by_gt_overlap.data(); + int anchor_num = anchor_by_gt_overlap.dims()[0]; + int gt_num = anchor_by_gt_overlap.dims()[1]; + + std::vector fg_inds; + std::vector bg_inds; + std::vector gt_inds; + std::vector tgt_lbl; + + // Calculate the max IoU between anchors and gt boxes + // Map from anchor to gt box that has highest overlap + auto place = ctx.GetPlace(); + Tensor anchor_to_gt_max, anchor_to_gt_argmax, gt_to_anchor_max; + anchor_to_gt_max.mutable_data({anchor_num}, place); + int* argmax = anchor_to_gt_argmax.mutable_data({anchor_num}, place); + gt_to_anchor_max.mutable_data({gt_num}, place); + + auto anchor_by_gt_overlap_et = + framework::EigenMatrix::From(anchor_by_gt_overlap); + auto anchor_to_gt_max_et = + framework::EigenVector::Flatten(anchor_to_gt_max); + auto gt_to_anchor_max_et = + framework::EigenVector::Flatten(gt_to_anchor_max); + auto anchor_to_gt_argmax_et = + framework::EigenVector::Flatten(anchor_to_gt_argmax); + anchor_to_gt_max_et = + anchor_by_gt_overlap_et.maximum(Eigen::DSizes(1)); + anchor_to_gt_argmax_et = + anchor_by_gt_overlap_et.argmax(1).template cast(); + gt_to_anchor_max_et = + anchor_by_gt_overlap_et.maximum(Eigen::DSizes(0)); + + // Follow the Faster RCNN's implementation + ScoreAssign(anchor_by_gt_overlap_data, anchor_to_gt_max, gt_to_anchor_max, + rpn_batch_size_per_im, rpn_fg_fraction, rpn_positive_overlap, + rpn_negative_overlap, &fg_inds, &bg_inds, &tgt_lbl, engine, + use_random); + + int fg_num = fg_inds.size(); + int bg_num = bg_inds.size(); + gt_inds.reserve(fg_num); + for (int i = 0; i < fg_num; ++i) { + gt_inds.emplace_back(argmax[fg_inds[i]]); + } - int fg_num_per_batch = static_cast(rpn_batch_size * fg_fraction); + Tensor loc_index_t, score_index_t, tgt_lbl_t, gt_inds_t; + int* loc_index_data = loc_index_t.mutable_data({fg_num}, place); + int* score_index_data = + score_index_t.mutable_data({fg_num + bg_num}, place); + int* tgt_lbl_data = tgt_lbl_t.mutable_data({fg_num + bg_num}, place); + int* gt_inds_data = gt_inds_t.mutable_data({fg_num}, place); + std::copy(fg_inds.begin(), fg_inds.end(), loc_index_data); + std::copy(fg_inds.begin(), fg_inds.end(), score_index_data); + std::copy(bg_inds.begin(), bg_inds.end(), score_index_data + fg_num); + std::copy(tgt_lbl.begin(), tgt_lbl.end(), tgt_lbl_data); + std::copy(gt_inds.begin(), gt_inds.end(), gt_inds_data); + std::vector loc_score_tgtlbl_gt; + loc_score_tgtlbl_gt.emplace_back(loc_index_t); + loc_score_tgtlbl_gt.emplace_back(score_index_t); + loc_score_tgtlbl_gt.emplace_back(tgt_lbl_t); + loc_score_tgtlbl_gt.emplace_back(gt_inds_t); + + return loc_score_tgtlbl_gt; +} - int64_t max_num = batch_num * anchor_num; +template +class RpnTargetAssignKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* anchor = context.Input("Anchor"); // (H*W*A) * 4 + auto* gt_boxes = context.Input("GtBoxes"); + auto* is_crowd = context.Input("IsCrowd"); + auto* im_info = context.Input("ImInfo"); + + auto* loc_index = context.Output("LocationIndex"); + auto* score_index = context.Output("ScoreIndex"); + auto* tgt_bbox = context.Output("TargetBBox"); + auto* tgt_lbl = context.Output("TargetLabel"); + + PADDLE_ENFORCE_EQ(gt_boxes->lod().size(), 1UL, + "RpnTargetAssignOp gt_boxes needs 1 level of LoD"); + PADDLE_ENFORCE_EQ(is_crowd->lod().size(), 1UL, + "RpnTargetAssignOp is_crowd needs 1 level of LoD"); + int64_t anchor_num = static_cast(anchor->dims()[0]); + int64_t batch_num = static_cast(gt_boxes->lod().back().size() - 1); + + int rpn_batch_size_per_im = context.Attr("rpn_batch_size_per_im"); + float rpn_straddle_thresh = context.Attr("rpn_straddle_thresh"); + float rpn_positive_overlap = context.Attr("rpn_positive_overlap"); + float rpn_negative_overlap = context.Attr("rpn_negative_overlap"); + float rpn_fg_fraction = context.Attr("rpn_fg_fraction"); + bool use_random = context.Attr("use_random"); + + int64_t max_num = batch_num * rpn_batch_size_per_im; auto place = context.GetPlace(); - tgt_bbox_t->mutable_data({max_num, 4}, place); - auto* loc_index = loc_index_t->mutable_data({max_num}, place); - auto* score_index = score_index_t->mutable_data({max_num}, place); + loc_index->mutable_data({max_num}, place); + score_index->mutable_data({max_num}, place); + tgt_bbox->mutable_data({max_num, 4}, place); + tgt_lbl->mutable_data({max_num, 1}, place); - Tensor tmp_tgt_lbl; - auto* tmp_lbl_data = tmp_tgt_lbl.mutable_data({max_num}, place); auto& dev_ctx = context.device_context(); - math::SetConstant iset; - iset(dev_ctx, &tmp_tgt_lbl, static_cast(-1)); std::random_device rnd; std::minstd_rand engine; - int seed = - context.Attr("fix_seed") ? context.Attr("seed") : rnd(); + int seed = rnd(); engine.seed(seed); - int fg_num = 0; - int bg_num = 0; + framework::LoD lod_loc, loc_score; + std::vector lod0_loc(1, 0); + std::vector lod0_score(1, 0); + + int total_loc_num = 0; + int total_score_num = 0; + auto gt_boxes_lod = gt_boxes->lod().back(); + auto is_crowd_lod = is_crowd->lod().back(); for (int i = 0; i < batch_num; ++i) { - Tensor dist = dist_t->Slice(lod[i], lod[i + 1]); - Tensor gt_bbox = gt_bbox_t->Slice(lod[i], lod[i + 1]); - auto fg_bg_gt = SampleFgBgGt(dev_ctx, dist, pos_threshold, neg_threshold, - rpn_batch_size, fg_num_per_batch, engine, - tmp_lbl_data + i * anchor_num); - - int cur_fg_num = fg_bg_gt[0].size(); - int cur_bg_num = fg_bg_gt[1].size(); - std::transform(fg_bg_gt[0].begin(), fg_bg_gt[0].end(), loc_index, - [i, anchor_num](int d) { return d + i * anchor_num; }); - memcpy(score_index, loc_index, cur_fg_num * sizeof(int)); - std::transform(fg_bg_gt[1].begin(), fg_bg_gt[1].end(), - score_index + cur_fg_num, - [i, anchor_num](int d) { return d + i * anchor_num; }); + Tensor gt_boxes_slice = + gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]); + Tensor is_crowd_slice = + is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]); + Tensor im_info_slice = im_info->Slice(i, i + 1); + auto* im_info_data = im_info_slice.data(); + auto im_height = im_info_data[0]; + auto im_width = im_info_data[1]; + auto im_scale = im_info_data[2]; + + // Filter straddle anchor + std::vector filter_output = FilterStraddleAnchor( + dev_ctx, anchor, rpn_straddle_thresh, im_height, im_width); + Tensor inds_inside = filter_output[0]; + Tensor inside_anchor = filter_output[1]; + + // Filter crowd gt + Tensor ncrowd_gt_boxes = + FilterCrowdGt(dev_ctx, >_boxes_slice, &is_crowd_slice); + auto ncrowd_gt_boxes_et = + framework::EigenTensor::From(ncrowd_gt_boxes); + ncrowd_gt_boxes_et = ncrowd_gt_boxes_et * im_scale; + + Tensor anchor_by_gt_overlap; + anchor_by_gt_overlap.mutable_data( + {inside_anchor.dims()[0], ncrowd_gt_boxes.dims()[0]}, place); + BboxOverlaps(inside_anchor, ncrowd_gt_boxes, &anchor_by_gt_overlap); + + auto loc_score_tgtlbl_gt = SampleRpnFgBgGt( + dev_ctx, anchor_by_gt_overlap, rpn_batch_size_per_im, + rpn_positive_overlap, rpn_negative_overlap, rpn_fg_fraction, engine, + use_random); + + Tensor sampled_loc_index = loc_score_tgtlbl_gt[0]; + Tensor sampled_score_index = loc_score_tgtlbl_gt[1]; + Tensor sampled_tgtlbl = loc_score_tgtlbl_gt[2]; + Tensor sampled_gt_index = loc_score_tgtlbl_gt[3]; + + int loc_num = sampled_loc_index.dims()[0]; + int score_num = sampled_score_index.dims()[0]; + // unmap to all anchor + Tensor sampled_loc_index_unmap, sampled_score_index_unmap; + sampled_loc_index_unmap.mutable_data({loc_num}, place); + sampled_score_index_unmap.mutable_data({score_num}, place); + Gather(inds_inside.data(), 1, sampled_loc_index.data(), + loc_num, sampled_loc_index_unmap.data()); + Gather(inds_inside.data(), 1, sampled_score_index.data(), + score_num, sampled_score_index_unmap.data()); // get target bbox deltas - if (cur_fg_num) { - Tensor fg_gt; - T* gt_data = fg_gt.mutable_data({cur_fg_num, 4}, place); - Tensor tgt_bbox = tgt_bbox_t->Slice(fg_num, fg_num + cur_fg_num); - T* tgt_data = tgt_bbox.data(); - Gather(anchor_t->data(), 4, - reinterpret_cast(&fg_bg_gt[0][0]), cur_fg_num, - tgt_data); - Gather(gt_bbox.data(), 4, reinterpret_cast(&fg_bg_gt[2][0]), - cur_fg_num, gt_data); - BoxToDelta(cur_fg_num, tgt_bbox, fg_gt, nullptr, false, &tgt_bbox); - } - - loc_index += cur_fg_num; - score_index += cur_fg_num + cur_bg_num; - fg_num += cur_fg_num; - bg_num += cur_bg_num; - } - - int lbl_num = fg_num + bg_num; - PADDLE_ENFORCE_LE(fg_num, max_num); - PADDLE_ENFORCE_LE(lbl_num, max_num); - - tgt_bbox_t->Resize({fg_num, 4}); - loc_index_t->Resize({fg_num}); - score_index_t->Resize({lbl_num}); - auto* lbl_data = tgt_lbl_t->mutable_data({lbl_num, 1}, place); - Gather(tmp_lbl_data, 1, score_index_t->data(), lbl_num, - lbl_data); - } - - private: - void ScoreAssign(const T* dist_data, const Tensor& anchor_to_gt_max, - const int row, const int col, const float pos_threshold, - const float neg_threshold, int64_t* target_label, - std::vector* fg_inds, std::vector* bg_inds) const { - float epsilon = 0.0001; - for (int64_t i = 0; i < row; ++i) { - const T* v = dist_data + i * col; - T max = *std::max_element(v, v + col); - for (int64_t j = 0; j < col; ++j) { - if (std::abs(max - v[j]) < epsilon) { - target_label[j] = 1; - } - } - } - - // Pick the fg/bg - const T* anchor_to_gt_max_data = anchor_to_gt_max.data(); - for (int64_t j = 0; j < col; ++j) { - if (anchor_to_gt_max_data[j] >= pos_threshold) { - target_label[j] = 1; - } else if (anchor_to_gt_max_data[j] < neg_threshold) { - target_label[j] = 0; - } - if (target_label[j] == 1) { - fg_inds->push_back(j); - } else if (target_label[j] == 0) { - bg_inds->push_back(j); - } + Tensor sampled_anchor, sampled_gt, sampled_tgt_bbox; + auto* sampled_anchor_data = + sampled_anchor.mutable_data({loc_num, 4}, place); + auto* sampled_gt_data = sampled_gt.mutable_data({loc_num, 4}, place); + Gather(anchor->data(), 4, sampled_loc_index_unmap.data(), + loc_num, sampled_anchor_data); + Gather(ncrowd_gt_boxes.data(), 4, sampled_gt_index.data(), + loc_num, sampled_gt_data); + sampled_tgt_bbox.mutable_data({loc_num, 4}, place); + BoxToDelta(loc_num, sampled_anchor, sampled_gt, nullptr, false, + &sampled_tgt_bbox); + + // Add anchor offset + int anchor_offset = i * anchor_num; + auto sampled_loc_index_unmap_et = + framework::EigenTensor::From(sampled_loc_index_unmap); + sampled_loc_index_unmap_et = sampled_loc_index_unmap_et + anchor_offset; + auto sampled_score_index_unmap_et = + framework::EigenTensor::From(sampled_score_index_unmap); + sampled_score_index_unmap_et = + sampled_score_index_unmap_et + anchor_offset; + AppendRpns(loc_index, total_loc_num, &sampled_loc_index_unmap); + AppendRpns(score_index, total_score_num, &sampled_score_index_unmap); + AppendRpns(tgt_bbox, total_loc_num * 4, &sampled_tgt_bbox); + AppendRpns(tgt_lbl, total_score_num, &sampled_tgtlbl); + total_loc_num += loc_num; + + total_score_num += score_num; + lod0_loc.emplace_back(total_loc_num); + lod0_score.emplace_back(total_score_num); } - } - - void ReservoirSampling(const int num, std::minstd_rand engine, - std::vector* inds) const { - std::uniform_real_distribution uniform(0, 1); - size_t len = inds->size(); - if (len > static_cast(num)) { - for (size_t i = num; i < len; ++i) { - int rng_ind = std::floor(uniform(engine) * i); - if (rng_ind < num) - std::iter_swap(inds->begin() + rng_ind, inds->begin() + i); - } - inds->resize(num); - } - } - // std::vector> RpnTargetAssign( - std::vector> SampleFgBgGt( - const platform::CPUDeviceContext& ctx, const Tensor& dist, - const float pos_threshold, const float neg_threshold, - const int rpn_batch_size, const int fg_num, std::minstd_rand engine, - int64_t* target_label) const { - auto* dist_data = dist.data(); - int row = dist.dims()[0]; - int col = dist.dims()[1]; - - std::vector fg_inds; - std::vector bg_inds; - std::vector gt_inds; - - // Calculate the max IoU between anchors and gt boxes - // Map from anchor to gt box that has highest overlap - auto place = ctx.GetPlace(); - Tensor anchor_to_gt_max, anchor_to_gt_argmax; - anchor_to_gt_max.mutable_data({col}, place); - int* argmax = anchor_to_gt_argmax.mutable_data({col}, place); - - auto x = framework::EigenMatrix::From(dist); - auto x_col_max = framework::EigenVector::Flatten(anchor_to_gt_max); - auto x_col_argmax = - framework::EigenVector::Flatten(anchor_to_gt_argmax); - x_col_max = x.maximum(Eigen::DSizes(0)); - x_col_argmax = x.argmax(0).template cast(); - - // Follow the Faster RCNN's implementation - ScoreAssign(dist_data, anchor_to_gt_max, row, col, pos_threshold, - neg_threshold, target_label, &fg_inds, &bg_inds); - // Reservoir Sampling - ReservoirSampling(fg_num, engine, &fg_inds); - int fg_num2 = static_cast(fg_inds.size()); - int bg_num = rpn_batch_size - fg_num2; - ReservoirSampling(bg_num, engine, &bg_inds); - - gt_inds.reserve(fg_num2); - for (int i = 0; i < fg_num2; ++i) { - gt_inds.emplace_back(argmax[fg_inds[i]]); - } - std::vector> fg_bg_gt; - fg_bg_gt.emplace_back(fg_inds); - fg_bg_gt.emplace_back(bg_inds); - fg_bg_gt.emplace_back(gt_inds); - - return fg_bg_gt; + PADDLE_ENFORCE_LE(total_loc_num, max_num); + PADDLE_ENFORCE_LE(total_score_num, max_num); + + lod_loc.emplace_back(lod0_loc); + loc_score.emplace_back(lod0_score); + loc_index->set_lod(lod_loc); + score_index->set_lod(loc_score); + tgt_bbox->set_lod(lod_loc); + tgt_lbl->set_lod(loc_score); + loc_index->Resize({total_loc_num}); + score_index->Resize({total_score_num}); + tgt_bbox->Resize({total_loc_num, 4}); + tgt_lbl->Resize({total_score_num, 1}); } }; @@ -259,18 +460,22 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker { void Make() override { AddInput("Anchor", "(Tensor) input anchor is a 2-D Tensor with shape [H*W*A, 4]."); - AddInput("GtBox", "(LoDTensor) input groud-truth bbox with shape [K, 4]."); - AddInput( - "DistMat", - "(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape " - "[K, M]. It is pair-wise distance matrix between the entities " - "represented by each row and each column. For example, assumed one " - "entity is A with shape [K], another entity is B with shape [M]. The " - "DistMat[i][j] is the distance between A[i] and B[j]. The bigger " - "the distance is, the better macthing the pairs are. Please note, " - "This tensor can contain LoD information to represent a batch of " - "inputs. One instance of this batch can contain different numbers of " - "entities."); + AddInput("GtBoxes", + "(LoDTensor) input groud-truth bbox with shape [K, 4]."); + AddInput("IsCrowd", + "(LoDTensor) input which indicates groud-truth is crowd."); + AddInput("ImInfo", + "(LoDTensor) input image information with shape [N, 3]. " + "N is the batch size, each image information includes height, " + "width and scale."); + AddAttr("rpn_batch_size_per_im", + "Total number of RPN examples per image.") + .SetDefault(256); + AddAttr( + "rpn_straddle_thresh", + "Remove RPN anchors that go outside the image by straddle_thresh " + "pixels, " + "Set to -1 or a large value, e.g. 100000, to disable pruning anchors."); AddAttr( "rpn_positive_overlap", "Minimum overlap required between an anchor and ground-truth " @@ -282,20 +487,15 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker { "box for the (anchor, gt box) pair to be a negative examples.") .SetDefault(0.3); AddAttr( - "fg_fraction", + "rpn_fg_fraction", "Target fraction of RoI minibatch that " "is labeled foreground (i.e. class > 0), 0-th class is background.") .SetDefault(0.25); - AddAttr("rpn_batch_size_per_im", - "Total number of RPN examples per image.") - .SetDefault(256); - AddAttr("fix_seed", - "A flag indicating whether to use a fixed seed to generate " - "random mask. NOTE: DO NOT set this flag to true in " - "training. Setting this flag to true is only useful in " - "unittest.") - .SetDefault(false); - AddAttr("seed", "RpnTargetAssign random seed.").SetDefault(0); + AddAttr("use_random", + "A flag indicating whether to use a ReservoirSampling. " + "NOTE: DO NOT set this flag to false in training. " + "Setting this flag to false is only useful in unittest.") + .SetDefault(true); AddOutput( "LocationIndex", "(Tensor), The indexes of foreground anchors in all RPN anchors, the " @@ -308,16 +508,16 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker { "ScoreIndex is [F + B], F and B are sampled foreground and backgroud " " number."); AddOutput("TargetBBox", - "(Tensor), The target bbox deltas with shape " + "(Tensor), The target bbox deltas with shape " "[F, 4], F is the sampled foreground number."); AddOutput( "TargetLabel", - "(Tensor), The target labels of each anchor with shape " + "(Tensor), The target labels of each anchor with shape " "[F + B, 1], F and B are sampled foreground and backgroud number."); AddComment(R"DOC( -This operator can be, for given the IoU between the ground truth bboxes and the +This operator can be, for a given set of ground truth bboxes and the anchors, to assign classification and regression targets to each prediction. -The Score index and LocationIndex will be generated according to the DistMat. +The ScoreIndex and LocationIndex will be generated according to the anchor-groundtruth IOU. The rest anchors would not contibute to the RPN training loss ScoreIndex is composed of foreground anchor indexes(positive labels) and diff --git a/paddle/fluid/operators/distributed/CMakeLists.txt b/paddle/fluid/operators/distributed/CMakeLists.txt index da5d20505e9b06c0717af8d79d5456a9ade1e89c..56734b81e8716a0c0c37a11e35c9118ee7b55020 100644 --- a/paddle/fluid/operators/distributed/CMakeLists.txt +++ b/paddle/fluid/operators/distributed/CMakeLists.txt @@ -20,6 +20,7 @@ if(WITH_GRPC) DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL) cc_test(rpc_server_test SRCS rpc_server_test.cc DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_sparse_table_op SERIAL) + cc_test(varhandle_test SRCS varhandle_test.cc) return() endif() diff --git a/paddle/fluid/operators/distributed/grpc_client.cc b/paddle/fluid/operators/distributed/grpc_client.cc index b4f60c9ff9a41d5cb7dbe4e7a7694a84bab8e940..e22bc552f85b85c75f06b4158f2abac2d3843256 100644 --- a/paddle/fluid/operators/distributed/grpc_client.cc +++ b/paddle/fluid/operators/distributed/grpc_client.cc @@ -59,40 +59,32 @@ GRPCClient::~GRPCClient() { } channels_.clear(); } - client_thread_->join(); } -bool GRPCClient::AsyncSendVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, int64_t time_out) { +VarHandlePtr GRPCClient::AsyncSendVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string var_name_val = var_name; const framework::Scope* p_scope = &scope; const auto ch = GetChannel(ep_val); + SendProcessor* s = new SendProcessor(ch); + VarHandlePtr h(new VarHandle(ep, "Send", var_name_val, p_ctx, p_scope)); + s->Prepare(h, time_out); - framework::AsyncIO([var_name_val, p_ctx, ep_val, p_scope, time_out, ch, - this] { + framework::AsyncIO([var_name_val, p_scope, p_ctx, s, this] { auto* var = p_scope->FindVar(var_name_val); ::grpc::ByteBuffer req; SerializeToByteBuffer(var_name_val, var, *p_ctx, &req); - // varhandle - VarHandle var_h; - var_h.ep = ep_val; - var_h.scope = p_scope; - var_h.name = var_name_val; - var_h.ctx = p_ctx; - var_h.method = "Send"; - - VLOG(3) << var_h.String() << " begin"; + VLOG(3) << s->GetVarHandlePtr()->String() << " begin"; // stub context - SendProcessor* s = new SendProcessor(ch); - s->Prepare(var_h, time_out); s->response_call_back_ = nullptr; auto call = s->stub_g_.PrepareUnaryCall( @@ -102,13 +94,13 @@ bool GRPCClient::AsyncSendVar(const std::string& ep, }); req_count_++; - return true; + return h; } void ProcGetResponse(const VarHandle& var_h, const ::grpc::ByteBuffer& ret_msg) { framework::Variable* outvar = nullptr; - DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, &outvar); + DeserializeFromByteBuffer(ret_msg, *var_h.ctx(), var_h.scope(), &outvar); } template @@ -119,37 +111,30 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) { result->Swap(&tmp); } -bool GRPCClient::AsyncGetVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, int64_t time_out) { +VarHandlePtr GRPCClient::AsyncGetVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string var_name_val = var_name; const framework::Scope* p_scope = &scope; const auto ch = GetChannel(ep_val); + GetProcessor* s = new GetProcessor(ch); + VarHandlePtr h(new VarHandle(ep, "Get", var_name_val, p_ctx, p_scope)); + s->Prepare(h, time_out); - framework::AsyncIO([var_name_val, ep_val, p_scope, p_ctx, time_out, ch, - this] { + framework::AsyncIO([var_name_val, p_scope, p_ctx, s, this] { // prepare input sendrecv::VariableMessage req; req.set_varname(var_name_val); ::grpc::ByteBuffer buf; RequestToByteBuffer(req, &buf); - // var handle - VarHandle var_h; - var_h.ep = ep_val; - var_h.scope = p_scope; - var_h.name = var_name_val; - var_h.ctx = p_ctx; - var_h.method = "Get"; - - VLOG(3) << var_h.String() << " begin"; + VLOG(3) << s->GetVarHandlePtr()->String() << " begin"; // stub context - GetProcessor* s = new GetProcessor(ch); - s->Prepare(var_h, time_out); s->response_call_back_ = ProcGetResponse; auto call = s->stub_g_.PrepareUnaryCall( @@ -160,42 +145,36 @@ bool GRPCClient::AsyncGetVar(const std::string& ep, req_count_++; - return true; + return h; } -bool GRPCClient::AsyncPrefetchVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& in_var_name, - const std::string& out_var_name, - int64_t time_out) { +VarHandlePtr GRPCClient::AsyncPrefetchVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out) { const platform::DeviceContext* p_ctx = &ctx; const std::string ep_val = ep; const std::string in_var_name_val = in_var_name; const std::string out_var_name_val = out_var_name; const framework::Scope* p_scope = &scope; const auto ch = GetChannel(ep_val); + GetProcessor* s = new GetProcessor(ch); + VarHandlePtr h( + new VarHandle(ep, "Prefetch", out_var_name_val, p_ctx, p_scope)); + s->Prepare(h, time_out); framework::AsyncIO([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx, - time_out, ch, this] { + time_out, s, this] { auto* var = p_scope->FindVar(in_var_name_val); ::grpc::ByteBuffer req; SerializeToByteBuffer(in_var_name_val, var, *p_ctx, &req, out_var_name_val); - // var handle - VarHandle var_h; - var_h.ep = ep_val; - var_h.scope = p_scope; - var_h.name = out_var_name_val; - var_h.ctx = p_ctx; - var_h.method = "Prefetch"; - - VLOG(3) << var_h.String() << " begin"; + VLOG(3) << s->GetVarHandlePtr()->String() << " begin"; // stub context - GetProcessor* s = new GetProcessor(ch); - s->Prepare(var_h, time_out); s->response_call_back_ = ProcGetResponse; auto call = s->stub_g_.PrepareUnaryCall( @@ -206,56 +185,68 @@ bool GRPCClient::AsyncPrefetchVar(const std::string& ep, }); req_count_++; - return true; + return h; } -void GRPCClient::AsyncSendBatchBarrier(const std::string& ep, - int64_t time_out) { +VarHandlePtr GRPCClient::AsyncSendBatchBarrier(const std::string& ep, + int64_t time_out) { const auto ch = GetChannel(ep); BatchBarrierProcessor* s = new BatchBarrierProcessor(ch); - s->Prepare(time_out); + VarHandlePtr h(new VarHandle(ep, "BatchBarrier", BATCH_BARRIER_MESSAGE, + nullptr, nullptr)); + s->Prepare(h, time_out); sendrecv::VariableMessage req; req.set_varname(BATCH_BARRIER_MESSAGE); auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_); rpc->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); req_count_++; + return h; } -void GRPCClient::AsyncSendFetchBarrier(const std::string& ep, - int64_t time_out) { +VarHandlePtr GRPCClient::AsyncSendFetchBarrier(const std::string& ep, + int64_t time_out) { const auto ch = GetChannel(ep); FetchBarrierProcessor* s = new FetchBarrierProcessor(ch); - s->Prepare(time_out); + VarHandlePtr h(new VarHandle(ep, "FetchBarrier", FETCH_BARRIER_MESSAGE, + nullptr, nullptr)); + s->Prepare(h, time_out); sendrecv::VariableMessage req; req.set_varname(FETCH_BARRIER_MESSAGE); auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_); rpc->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); req_count_++; + return h; } -void GRPCClient::AsyncSendComplete(const std::string& ep, int64_t time_out) { +VarHandlePtr GRPCClient::AsyncSendComplete(const std::string& ep, + int64_t time_out) { const auto ch = GetChannel(ep); BatchBarrierProcessor* s = new BatchBarrierProcessor(ch); - s->Prepare(time_out); + VarHandlePtr h( + new VarHandle(ep, "SendComplete", COMPLETE_MESSAGE, nullptr, nullptr)); + s->Prepare(h, time_out); sendrecv::VariableMessage req; req.set_varname(COMPLETE_MESSAGE); auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_); rpc->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); req_count_++; + return h; } -void GRPCClient::AsyncCheckpointNotify(const std::string& ep, - const std::string& dir, - int64_t time_out) { +VarHandlePtr GRPCClient::AsyncCheckpointNotify(const std::string& ep, + const std::string& dir, + int64_t time_out) { const auto ch = GetChannel(ep); CheckpointNotifyProcessor* s = new CheckpointNotifyProcessor(ch); - s->Prepare(time_out); + VarHandlePtr h(new VarHandle(ep, "CheckPointNotify", CHECKPOINT_SAVE_MESSAGE, + nullptr, nullptr)); + s->Prepare(h, time_out); sendrecv::VariableMessage req; req.set_varname(CHECKPOINT_SAVE_MESSAGE); @@ -264,6 +255,7 @@ void GRPCClient::AsyncCheckpointNotify(const std::string& ep, auto rpc = s->stub_->AsyncCheckpointNotify(s->context_.get(), req, &cq_); rpc->Finish(&s->reply_, &s->status_, reinterpret_cast(s)); req_count_++; + return h; } bool GRPCClient::Wait() { @@ -276,32 +268,42 @@ void GRPCClient::Proceed() { void* tag = nullptr; bool ok = false; + VLOG(3) << "GRPCClient Proceed begin"; while (!stopped_ && cq_.Next(&tag, &ok)) { BaseProcessor* c = static_cast(tag); GPR_ASSERT(ok); PADDLE_ENFORCE(c); if (c->status_.ok()) { - VLOG(3) << c->var_h_.String() << " process"; + VLOG(3) << c->GetVarHandlePtr()->String() << " process"; c->Process(); } else if (c->status_.error_code() == grpc::StatusCode::DEADLINE_EXCEEDED) { - LOG(ERROR) << c->var_h_.String() + LOG(ERROR) << c->GetVarHandlePtr()->String() << " meets grpc error:" << c->status_.error_message(); { std::lock_guard lk(sync_mutex_); ok_ = false; } - sync_cond_.notify_all(); + c->Finish(false); } else { - LOG(FATAL) << c->var_h_.String() + LOG(FATAL) << c->GetVarHandlePtr()->String() << " meets grpc error:" << c->status_.error_message(); + c->Finish(false); } - delete c; + + bool notify = false; { std::lock_guard lk(sync_mutex_); req_count_--; + notify = (req_count_ <= 0 || !c->status_.ok()); + } + + delete c; + + if (notify) { + sync_cond_.notify_all(); } - sync_cond_.notify_all(); } + VLOG(3) << "GRPCClient Proceed end"; } std::shared_ptr GRPCClient::GetChannel(const std::string& ep) { diff --git a/paddle/fluid/operators/distributed/grpc_client.h b/paddle/fluid/operators/distributed/grpc_client.h index 0c95ffeb5ce7e1586c5968fb122acd12c0c0196e..75a3662316462a222760bfbb7d7906c70f46d143 100644 --- a/paddle/fluid/operators/distributed/grpc_client.h +++ b/paddle/fluid/operators/distributed/grpc_client.h @@ -53,15 +53,14 @@ void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg); class BaseProcessor { public: - explicit BaseProcessor(std::shared_ptr ch) { - context_ = nullptr; - } + BaseProcessor() { context_ = nullptr; } virtual ~BaseProcessor() {} - virtual void Prepare(const VarHandle& var_info, int64_t time_out) { + virtual void Prepare(VarHandlePtr h, int64_t time_out) { + var_h_ = h; + context_.reset(new grpc::ClientContext()); - var_h_ = var_info; context_->set_wait_for_ready(true); if (time_out) { std::chrono::system_clock::time_point deadline = @@ -71,21 +70,21 @@ class BaseProcessor { } } - virtual void Prepare(int64_t time_out) { - context_.reset(new grpc::ClientContext()); - context_->set_wait_for_ready(true); - - std::chrono::system_clock::time_point deadline = - std::chrono::system_clock::now() + std::chrono::milliseconds(time_out); - - context_->set_deadline(deadline); + void Process() { + ProcessImpl(); + var_h_->Finish(true); } - virtual void Process() = 0; + VarHandlePtr GetVarHandlePtr() { return var_h_; } + bool Wait() { return var_h_->Wait(); } + void Finish(bool ok) { return var_h_->Finish(ok); } + virtual void ProcessImpl() = 0; std::unique_ptr context_; grpc::Status status_; - VarHandle var_h_; + + protected: + VarHandlePtr var_h_; }; typedef std::function @@ -94,13 +93,13 @@ typedef std::function class SendProcessor : public BaseProcessor { public: explicit SendProcessor(std::shared_ptr ch) - : BaseProcessor(ch), stub_g_(ch) {} + : BaseProcessor(), stub_g_(ch) {} virtual ~SendProcessor() {} - virtual void Process() { + void ProcessImpl() override { if (response_call_back_) { - response_call_back_(var_h_, reply_); + response_call_back_(*var_h_.get(), reply_); } } @@ -115,13 +114,13 @@ typedef std::function class GetProcessor : public BaseProcessor { public: explicit GetProcessor(std::shared_ptr ch) - : BaseProcessor(ch), stub_g_(ch) {} + : BaseProcessor(), stub_g_(ch) {} virtual ~GetProcessor() {} - virtual void Process() { + void ProcessImpl() override { if (response_call_back_) { - response_call_back_(var_h_, reply_); + response_call_back_(*var_h_.get(), reply_); } } @@ -133,13 +132,13 @@ class GetProcessor : public BaseProcessor { class BatchBarrierProcessor : public BaseProcessor { public: explicit BatchBarrierProcessor(std::shared_ptr ch) - : BaseProcessor(ch) { + : BaseProcessor() { stub_ = sendrecv::SendRecvService::NewStub(ch); } virtual ~BatchBarrierProcessor() {} - virtual void Process() {} + void ProcessImpl() override {} sendrecv::VoidMessage reply_; std::unique_ptr stub_; }; @@ -147,13 +146,13 @@ class BatchBarrierProcessor : public BaseProcessor { class FetchBarrierProcessor : public BaseProcessor { public: explicit FetchBarrierProcessor(std::shared_ptr ch) - : BaseProcessor(ch) { + : BaseProcessor() { stub_ = sendrecv::SendRecvService::NewStub(ch); } virtual ~FetchBarrierProcessor() {} - virtual void Process() {} + void ProcessImpl() override {} sendrecv::VariableMessage reply_; std::unique_ptr stub_; }; @@ -161,13 +160,13 @@ class FetchBarrierProcessor : public BaseProcessor { class CheckpointNotifyProcessor : public BaseProcessor { public: explicit CheckpointNotifyProcessor(std::shared_ptr ch) - : BaseProcessor(ch) { + : BaseProcessor() { stub_ = sendrecv::SendRecvService::NewStub(ch); } virtual ~CheckpointNotifyProcessor() {} - virtual void Process() {} + void ProcessImpl() override {} sendrecv::VoidMessage reply_; std::unique_ptr stub_; }; @@ -177,32 +176,37 @@ class GRPCClient : public RPCClient { GRPCClient() : ok_(true), completed_(false), stopped_(false) {} virtual ~GRPCClient(); - bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx, - const framework::Scope& scope, const std::string& var_name, - int64_t time_out = FLAGS_rpc_deadline) override; - - bool AsyncGetVar(const std::string& ep, const platform::DeviceContext& ctx, - const framework::Scope& scope, const std::string& var_name, - int64_t time_out = FLAGS_rpc_deadline) override; - - bool AsyncPrefetchVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& in_var_name, - const std::string& out_var_name, - int64_t time_out = FLAGS_rpc_deadline) override; - - void AsyncSendBatchBarrier(const std::string& ep, - int64_t time_out = FLAGS_rpc_deadline) override; - - void AsyncSendFetchBarrier(const std::string& ep, - int64_t time_out = FLAGS_rpc_deadline) override; - - void AsyncCheckpointNotify(const std::string& ep, const std::string& dir, - int64_t time_out = FLAGS_rpc_deadline) override; - - void AsyncSendComplete(const std::string& ep, - int64_t time_out = FLAGS_rpc_deadline) override; + VarHandlePtr AsyncSendVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = FLAGS_rpc_deadline) override; + + VarHandlePtr AsyncGetVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = FLAGS_rpc_deadline) override; + + VarHandlePtr AsyncPrefetchVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out = FLAGS_rpc_deadline) override; + + VarHandlePtr AsyncSendBatchBarrier( + const std::string& ep, int64_t time_out = FLAGS_rpc_deadline) override; + + VarHandlePtr AsyncSendFetchBarrier( + const std::string& ep, int64_t time_out = FLAGS_rpc_deadline) override; + + VarHandlePtr AsyncCheckpointNotify( + const std::string& ep, const std::string& dir, + int64_t time_out = FLAGS_rpc_deadline) override; + + VarHandlePtr AsyncSendComplete( + const std::string& ep, int64_t time_out = FLAGS_rpc_deadline) override; bool Wait() override; diff --git a/paddle/fluid/operators/distributed/proto_encoder_helper.h b/paddle/fluid/operators/distributed/proto_encoder_helper.h index 2fab02e32fe18ee04f86a69bb5bae1cbe7c6762c..d2b0eb6ca6de1984dc7cfc2a662c88d5e56e1e05 100644 --- a/paddle/fluid/operators/distributed/proto_encoder_helper.h +++ b/paddle/fluid/operators/distributed/proto_encoder_helper.h @@ -82,8 +82,10 @@ class ProtoEncodeHelper { : base_(buf), p_(buf), limit_(base_ + max_size) {} ~ProtoEncodeHelper() { +#define REPLACE_ENFORCE_GLOG 1 // Make sure callers didn't do operations that went over max_size promised - PADDLE_ENFORCE_LE(p_, limit_); + paddle::platform::throw_on_error(p_ <= limit_); +#undef REPLACE_ENFORCE_GLOG } const char* data() const { return base_; } diff --git a/paddle/fluid/operators/distributed/request_handler.h b/paddle/fluid/operators/distributed/request_handler.h index 64ac7281848f91302bc0aa3cb81dd198e56fb653..3c3f9d17c871ac1cb4df83db17cf489d5b9e0563 100644 --- a/paddle/fluid/operators/distributed/request_handler.h +++ b/paddle/fluid/operators/distributed/request_handler.h @@ -28,6 +28,7 @@ #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/var_type.h" +#include "paddle/fluid/platform/macros.h" namespace paddle { namespace operators { @@ -49,23 +50,77 @@ constexpr char kRequestPassBarrier[] = "RequestPassBarrier"; class RPCServer; -struct VarHandle { - // RPC endpoint. - std::string ep; - const platform::DeviceContext* ctx; - const framework::Scope* scope; - // Variable name. - std::string name; - // RPC method name. - std::string method; +class VarHandle { + public: + VarHandle(const std::string ep, const std::string& method, + const std::string& name, + const platform::DeviceContext* p_ctx = nullptr, + const framework::Scope* p_scope = nullptr) + : ok_(kVarHandleDefaultState) { + ep_ = ep; + ctx_ = p_ctx; + scope_ = p_scope; + name_ = name; + method_ = method; + } + + virtual ~VarHandle() {} + + public: + bool Wait() { + { + std::unique_lock lk(sync_mutex_); + wait_cond_.wait(lk, [this] { return ok_ != kVarHandleDefaultState; }); + } + VLOG(7) << "VarHandle wait:" << ok_; + return ok_ != 0; + } + + void Finish(bool ok) { + { + std::unique_lock lk(sync_mutex_); + ok_ = ok; + } + VLOG(7) << "VarHandle finish:" << ok; + wait_cond_.notify_all(); + } std::string String() const { std::ostringstream s; - s << method << " name:[" << name << "], ep:[" << ep << "]"; + s << method_ << " name:[" << name_ << "], ep:[" << ep_ << "], ok:[" << ok_ + << "]"; return s.str(); } + + std::string ep() const { return ep_; } + const platform::DeviceContext* ctx() const { return ctx_; } + const framework::Scope* scope() const { return scope_; } + std::string name() const { return name_; } + std::string method() const { return method_; } + + protected: + // RPC endpoint. + std::string ep_; + const platform::DeviceContext* ctx_; + const framework::Scope* scope_; + // Variable name. + std::string name_; + // RPC method name. + std::string method_; + + protected: + std::mutex sync_mutex_; + std::condition_variable wait_cond_; + int ok_; + + static const int kVarHandleDefaultState = -1; + + private: + DISABLE_COPY_AND_ASSIGN(VarHandle); }; +typedef std::shared_ptr VarHandlePtr; + class RequestHandler { public: explicit RequestHandler(bool sync_mode) diff --git a/paddle/fluid/operators/distributed/request_handler_impl.cc b/paddle/fluid/operators/distributed/request_handler_impl.cc index 31159a02592a2aff75f7ecf5be924989f0f47071..849e412504eb9180b746db65fd4fa353ed0c05a1 100644 --- a/paddle/fluid/operators/distributed/request_handler_impl.cc +++ b/paddle/fluid/operators/distributed/request_handler_impl.cc @@ -67,24 +67,11 @@ bool RequestSendHandler::Handle(const std::string& varname, LOG(FATAL) << "sync: Can not find server side var: " << varname; return false; } - - if (invar->IsType()) { - std::unique_lock lock(mutex_sparse_vars_); - sparse_vars_.push_back(invar); - } } } return true; } -void RequestSendHandler::ResetSparseVarRecorder() { - std::unique_lock lock(mutex_sparse_vars_); - for (auto* var : sparse_vars_) { - var->GetMutable()->mutable_rows()->clear(); - } - sparse_vars_.clear(); -} - bool RequestGetHandler::Handle(const std::string& varname, framework::Scope* scope, framework::Variable* invar, diff --git a/paddle/fluid/operators/distributed/request_handler_impl.h b/paddle/fluid/operators/distributed/request_handler_impl.h index 87185500f2ffc3a8578eea339cc7a1e2b0e46631..8be5b21bb89a580f4091de19186fd2d7e5802478 100644 --- a/paddle/fluid/operators/distributed/request_handler_impl.h +++ b/paddle/fluid/operators/distributed/request_handler_impl.h @@ -41,11 +41,6 @@ class RequestSendHandler final : public RequestHandler { bool Handle(const std::string& varname, framework::Scope* scope, framework::Variable* var, framework::Variable** outvar, const std::string& out_var_name = "") override; - void ResetSparseVarRecorder(); - - private: - std::mutex mutex_sparse_vars_; - std::vector sparse_vars_; }; class RequestGetHandler final : public RequestHandler { diff --git a/paddle/fluid/operators/distributed/rpc_client.h b/paddle/fluid/operators/distributed/rpc_client.h index 22a022a5d25e5c6628b80294494b87ca105a04c7..3539ee5e459d6dfe0b6510806464bcc6817910bb 100644 --- a/paddle/fluid/operators/distributed/rpc_client.h +++ b/paddle/fluid/operators/distributed/rpc_client.h @@ -14,12 +14,14 @@ #pragma once +#include // NOLINT #include #include "gflags/gflags.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/operators/distributed/request_handler.h" DECLARE_int32(rpc_deadline); @@ -31,37 +33,36 @@ class RPCClient { public: RPCClient() {} virtual ~RPCClient() {} - virtual bool AsyncSendVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, - int64_t time_out = FLAGS_rpc_deadline) = 0; - - virtual bool AsyncGetVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& var_name, - int64_t time_out = FLAGS_rpc_deadline) = 0; - - virtual bool AsyncPrefetchVar(const std::string& ep, - const platform::DeviceContext& ctx, - const framework::Scope& scope, - const std::string& in_var_name, - const std::string& out_var_name, - int64_t time_out = FLAGS_rpc_deadline) = 0; - - virtual void AsyncSendBatchBarrier(const std::string& ep, - int64_t time_out = FLAGS_rpc_deadline) = 0; - - virtual void AsyncSendFetchBarrier(const std::string& ep, - int64_t time_out = FLAGS_rpc_deadline) = 0; - - virtual void AsyncCheckpointNotify(const std::string& ep, - const std::string& dir, - int64_t time_out = FLAGS_rpc_deadline) = 0; - - virtual void AsyncSendComplete(const std::string& ep, - int64_t time_out = FLAGS_rpc_deadline) = 0; + virtual VarHandlePtr AsyncSendVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = FLAGS_rpc_deadline) = 0; + + virtual VarHandlePtr AsyncGetVar(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& var_name, + int64_t time_out = FLAGS_rpc_deadline) = 0; + + virtual VarHandlePtr AsyncPrefetchVar( + const std::string& ep, const platform::DeviceContext& ctx, + const framework::Scope& scope, const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out = FLAGS_rpc_deadline) = 0; + + virtual VarHandlePtr AsyncSendBatchBarrier( + const std::string& ep, int64_t time_out = FLAGS_rpc_deadline) = 0; + + virtual VarHandlePtr AsyncSendFetchBarrier( + const std::string& ep, int64_t time_out = FLAGS_rpc_deadline) = 0; + + virtual VarHandlePtr AsyncCheckpointNotify( + const std::string& ep, const std::string& dir, + int64_t time_out = FLAGS_rpc_deadline) = 0; + + virtual VarHandlePtr AsyncSendComplete( + const std::string& ep, int64_t time_out = FLAGS_rpc_deadline) = 0; // Complete tells all the pserver instances that finishe the training, // the pserver can reduce it's barrier count, and continue to train diff --git a/paddle/fluid/operators/distributed/rpc_server.cc b/paddle/fluid/operators/distributed/rpc_server.cc index 406e7294c190172347d432fb155c2a81c43dda25..084480ae48b8b9267ade1a840f6a70519cb28e48 100644 --- a/paddle/fluid/operators/distributed/rpc_server.cc +++ b/paddle/fluid/operators/distributed/rpc_server.cc @@ -101,6 +101,8 @@ void RPCServer::Complete() { { std::unique_lock lock(mutex_); client_num_--; + need_reset_all_vars_ = true; + VLOG(4) << "decrease client_num to: " << client_num_; if (cur_cond_.load() == rpc_cond_map_[kRequestGet]) { barrier_counter_[kRequestGet]--; @@ -109,6 +111,11 @@ void RPCServer::Complete() { barrier_cond_.notify_all(); } +bool RPCServer::NeedResetAllVars() { + std::unique_lock lock(mutex_); + return need_reset_all_vars_; +} + int RPCServer::GetClientNum() { std::unique_lock lock(mutex_); return client_num_; @@ -120,6 +127,7 @@ void RPCServer::ResetBarrierCounter() { for (auto& t : barrier_counter_) { t.second = 0; } + need_reset_all_vars_ = false; } void RPCServer::RegisterRPC(const std::string& rpc_name, diff --git a/paddle/fluid/operators/distributed/rpc_server.h b/paddle/fluid/operators/distributed/rpc_server.h index d813ba03e2fbec6e808f59f814a9b2f4bfbcd77b..d88e8c640ffb5ea44e88318cc973c9a783862435 100644 --- a/paddle/fluid/operators/distributed/rpc_server.h +++ b/paddle/fluid/operators/distributed/rpc_server.h @@ -49,7 +49,8 @@ class RPCServer { bind_address_(address), exit_flag_(false), selected_port_(0), - client_num_(client_num) {} + client_num_(client_num), + need_reset_all_vars_(false) {} virtual ~RPCServer() {} virtual void StartServer() = 0; @@ -86,6 +87,8 @@ class RPCServer { void ResetBarrierCounter(); RPCServerProfiler& Profiler() { return profiler_; } + bool NeedResetAllVars(); + protected: virtual void ShutDownImpl() = 0; @@ -104,6 +107,7 @@ class RPCServer { std::atomic exit_flag_; int selected_port_; int client_num_; + bool need_reset_all_vars_; std::unordered_map rpc_call_map_; std::unordered_map rpc_thread_num_; diff --git a/paddle/fluid/operators/distributed/varhandle_test.cc b/paddle/fluid/operators/distributed/varhandle_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..a0fcaf886475c5e03d959ffd6af22b2123526b9f --- /dev/null +++ b/paddle/fluid/operators/distributed/varhandle_test.cc @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include +#include // NOLINT + +#include "google/protobuf/text_format.h" +#include "gtest/gtest.h" +#include "paddle/fluid/operators/distributed/request_handler.h" + +using paddle::operators::distributed::VarHandlePtr; +using paddle::operators::distributed::VarHandle; + +void WaitTrue(VarHandlePtr s) { EXPECT_TRUE(s->Wait()); } + +void WaitFalse(VarHandlePtr s) { EXPECT_FALSE(s->Wait()); } + +TEST(VarHandle, Run) { + std::vector a; + for (int i = 0; i < 12; i++) { + VarHandlePtr s(new VarHandle("", "", "", nullptr, nullptr)); + a.push_back(s); + } + + std::vector> t; + for (int i = 0; i < 6; i++) { + t.emplace_back(new std::thread(WaitFalse, a[i])); + } + + for (int i = 0; i < 6; i++) { + a[i]->Finish(false); + t[i]->join(); + } + + for (int i = 6; i < 12; i++) { + t.emplace_back(new std::thread(WaitTrue, a[i])); + } + + for (int i = 6; i < 12; i++) { + a[i]->Finish(true); + t[i]->join(); + } +} diff --git a/paddle/fluid/operators/fusion_gru_op.cc b/paddle/fluid/operators/fusion_gru_op.cc index 916f84cb4a78c3721cb67bd3cf8d3759a8eaf1bf..31e87d9113118ebe7a4b25ffee5ba55e2714fb66 100644 --- a/paddle/fluid/operators/fusion_gru_op.cc +++ b/paddle/fluid/operators/fusion_gru_op.cc @@ -25,14 +25,14 @@ namespace paddle { namespace operators { void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const { - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GRU should not be null."); + PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU."); PADDLE_ENFORCE(ctx->HasInput("WeightX"), - "Input(WeightX) of GRU should not be null."); + "Assert only one Input(WeightX) of GRU."); PADDLE_ENFORCE(ctx->HasInput("WeightH"), - "Input(WeightH) of GRU should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null."); + "Assert only one Input(WeightH) of GRU."); + PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU."); PADDLE_ENFORCE(ctx->HasOutput("Hidden"), - "Output(Hidden) of GRU should not be null."); + "Assert only one Output(Hidden) of GRU."); auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); @@ -80,11 +80,11 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const { } else { xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1]; PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), - "Output(ReorderedH0) of GRU should not be null."); + "Assert only one Output(ReorderedH0) of GRU."); PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), - "Output(BatchedInput) of GRU should not be null."); + "Assert only one Output(BatchedInput) of GRU."); PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"), - "Output(BatchedOut) of GRU should not be null."); + "Assert only one Output(BatchedOut) of GRU."); ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); ctx->SetOutputDim("BatchedOut", out_dims); } diff --git a/paddle/fluid/operators/fusion_lstm_op.cc b/paddle/fluid/operators/fusion_lstm_op.cc index ef23ab3f981786d33567619ad0194d21f31bdc8e..55e465e3af08c012b8cff7714452ed32b32a5556 100644 --- a/paddle/fluid/operators/fusion_lstm_op.cc +++ b/paddle/fluid/operators/fusion_lstm_op.cc @@ -24,20 +24,17 @@ namespace paddle { namespace operators { void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null."); + PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of LSTM."); PADDLE_ENFORCE(ctx->HasInput("WeightX"), - "Input(WeightX) of LSTM should not be null."); + "Assert only one Input(WeightX) of LSTM."); PADDLE_ENFORCE(ctx->HasInput("WeightH"), - "Input(WeightH) of LSTM should not be null."); - PADDLE_ENFORCE(ctx->HasInput("Bias"), - "Input(Bias) of LSTM should not be null."); - - PADDLE_ENFORCE(ctx->HasOutput("XX"), - "Output(XX) of LSTM should not be null."); + "Assert only one Input(WeightH) of LSTM."); + PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM."); + PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM."); PADDLE_ENFORCE(ctx->HasOutput("Hidden"), - "Output(Hidden) of LSTM should not be null."); + "Assert only one Output(Hidden) of LSTM."); PADDLE_ENFORCE(ctx->HasOutput("Cell"), - "Output(Cell) of LSTM should not be null."); + "Assert only one Output(Cell) of LSTM."); auto x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2."); @@ -96,15 +93,15 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const { } else { xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1]; PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"), - "Output(BatchedInput) of LSTM should not be null."); + "Assert only one Output(BatchedInput) of LSTM."); PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"), - "Output(BatchedHidden) of LSTM should not be null."); + "Assert only one Output(BatchedHidden) of LSTM."); PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"), - "Output(BatchedCell) of LSTM should not be null."); + "Assert only one Output(BatchedCell) of LSTM."); PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"), - "Output(ReorderedH0) of LSTM should not be null."); + "Assert only one Output(ReorderedH0) of LSTM"); PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"), - "Output(ReorderedC0) of LSTM should not be null."); + "Assert only one Output(ReorderedC0) of LSTM."); ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]}); ctx->SetOutputDim("BatchedHidden", out_dims); ctx->SetOutputDim("BatchedCell", out_dims); diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 4cc2159d9f22809a640f82ad19415f3e5a2d9999..dc008d16971bc762b401ddece56f9ec56f7a47d6 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -22,6 +22,7 @@ limitations under the License. */ #include "gflags/gflags.h" #include "paddle/fluid/operators/detail/macros.h" +#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/distributed/request_handler_impl.h" #include "paddle/fluid/operators/listen_and_serv_op.h" @@ -58,17 +59,16 @@ static void ParallelExecuteBlocks( framework::ProgramDesc *program, framework::Scope *scope) { std::vector> fs; for (size_t idx : parallel_blkids) { - fs.push_back( - framework::Async([&executor, &prepared, &program, &scope, idx]() { - int run_block = idx; // thread local - try { - VLOG(3) << "running server block: " << run_block - << "pointer: " << prepared[run_block].get(); - executor->RunPreparedContext(prepared[run_block].get(), scope); - } catch (const std::exception &e) { - LOG(ERROR) << "run sub program error " << e.what(); - } - })); + fs.push_back(framework::Async([&executor, &prepared, &scope, idx]() { + int run_block = idx; // thread local + try { + VLOG(3) << "running server block: " << run_block + << "pointer: " << prepared[run_block].get(); + executor->RunPreparedContext(prepared[run_block].get(), scope); + } catch (const std::exception &e) { + LOG(ERROR) << "run sub program error " << e.what(); + } + })); } for (size_t i = 0; i < fs.size(); ++i) fs[i].wait(); } @@ -101,7 +101,7 @@ static int64_t GetTimestamp() { void ListenAndServOp::RunSyncLoop( framework::Executor *executor, framework::ProgramDesc *program, - framework::Scope *recv_scope, + framework::Scope *recv_scope, platform::DeviceContext *dev_ctx, const std::vector &prefetch_block_id_list, const int checkpoint_point_block_id) const { VLOG(2) << "RunSyncLoop"; @@ -128,6 +128,7 @@ void ListenAndServOp::RunSyncLoop( rpc_service_->SetCond(distributed::kRequestGet); rpc_service_->WaitBarrier(distributed::kRequestGet); rpc_service_->ResetBarrierCounter(); + while (true) { rpc_service_->Profiler().OneStep(); // Get from multiple trainers, we don't care about the order in which @@ -165,9 +166,7 @@ void ListenAndServOp::RunSyncLoop( recv_scope); VLOG(2) << "run all blocks spent " << GetTimestamp() - ts << "(ms)"; - // reset received sparse vars to avoid reuse it in the next mini-batch - dynamic_cast(request_send_handler_.get()) - ->ResetSparseVarRecorder(); + ResetReceivedVars(recv_scope, dev_ctx, rpc_service_->NeedResetAllVars()); rpc_service_->SetCond(distributed::kRequestGet); rpc_service_->WaitBarrier(distributed::kRequestGet); @@ -175,6 +174,42 @@ void ListenAndServOp::RunSyncLoop( } // while(true) } +void ListenAndServOp::ResetReceivedVars(framework::Scope *recv_scope, + platform::DeviceContext *dev_ctx, + bool reset_all) const { + for (auto &varname : sparse_vars_) { + auto var = recv_scope->FindVar(varname); + if (var == nullptr) { + VLOG(2) << "can not find var " << varname << " in received scope"; + continue; + } + if (var->IsType()) { + VLOG(3) << "reset sparse var: " << varname; + var->GetMutable()->mutable_rows()->clear(); + } else { + PADDLE_THROW("The type of sparse var should be SelectedRows"); + } + } + if (UNLIKELY(reset_all)) { + for (auto &varname : dense_vars_) { + auto var = recv_scope->FindVar(varname); + if (var == nullptr) { + VLOG(2) << "can not find var " << varname << " in received scope"; + continue; + } + if (var->IsType()) { + math::set_constant(*dev_ctx, var->GetMutable(), + static_cast(0)); + } else if (var->IsType()) { + math::set_constant(*dev_ctx, var->GetMutable(), + static_cast(0)); + } else { + PADDLE_THROW("The type of dense var should be in [LoDTensor, Tensor]"); + } + } + } +} + void ListenAndServOp::RunAsyncLoop(framework::Executor *executor, framework::ProgramDesc *program, framework::Scope *recv_scope) const { @@ -248,6 +283,25 @@ static void FillRequestCtx( h->SetCheckpointNotifyPreparedCtx(checkpoint_ctx); } +void ListenAndServOp::CacheVarsType(const std::vector &varnames, + const framework::Scope &scope) const { + for (const auto &varname : varnames) { + auto var = scope.FindVar(varname); + PADDLE_ENFORCE(var != nullptr, + "Received var should be initialized in the received scope."); + if (var->IsType()) { + sparse_vars_.push_back(varname); + } else if (var->IsType() || + var->IsType()) { + dense_vars_.push_back(varname); + } else { + PADDLE_THROW( + "The type of received var should be in [SelectedRows, LoDTensor, " + "Tensor]."); + } + } +} + void ListenAndServOp::RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const { // Mark this as PS that it should decide profiling by listening from trainer. @@ -258,6 +312,7 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, bool sync_mode = Attr("sync_mode"); auto fan_in = Attr("Fanin"); + auto inputs = Inputs("X"); PADDLE_ENFORCE(!rpc_service_); std::string endpoint = Attr("endpoint"); @@ -348,11 +403,16 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, signal(SIGINT, SignalHandler::StopAndExit); signal(SIGTERM, SignalHandler::StopAndExit); + // Cache the type of the received vars as `sparse_vars_` and `dense_vars_` + // so that we can reset them at the end of each iteration. + // NOTE: only used in sync update + CacheVarsType(inputs, recv_scope); + // Write to a file of server selected port for python use. SavePort(); if (sync_mode) { - RunSyncLoop(&executor, program, &recv_scope, prefetch_block_id_list, - checkpoint_block_id); + RunSyncLoop(&executor, program, &recv_scope, &dev_ctx, + prefetch_block_id_list, checkpoint_block_id); } else { RunAsyncLoop(&executor, program, &recv_scope); } diff --git a/paddle/fluid/operators/listen_and_serv_op.h b/paddle/fluid/operators/listen_and_serv_op.h index 978969cc515c7954b59f2bf7a4f2c0e1b13f9bc0..5f889793ab16249a4e06801090db087a089dbed1 100644 --- a/paddle/fluid/operators/listen_and_serv_op.h +++ b/paddle/fluid/operators/listen_and_serv_op.h @@ -26,6 +26,7 @@ limitations under the License. */ #include "paddle/fluid/framework/threadpool.h" #include "paddle/fluid/operators/distributed/request_handler.h" #include "paddle/fluid/operators/distributed/rpc_server.h" +#include "paddle/fluid/platform/device_context.h" namespace paddle { namespace operators { @@ -48,6 +49,7 @@ class ListenAndServOp : public framework::OperatorBase { void RunSyncLoop(framework::Executor* executor, framework::ProgramDesc* program, framework::Scope* recv_scope, + platform::DeviceContext* dev_ctx, const std::vector& prefetch_block_id_list, const int checkpoint_point_block_id) const; @@ -64,6 +66,13 @@ class ListenAndServOp : public framework::OperatorBase { void RunImpl(const framework::Scope& scope, const platform::Place& dev_place) const override; + void ResetReceivedVars(framework::Scope* recv_scope, + platform::DeviceContext* dev_ctx, + bool reset_all = false) const; + + void CacheVarsType(const std::vector& varnames, + const framework::Scope& scope) const; + protected: mutable std::shared_ptr rpc_service_; mutable std::shared_ptr request_send_handler_; @@ -74,6 +83,8 @@ class ListenAndServOp : public framework::OperatorBase { request_checkpoint_handler_; mutable std::shared_ptr server_thread_; + mutable std::vector sparse_vars_; + mutable std::vector dense_vars_; }; class SignalHandler { diff --git a/paddle/fluid/operators/math/cross_entropy.cc b/paddle/fluid/operators/math/cross_entropy.cc index caff35e03ae3a144f799d982c859ded62cb3e93d..18bf1a66f6d9903f32048574dc93faf7e98953ac 100644 --- a/paddle/fluid/operators/math/cross_entropy.cc +++ b/paddle/fluid/operators/math/cross_entropy.cc @@ -28,7 +28,8 @@ class CrossEntropyFunctor { public: void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out, const framework::Tensor* prob, - const framework::Tensor* labels, const bool softLabel) { + const framework::Tensor* labels, const bool softLabel, + const int ignore_index) { const int batch_size = prob->dims()[0]; if (softLabel) { auto in = EigenMatrix::From(*prob); @@ -49,8 +50,12 @@ class CrossEntropyFunctor { int lbl = label_data[i]; PADDLE_ENFORCE_GE(lbl, 0); PADDLE_ENFORCE_LT(lbl, class_num); + PADDLE_ENFORCE((lbl >= 0 && lbl < class_num) || lbl == ignore_index); int index = i * class_num + lbl; - loss_data[i] = -math::TolerableValue()(std::log(prob_data[index])); + loss_data[i] = + lbl == ignore_index + ? 0 + : -math::TolerableValue()(std::log(prob_data[index])); } } } diff --git a/paddle/fluid/operators/math/cross_entropy.cu b/paddle/fluid/operators/math/cross_entropy.cu index 0de58d5fddd84d33f708c4c73e5a19dc2fe8a86b..c92341ea55ea21773acba33665e267b2f1c25fe3 100644 --- a/paddle/fluid/operators/math/cross_entropy.cu +++ b/paddle/fluid/operators/math/cross_entropy.cu @@ -23,11 +23,14 @@ namespace math { namespace { template __global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label, - const int N, const int D) { + const int N, const int D, + const int ignore_index) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N; i += blockDim.x * gridDim.x) { - PADDLE_ASSERT(label[i] >= 0 && label[i] < D); - Y[i] = -math::TolerableValue()(log(X[i * D + label[i]])); + PADDLE_ASSERT(label[i] >= 0 && label[i] < D || label[i] == ignore_index); + Y[i] = ignore_index == label[i] + ? 0 + : -math::TolerableValue()(log(X[i * D + label[i]])); } } @@ -57,7 +60,8 @@ class CrossEntropyFunctor { public: void operator()(const platform::CUDADeviceContext& ctx, framework::Tensor* out, const framework::Tensor* prob, - const framework::Tensor* labels, bool softLabel) { + const framework::Tensor* labels, bool softLabel, + const int ignore_index) { const T* prob_data = prob->data(); T* loss_data = out->mutable_data(ctx.GetPlace()); @@ -77,7 +81,8 @@ class CrossEntropyFunctor { int block = 512; int grid = (batch_size + block - 1) / block; CrossEntropyKernel<<>>( - loss_data, prob_data, label_data, batch_size, class_num); + loss_data, prob_data, label_data, batch_size, class_num, + ignore_index); } } }; diff --git a/paddle/fluid/operators/math/cross_entropy.h b/paddle/fluid/operators/math/cross_entropy.h index adc5b3fe47cd3bf524eb56747b6bd51e345a2eb6..e8aeb5d0575ac0f6b8761e97896df73578e8a103 100644 --- a/paddle/fluid/operators/math/cross_entropy.h +++ b/paddle/fluid/operators/math/cross_entropy.h @@ -38,7 +38,8 @@ class CrossEntropyFunctor { public: void operator()(const DeviceContext& context, framework::Tensor* out, const framework::Tensor* prob, - const framework::Tensor* labels, const bool softLabel); + const framework::Tensor* labels, const bool softLabel, + const int ignore_index); }; } // namespace math } // namespace operators diff --git a/paddle/fluid/operators/norm_op.cu b/paddle/fluid/operators/norm_op.cu index 1d0021d33ff9ee65c3366183466b94266e6c2999..67449aa4c67bee6606928ef3a2d986a1bdec038f 100644 --- a/paddle/fluid/operators/norm_op.cu +++ b/paddle/fluid/operators/norm_op.cu @@ -1,4 +1,4 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. @@ -11,14 +11,151 @@ distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#define EIGEN_USE_GPU +#include +#include "cub/cub.cuh" #include "paddle/fluid/operators/norm_op.h" +namespace paddle { +namespace operators { + +__device__ __forceinline__ float square_root(float x) { return sqrtf(x); } + +__device__ __forceinline__ double square_root(double x) { return sqrt(x); } + +template +__global__ void Normalize(const T* x, const int pre, + const int axis_n, // dim in axis + const int post, const T eps, T* y, T* out_norm) { + typedef cub::BlockReduce BlockReduce; + __shared__ typename BlockReduce::TempStorage temp_storage; + int num = pre * post; + for (int i = blockIdx.x; i < num; i += gridDim.x) { + int base = (i / post) * post * axis_n + (i % post); + + T sum = 0.0; + __shared__ T norm; + for (int j = threadIdx.x; j < axis_n; j += blockDim.x) { + const T x_ij = x[base + j * post]; + sum += x_ij * x_ij; + } + T reduce_result = BlockReduce(temp_storage).Sum(sum); + + if (threadIdx.x == 0) { + norm = square_root(reduce_result + eps); + out_norm[i] = norm; + } + __syncthreads(); + for (int j = threadIdx.x; j < axis_n; j += blockDim.x) { + const int index = base + j * post; + y[index] = x[index] / norm; + } + } +} + +template +class NormCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in_x = ctx.Input("X"); + auto* out_y = ctx.Output("Out"); + auto* out_norm = ctx.Output("Norm"); + const T* x = in_x->data(); + T* y = out_y->mutable_data(ctx.GetPlace()); + T* norm = out_norm->mutable_data(ctx.GetPlace()); + + auto xdim = in_x->dims(); + auto ndim = out_norm->dims(); + int axis = ctx.Attr("axis"); + T eps = static_cast(ctx.Attr("epsilon")); + if (axis < 0) axis = xdim.size() + axis; + int pre, n, post; + GetDims(xdim, axis, &pre, &n, &post); + + auto& dev_ctx = ctx.cuda_device_context(); + + const int block = 512; + int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); + const int max_blocks = std::max(max_threads / block, 1); + int grid = std::min(max_blocks, pre * post); + Normalize<<>>(x, pre, n, post, + eps, y, norm); + } +}; + +template +__global__ void NormalizeGradient(const T* x, const T* x_norm, const T* y_grad, + const int pre, const int axis_n, + const int post, T* x_grad) { + typedef cub::BlockReduce BlockReduce; + __shared__ typename BlockReduce::TempStorage temp_storage_sum; + int num = pre * post; + for (int i = blockIdx.x; i < num; i += gridDim.x) { + T sum = 0.0; + __shared__ T row_sum; + __shared__ T row_sqrt_norm; + __shared__ T row_norm; + + auto base = (i / post) * post * axis_n + (i % post); + + for (int j = threadIdx.x; j < axis_n; j += blockDim.x) { + int index = base + j * post; + sum += x[index] * y_grad[index]; + } + T reduce_result = BlockReduce(temp_storage_sum).Sum(sum); + + if (threadIdx.x == 0) { + row_sum = reduce_result; + row_sqrt_norm = x_norm[i]; + row_norm = row_sqrt_norm * row_sqrt_norm; + } + __syncthreads(); + for (int j = threadIdx.x; j < axis_n; j += blockDim.x) { + int index = base + j * post; + const T x_ij = x[index]; + const T dy_ij = y_grad[index]; + x_grad[index] = (dy_ij - x_ij * row_sum / row_norm) / row_sqrt_norm; + } + } +} + +template +class NormGradCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* in_x = ctx.Input("X"); + auto* in_norm = ctx.Input("Norm"); + auto* in_dy = ctx.Input(framework::GradVarName("Out")); + auto* out_dx = ctx.Output(framework::GradVarName("X")); + T* dx = out_dx->mutable_data(ctx.GetPlace()); + const T* x = in_x->data(); + const T* x_norm = in_norm->data(); + const T* dy = in_dy->data(); + + auto xdim = in_x->dims(); + int axis = ctx.Attr("axis"); + if (axis < 0) axis = xdim.size() + axis; + int pre, n, post; + GetDims(xdim, axis, &pre, &n, &post); + + auto& dev_ctx = ctx.cuda_device_context(); + + const int block = 512; + int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); + const int max_blocks = std::max(max_threads / block, 1); + int grid = std::min(max_blocks, pre * post); + NormalizeGradient<<>>( + x, x_norm, dy, pre, n, post, dx); + } +}; + +} // namespace operators +} // namespace paddle + namespace ops = paddle::operators; using CUDA = paddle::platform::CUDADeviceContext; -REGISTER_OP_CUDA_KERNEL(norm, ops::NormKernel, - ops::NormKernel); -REGISTER_OP_CUDA_KERNEL(norm_grad, ops::NormGradKernel, - ops::NormGradKernel); +REGISTER_OP_CUDA_KERNEL(norm, ops::NormCUDAKernel, + ops::NormCUDAKernel); +REGISTER_OP_CUDA_KERNEL(norm_grad, ops::NormGradCUDAKernel, + ops::NormGradCUDAKernel); diff --git a/paddle/fluid/operators/norm_op.h b/paddle/fluid/operators/norm_op.h index 3167bdc8ac718b23435690577e4163826d14a332..d0224177ecf7f0c918def08ff4dd6a3c8eb349d8 100644 --- a/paddle/fluid/operators/norm_op.h +++ b/paddle/fluid/operators/norm_op.h @@ -65,14 +65,17 @@ class NormKernel : public framework::OpKernel { Eigen::DSizes rdim(1); // y = x / sqrt((sum(x * x) + epsilon)) // norm = sqrt(sum(x * x) + epsilon) - auto sum = x.pow(2).sum(rdim) + eps; + auto x2 = x * x; + auto sum = x2.sum(rdim) + eps; norm.device(*place) = sum.sqrt(); + // y = x / norm Eigen::DSizes rshape(pre, 1, post); Eigen::DSizes bcast(1, n, 1); y.device(*place) = x / norm.reshape(rshape).broadcast(bcast); } }; + template class NormGradKernel : public framework::OpKernel { public: diff --git a/paddle/fluid/operators/prefetch_op.cc b/paddle/fluid/operators/prefetch_op.cc index 4b804740a06f9e29704f2b3f58a90191e3559347..0519c15e13aac99802ff0f95b975712b36b44246 100644 --- a/paddle/fluid/operators/prefetch_op.cc +++ b/paddle/fluid/operators/prefetch_op.cc @@ -44,16 +44,20 @@ class PrefetchOp : public framework::OperatorBase { distributed::RPCClient* rpc_client = distributed::RPCClient::GetInstance(); + std::vector rets; for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << " to get " << outs[i] << " back"; - rpc_client->AsyncPrefetchVar(epmap[i], ctx, scope, ins[i], outs[i]); + rets.push_back(rpc_client->AsyncPrefetchVar(epmap[i], ctx, scope, + ins[i], outs[i])); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } } - PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); + for (size_t i = 0; i < rets.size(); i++) { + PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); + } } }; diff --git a/paddle/fluid/operators/prelu_op.cc b/paddle/fluid/operators/prelu_op.cc index 23d9ea88f6701f9f9e5e02948e996878a849ddd6..e0c4c81bdd5b5d0af3bafe632a2fa033efd08050 100644 --- a/paddle/fluid/operators/prelu_op.cc +++ b/paddle/fluid/operators/prelu_op.cc @@ -26,10 +26,13 @@ class PReluOp : public framework::OperatorWithKernel { std::string mode = ctx->Attrs().Get("mode"); auto x_dim = ctx->GetInputDim("X"); - PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); - PADDLE_ENFORCE(ctx->HasInput("Alpha"), "Input(Alpha) should not be null"); + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of PreluOp should not be null"); + PADDLE_ENFORCE(ctx->HasInput("Alpha"), + "Input(Alpha) of PreluOp should not be null"); - PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of PreluOp should not be null"); if (mode == "all") { PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1, "For mode 'all', size of weight Alpha must be one."); diff --git a/paddle/fluid/operators/recv_op.cc b/paddle/fluid/operators/recv_op.cc index a1f368e8690512cec2db7593aabc0279bbe174eb..4d34b8a1686efb1fc30020f0d27e9a3c3a6c0866 100644 --- a/paddle/fluid/operators/recv_op.cc +++ b/paddle/fluid/operators/recv_op.cc @@ -44,12 +44,15 @@ class RecvOp : public framework::OperatorBase { distributed::RPCClient* rpc_client = distributed::RPCClient::GetInstance(); + std::vector rets; for (size_t i = 0; i < outs.size(); i++) { VLOG(3) << "getting " << outs[i] << " from " << epmap[i]; - rpc_client->AsyncGetVar(epmap[i], ctx, scope, outs[i]); + rets.push_back(rpc_client->AsyncGetVar(epmap[i], ctx, scope, outs[i])); } if (sync_mode) { - PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); + for (size_t i = 0; i < rets.size(); i++) { + PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); + } } } }; diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc index 82a70e4bf13247d784371ffdf419c9f792d7f721..48322ac7fd54a2e4cc3405a2c4dcddfc273f5a66 100644 --- a/paddle/fluid/operators/send_op.cc +++ b/paddle/fluid/operators/send_op.cc @@ -15,6 +15,7 @@ limitations under the License. */ #include // NOLINT #include +#include "paddle/fluid/framework/blocking_queue.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" @@ -45,18 +46,19 @@ class SendOp : public framework::OperatorBase { distributed::RPCClient* rpc_client = distributed::RPCClient::GetInstance(); + std::vector rets; for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { VLOG(3) << "sending " << ins[i] << " to " << epmap[i]; - // TODO(Yancey1989): we need to use an IO threadpool which has - // a larger number of threads than the computing threadpool. - rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i]); + rets.push_back(rpc_client->AsyncSendVar(epmap[i], ctx, scope, ins[i])); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; } } if (sync_send) { - PADDLE_ENFORCE(rpc_client->Wait(), "internal error in RPCClient"); + for (size_t i = 0; i < rets.size(); i++) { + PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); + } } } }; diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.cc b/paddle/fluid/operators/softmax_with_cross_entropy_op.cc index 53cb716a979229c99fcbdc12f1aeab4e21b320f3..1a9324ec862fc3dd7ce669c5fed94527cac22b8f 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.cc @@ -44,6 +44,12 @@ class SoftmaxWithCrossEntropyOpMaker "(bool, default: false), A flag to indicate whether to interpretate " "the given labels as soft labels.") .SetDefault(false); + AddAttr( + "ignore_index", + "(int, default -100), Specifies a target value that is ignored and" + "does not contribute to the input gradient. Only valid if soft_label" + "is set to False") + .SetDefault(-100); AddComment(R"DOC( Softmax With Cross Entropy Operator. diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.cu b/paddle/fluid/operators/softmax_with_cross_entropy_op.cu index a559b01ed32a48e3befb37c2ae8935b4f3a4acb0..a07c17348ebb3f768d1c8be65c2d31e3c130bd23 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.cu @@ -26,11 +26,13 @@ using Tensor = framework::Tensor; namespace { template __global__ void CrossEntropyGrad(T* logit_grad, const int64_t* labels, - const int batch_size, const int class_num) { + const int batch_size, const int class_num, + const int ignore_index) { for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < batch_size; i += blockDim.x * gridDim.x) { int idx = i * class_num + labels[i]; - logit_grad[idx] -= static_cast(1.); + logit_grad[idx] -= + ignore_index == labels[i] ? static_cast(0.) : static_cast(1.); } } @@ -260,6 +262,7 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { auto* loss_data = loss->mutable_data(context.GetPlace()); auto soft_label = context.Attr("soft_label"); + auto ignore_index = context.Attr("ignore_index"); if (soft_label) { int batch_size = logits->dims()[0]; int feature_size = logits->dims()[1]; @@ -272,7 +275,8 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { math::SoftmaxCUDNNFunctor()(context.cuda_device_context(), logits, softmax); math::CrossEntropyFunctor()( - context.cuda_device_context(), loss, softmax, labels, false); + context.cuda_device_context(), loss, softmax, labels, false, + ignore_index); } } }; @@ -295,7 +299,7 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { const int class_num = logit_grad->dims()[1]; int block = 512; auto stream = context.cuda_device_context().stream(); - + auto ignore_index = context.Attr("ignore_index"); if (context.Attr("soft_label")) { int grid = (batch_size * class_num + block - 1) / block; const T* label_data = labels->data(); @@ -305,7 +309,7 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { int grid = (batch_size + block - 1) / block; const int64_t* label_data = labels->data(); CrossEntropyGrad<<>>( - logit_grad_data, label_data, batch_size, class_num); + logit_grad_data, label_data, batch_size, class_num, ignore_index); int num = batch_size * class_num; grid = (num + block - 1) / block; Scale<<>>(logit_grad_data, loss_grad_data, num, diff --git a/paddle/fluid/operators/softmax_with_cross_entropy_op.h b/paddle/fluid/operators/softmax_with_cross_entropy_op.h index dd6f6aca5ada7aa215d3b3444194fc53efeb7020..e9aba3b37b8cc01d4fe5de5200579d4e93f67e56 100644 --- a/paddle/fluid/operators/softmax_with_cross_entropy_op.h +++ b/paddle/fluid/operators/softmax_with_cross_entropy_op.h @@ -45,7 +45,8 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel { math::SoftmaxFunctor()(dev_ctx, logits, softmax); math::CrossEntropyFunctor()( - dev_ctx, loss, softmax, labels, context.Attr("soft_label")); + dev_ctx, loss, softmax, labels, context.Attr("soft_label"), + context.Attr("ignore_index")); } }; diff --git a/paddle/fluid/operators/tensorrt_engine_op.h b/paddle/fluid/operators/tensorrt_engine_op.h index bc556ab3643cefa3e45d2a8a3835937753af723f..79e75ea9a035b654f0bb7026d3a491bebe0b23c4 100644 --- a/paddle/fluid/operators/tensorrt_engine_op.h +++ b/paddle/fluid/operators/tensorrt_engine_op.h @@ -160,11 +160,7 @@ class TensorRTEngineKernel : public framework::OpKernel { fluid_t->mutable_data(platform::CUDAPlace( boost::get(context.GetPlace()).device)), size * sizeof(float)); - //} else { - // engine->GetOutputInGPU( - // y, fluid_t->mutable_data(platform::CUDAPlace()), - // size * sizeof(float)); - //} + output_index += 1; } diff --git a/paddle/fluid/platform/device_context.cc b/paddle/fluid/platform/device_context.cc index 2cc26da013f59f5b7ee1747d57baca9c1c0efe2c..c6f1d1f3d544117311821d980300dffea03891a5 100644 --- a/paddle/fluid/platform/device_context.cc +++ b/paddle/fluid/platform/device_context.cc @@ -16,6 +16,9 @@ limitations under the License. */ #include #include "paddle/fluid/memory/memory.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/framework/rw_lock.h" +#endif namespace paddle { namespace platform { @@ -142,7 +145,58 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface { mutable unsigned int* semaphore_; }; -CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) { +class CudnnHolder { + public: + CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place) + : workspace_(nullptr), workspace_len_(0), stream_(stream), place_(place) { + PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); + PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_)); + } + + cudnnHandle_t cudnn_handle() const { return cudnn_handle_; } + + void RunFunc(const std::function& cudnn_func, + size_t required_workspace_len) { + std::lock_guard lock(mtx_); + if (required_workspace_len > workspace_len_) { + ReallocateWorkspace(required_workspace_len); + } + cudnn_func(workspace_); + } + + ~CudnnHolder() { + PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); + if (workspace_ != nullptr) { + paddle::memory::Free(place_, workspace_); + } + } + + private: + void ReallocateWorkspace(size_t required_workspace_len) { + if (required_workspace_len <= workspace_len_) { + return; + } + if (workspace_ != nullptr) { + // Maybe someone is using the current workspace + PADDLE_ENFORCE(cudaStreamSynchronize(*stream_)); + paddle::memory::Free(place_, workspace_); + } + workspace_ = paddle::memory::Alloc(place_, required_workspace_len); + workspace_len_ = required_workspace_len; + } + + cudnnHandle_t cudnn_handle_; + void* workspace_; + size_t workspace_len_; + + const cudaStream_t* stream_; // not owned; + const CUDAPlace place_; + + std::mutex mtx_; +}; + +CUDADeviceContext::CUDADeviceContext(CUDAPlace place) + : place_(place), cudnn_holder_(nullptr) { SetDeviceId(place_.device); compute_capability = GetCUDAComputeCapability(place_.device); multi_process = GetCUDAMultiProcessors(place_.device); @@ -154,10 +208,7 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) { PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); if (dynload::HasCUDNN()) { - PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); - PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); - } else { - cudnn_handle_ = nullptr; + cudnn_holder_.reset(new CudnnHolder(&stream_, place)); } } @@ -165,9 +216,6 @@ CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_)); - if (cudnn_handle_ != nullptr) { - PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); - } eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); @@ -196,7 +244,14 @@ cublasHandle_t CUDADeviceContext::cublas_handle() const { return cublas_handle_; } -cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; } +cudnnHandle_t CUDADeviceContext::cudnn_handle() const { + return cudnn_holder_->cudnn_handle(); +} + +void CUDADeviceContext::RunCudnnFuncWithWorkspace( + const std::function& cudnn_func, size_t workspace_len) const { + cudnn_holder_->RunFunc(cudnn_func, workspace_len); +} cudaStream_t CUDADeviceContext::stream() const { return stream_; } diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index b97dad20db0b003b4886b7c7cfd1c8de8bf44ab9..3ed49fc4233d4c0cd6cc16319eda08480ab9b434 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -69,6 +69,7 @@ struct DefaultDeviceContextType { #ifdef PADDLE_WITH_CUDA class EigenCudaStreamDevice; +class CudnnHolder; class CUDADeviceContext : public DeviceContext { public: @@ -96,6 +97,11 @@ class CUDADeviceContext : public DeviceContext { /*! \brief Return cudnn handle in the device context. */ cudnnHandle_t cudnn_handle() const; + /*! \brief Run a cudnn function with the workspace provided by + * CUDADeviceContext */ + void RunCudnnFuncWithWorkspace(const std::function& cudnn_func, + size_t workspace_len) const; + /*! \brief Return cuda stream in the device context. */ cudaStream_t stream() const; @@ -111,8 +117,8 @@ class CUDADeviceContext : public DeviceContext { std::unique_ptr eigen_device_; std::unique_ptr eigen_stream_; + std::unique_ptr cudnn_holder_; cudaStream_t stream_; - cudnnHandle_t cudnn_handle_; cublasHandle_t cublas_handle_; int compute_capability; diff --git a/paddle/fluid/platform/mkldnn_helper.h b/paddle/fluid/platform/mkldnn_helper.h index f6e9a52b275353c03c1f350719766922a97f6cb3..c0a2543ba5d8ff8f34cb6231c51cb5053a6a9481 100644 --- a/paddle/fluid/platform/mkldnn_helper.h +++ b/paddle/fluid/platform/mkldnn_helper.h @@ -192,7 +192,8 @@ class MKLDNNHandler { mkldnn::memory::primitive_desc& user_mpd, // NOLINT const std::shared_ptr user_memory_p, const std::string& suffix, - std::vector& pipeline) { // NOLINT + std::vector& pipeline, // NOLINT + bool is_persistent = false) { // create reorder primitive if the input format is not the preferred one auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; @@ -213,7 +214,7 @@ class MKLDNNHandler { pipeline.push_back(*reorder_p); } dev_ctx_.SetBlob(local_key, target_memory_p); - } else { + } else if (!is_persistent) { // Make reorder if needed auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); diff --git a/paddle/fluid/pybind/protobuf.cc b/paddle/fluid/pybind/protobuf.cc index f21f8d23f99c27529b2ed1995c92fd4eee4a5807..67501186d150171728194f23bc02d2c014848dd7 100644 --- a/paddle/fluid/pybind/protobuf.cc +++ b/paddle/fluid/pybind/protobuf.cc @@ -137,7 +137,10 @@ void BindProgramDesc(pybind11::module *m) { PADDLE_ENFORCE(desc->ParseFromString(data), "Fail to parse ProgramDesc from string. This could " "be a bug of Paddle."); - }); + }) + .def("_version", [](pd::ProgramDesc &self) -> int64_t { + return self.Proto()->version().version(); + }); } void BindBlockDesc(pybind11::module *m) { diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 5b20b87174e42f4dfdd22214e8f9dd20c7296374..8bc30fc123163983f4bddc19af489920db93e0c0 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -33,6 +33,7 @@ limitations under the License. */ #include "paddle/fluid/framework/prune.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/framework/version.h" #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h" #include "paddle/fluid/platform/enforce.h" @@ -530,6 +531,8 @@ All parameter, weight, gradient are variables in Paddle. m.def("set_feed_variable", framework::SetFeedVariable); m.def("get_fetch_variable", framework::GetFetchVariable); + m.def("_is_program_version_supported", IsProgramVersionSupported); + BindProgramDesc(&m); BindBlockDesc(&m); BindVarDsec(&m); @@ -680,7 +683,6 @@ All parameter, weight, gradient are variables in Paddle. const std::string &, Scope *, std::vector &, const ExecutionStrategy &, const BuildStrategy &, size_t, size_t>()) - .def("_bcast_params", &ParallelExecutor::BCastParamsToDevices) // NOTE: even we return a vec* to Python use reference policy. // We still cannot get local_scope from this vector, since the element // of vec will be freed by Python GC. We can only return Scope* diff --git a/paddle/fluid/string/CMakeLists.txt b/paddle/fluid/string/CMakeLists.txt index 1fe7f42ca1c692e4d7034883022852657be8cc20..8572dc1e8e543b552e3ed5a180ec942faf90a624 100644 --- a/paddle/fluid/string/CMakeLists.txt +++ b/paddle/fluid/string/CMakeLists.txt @@ -1,4 +1,5 @@ cc_library(stringpiece SRCS piece.cc) +cc_library(pretty_log SRCS pretty_log.cc) cc_test(stringpiece_test SRCS piece_test.cc DEPS stringpiece glog gflags) cc_test(stringprintf_test SRCS printf_test.cc DEPS glog gflags) cc_test(to_string_test SRCS to_string_test.cc) diff --git a/paddle/fluid/string/pretty_log.cc b/paddle/fluid/string/pretty_log.cc new file mode 100644 index 0000000000000000000000000000000000000000..4534fdc58b81fe03b3a1fc19b55aa62ddbf5eaf1 --- /dev/null +++ b/paddle/fluid/string/pretty_log.cc @@ -0,0 +1,22 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/string/pretty_log.h" +#include + +DEFINE_bool(color, true, "Whether to turn on pretty log"); + +namespace paddle { +namespace string {} // namespace string +} // namespace paddle diff --git a/paddle/fluid/string/pretty_log.h b/paddle/fluid/string/pretty_log.h new file mode 100644 index 0000000000000000000000000000000000000000..a3b4e38f453835828a4a53130e11c854ac3f4a74 --- /dev/null +++ b/paddle/fluid/string/pretty_log.h @@ -0,0 +1,70 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#pragma once + +#include +#include +#include +#include +#include +#include "paddle/fluid/string/printf.h" + +DECLARE_bool(color); + +namespace paddle { + +namespace string { + +inline std::string black() { return FLAGS_color ? "\e[30m" : ""; } +inline std::string red() { return FLAGS_color ? "\e[31m" : ""; } +inline std::string b_red() { return FLAGS_color ? "\e[41m" : ""; } +inline std::string green() { return FLAGS_color ? "\e[32m" : ""; } +inline std::string yellow() { return FLAGS_color ? "\e[33m" : ""; } +inline std::string blue() { return FLAGS_color ? "\e[34m" : ""; } +inline std::string purple() { return FLAGS_color ? "\e[35m" : ""; } +inline std::string cyan() { return FLAGS_color ? "\e[36m" : ""; } +inline std::string light_gray() { return FLAGS_color ? "\e[37m" : ""; } +inline std::string white() { return FLAGS_color ? "\e[37m" : ""; } +inline std::string light_red() { return FLAGS_color ? "\e[91m" : ""; } +inline std::string dim() { return FLAGS_color ? "\e[2m" : ""; } +inline std::string bold() { return FLAGS_color ? "\e[1m" : ""; } +inline std::string underline() { return FLAGS_color ? "\e[4m" : ""; } +inline std::string blink() { return FLAGS_color ? "\e[5m" : ""; } +inline std::string reset() { return FLAGS_color ? "\e[0m" : ""; } + +using TextBlock = std::pair; + +struct Style { + static std::string info() { return black(); } + static std::string warn() { return b_red(); } + static std::string suc() { return green(); } + static std::string H1() { return bold() + purple(); } + static std::string H2() { return green(); } + static std::string H3() { return green(); } + static std::string detail() { return light_gray(); } +}; + +template +static void PrettyLogEndl(const std::string& style, const char* fmt, + const Args&... args) { + std::cerr << style << Sprintf(fmt, args...) << reset() << std::endl; +} +template +static void PrettyLog(const std::string& style, const char* fmt, + const Args&... args) { + std::cerr << style << Sprintf(fmt, args...) << reset(); +} + +} // namespace string +} // namespace paddle diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index b0e0d27ff7a0c603523065d34169b1b73eabdac3..8892606486ee97bb085e642e89fce872e5ba1f7e 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -1564,6 +1564,9 @@ class Program(object): """ return self.desc + def _version(self): + return self.desc._version() + def clone(self, for_test=False): """ Create a new, duplicated program. diff --git a/python/paddle/fluid/io.py b/python/paddle/fluid/io.py index 5c4ec99c533829240ac0bcc9647acb870f3412f8..656fafa0cb54d70e0eba8ec2bef21488c50d8d94 100644 --- a/python/paddle/fluid/io.py +++ b/python/paddle/fluid/io.py @@ -750,6 +750,10 @@ def load_inference_model(dirname, program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) + if not core._is_program_version_supported(program._version()): + raise ValueError("Unsupported program version: %d\n" % + program._version()) + # Binary data also need versioning. load_persistables(executor, dirname, program, params_filename) if pserver_endpoints: diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index 1bc1dbbecaccd328d84cd3364a50c8f828d823c0..1c73c837e2aa422b67704e171f66f5cd48e171ce 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -55,15 +55,19 @@ for _OP in set(__auto__): globals()[_OP] = generate_layer_fn(_OP) -def rpn_target_assign(loc, - scores, +def rpn_target_assign(bbox_pred, + cls_logits, anchor_box, anchor_var, - gt_box, + gt_boxes, + is_crowd, + im_info, rpn_batch_size_per_im=256, - fg_fraction=0.25, + rpn_straddle_thresh=0.0, + rpn_fg_fraction=0.5, rpn_positive_overlap=0.7, - rpn_negative_overlap=0.3): + rpn_negative_overlap=0.3, + use_random=True): """ ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. ** @@ -83,14 +87,13 @@ def rpn_target_assign(loc, the positive anchors. Args: - loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the + bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the predicted locations of M bounding bboxes. N is the batch size, and each bounding box has four coordinate values and the layout is [xmin, ymin, xmax, ymax]. - scores(Variable): A 3-D Tensor with shape [N, M, C] represents the - predicted confidence predictions. N is the batch size, C is the - class number, M is number of bounding boxes. For each category - there are total M scores which corresponding M bounding boxes. + cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the + predicted confidence predictions. N is the batch size, 1 is the + frontground and background sigmoid, M is number of bounding boxes. anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes, each box is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate of the anchor box, @@ -99,11 +102,16 @@ def rpn_target_assign(loc, coordinate of the anchor box. anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded variances of anchors. - gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D + gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth bboxes of mini-batch input. + is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd. + im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size, + 3 is the height, width and scale. rpn_batch_size_per_im(int): Total number of RPN examples per image. - fg_fraction(float): Target fraction of RoI minibatch that is labeled + rpn_straddle_thresh(float): Remove RPN anchors that go outside the image + by straddle_thresh pixels. + rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0), 0-th class is background. rpn_positive_overlap(float): Minimum overlap required between an anchor and ground-truth box for the (anchor, gt box) pair to be a positive @@ -129,45 +137,48 @@ def rpn_target_assign(loc, Examples: .. code-block:: python - loc = layers.data(name='location', shape=[2, 80], + bbox_pred = layers.data(name='bbox_pred', shape=[100, 4], append_batch_size=False, dtype='float32') - scores = layers.data(name='scores', shape=[2, 40], + cls_logits = layers.data(name='cls_logits', shape=[100, 1], append_batch_size=False, dtype='float32') anchor_box = layers.data(name='anchor_box', shape=[20, 4], append_batch_size=False, dtype='float32') - gt_box = layers.data(name='gt_box', shape=[10, 4], + gt_boxes = layers.data(name='gt_boxes', shape=[10, 4], append_batch_size=False, dtype='float32') loc_pred, score_pred, loc_target, score_target = - fluid.layers.detection_output(loc=location, - scores=scores, + fluid.layers.rpn_target_assign(bbox_pred=bbox_pred, + cls_logits=cls_logits, anchor_box=anchor_box, - gt_box=gt_box) + gt_boxes=gt_boxes) """ helper = LayerHelper('rpn_target_assign', **locals()) - # Compute overlaps between the prior boxes and the gt boxes overlaps - iou = iou_similarity(x=gt_box, y=anchor_box) # Assign target label to anchors loc_index = helper.create_tmp_variable(dtype='int32') score_index = helper.create_tmp_variable(dtype='int32') - target_label = helper.create_tmp_variable(dtype='int64') + target_label = helper.create_tmp_variable(dtype='int32') target_bbox = helper.create_tmp_variable(dtype=anchor_box.dtype) helper.append_op( type="rpn_target_assign", - inputs={'Anchor': anchor_box, - 'GtBox': gt_box, - 'DistMat': iou}, + inputs={ + 'Anchor': anchor_box, + 'GtBoxes': gt_boxes, + 'IsCrowd': is_crowd, + 'ImInfo': im_info + }, outputs={ 'LocationIndex': loc_index, 'ScoreIndex': score_index, 'TargetLabel': target_label, - 'TargetBBox': target_bbox, + 'TargetBBox': target_bbox }, attrs={ 'rpn_batch_size_per_im': rpn_batch_size_per_im, + 'rpn_straddle_thresh': rpn_straddle_thresh, 'rpn_positive_overlap': rpn_positive_overlap, 'rpn_negative_overlap': rpn_negative_overlap, - 'fg_fraction': fg_fraction + 'rpn_fg_fraction': rpn_fg_fraction, + 'use_random': use_random }) loc_index.stop_gradient = True @@ -175,12 +186,12 @@ def rpn_target_assign(loc, target_label.stop_gradient = True target_bbox.stop_gradient = True - scores = nn.reshape(x=scores, shape=(-1, 1)) - loc = nn.reshape(x=loc, shape=(-1, 4)) - predicted_scores = nn.gather(scores, score_index) - predicted_location = nn.gather(loc, loc_index) + cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1)) + bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4)) + predicted_cls_logits = nn.gather(cls_logits, score_index) + predicted_bbox_pred = nn.gather(bbox_pred, loc_index) - return predicted_scores, predicted_location, target_label, target_bbox + return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox def detection_output(loc, @@ -1258,15 +1269,17 @@ def anchor_generator(input, def generate_proposal_labels(rpn_rois, gt_classes, + is_crowd, gt_boxes, - im_scales, + im_info, batch_size_per_im=256, fg_fraction=0.25, fg_thresh=0.25, bg_thresh_hi=0.5, bg_thresh_lo=0.0, bbox_reg_weights=[0.1, 0.1, 0.2, 0.2], - class_nums=None): + class_nums=None, + use_random=True): """ ** Generate proposal labels Faster-RCNN ** TODO(buxingyuan): Add Document @@ -1285,8 +1298,9 @@ def generate_proposal_labels(rpn_rois, inputs={ 'RpnRois': rpn_rois, 'GtClasses': gt_classes, + 'IsCrowd': is_crowd, 'GtBoxes': gt_boxes, - 'ImScales': im_scales + 'ImInfo': im_info }, outputs={ 'Rois': rois, @@ -1302,7 +1316,8 @@ def generate_proposal_labels(rpn_rois, 'bg_thresh_hi': bg_thresh_hi, 'bg_thresh_lo': bg_thresh_lo, 'bbox_reg_weights': bbox_reg_weights, - 'class_nums': class_nums + 'class_nums': class_nums, + 'use_random': use_random }) rois.stop_gradient = True diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 8408e6d2a12edacb310ed5eb543ad51585f3d82a..3ae0fac4bef5c47964f9a9cd8dd45b57e705e1f8 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -968,7 +968,7 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): return out -def cross_entropy(input, label, soft_label=False): +def cross_entropy(input, label, soft_label=False, ignore_index=-100): """ **Cross Entropy Layer** @@ -1012,7 +1012,10 @@ def cross_entropy(input, label, soft_label=False): tensor with shape [N x D]. soft_label (bool): a flag indicating whether to interpretate the given labels as soft - labels, default `False`. + labels. Default: `False`. + ignore_index (int): Specifies a target value that is ignored and does + not contribute to the input gradient. Only valid + if soft_label is set to False. Default: -100 Returns: A 2-D tensor with shape [N x 1], the cross entropy loss. @@ -1037,7 +1040,8 @@ def cross_entropy(input, label, soft_label=False): inputs={'X': [input], 'Label': [label]}, outputs={'Y': [out]}, - attrs={"soft_label": soft_label}) + attrs={"soft_label": soft_label, + "ignore_index": ignore_index}) return out @@ -4242,7 +4246,10 @@ def multiplex(inputs, index): return out -def softmax_with_cross_entropy(logits, label, soft_label=False): +def softmax_with_cross_entropy(logits, + label, + soft_label=False, + ignore_index=-100): """ **Softmax With Cross Entropy Operator.** @@ -4284,6 +4291,10 @@ def softmax_with_cross_entropy(logits, label, soft_label=False): soft_label is set to true, Label is a Tensor with soft_label (bool): A flag to indicate whether to interpretate the given labels as soft labels. By default, `soft_label` is set to False. + ignore_index (int): Specifies a target value that is ignored and does + not contribute to the input gradient. Only valid + if soft_label is set to False. Default: -100 + Returns: Variable: The cross entropy loss is a 2-D tensor with shape [N x 1]. @@ -4305,7 +4316,8 @@ def softmax_with_cross_entropy(logits, label, soft_label=False): 'Label': label}, outputs={'Softmax': softmax, 'Loss': loss}, - attrs={'soft_label': soft_label}) + attrs={'soft_label': soft_label, + 'ignore_index': ignore_index}) return loss diff --git a/python/paddle/fluid/parallel_executor.py b/python/paddle/fluid/parallel_executor.py index 4790e0f6119e96b11b049bfdd3b46d40a382683b..44af29d3390e35129d0ee65b31eacad6b28a9d60 100644 --- a/python/paddle/fluid/parallel_executor.py +++ b/python/paddle/fluid/parallel_executor.py @@ -128,6 +128,13 @@ class ParallelExecutor(object): os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exec_strategy.num_threads = cpu_num * 2 + # Set 1 thread num under nccl2 distribute + # env to make sure all gpus run ops in same order. + if num_trainers > 1: + assert (use_cuda) + # FIXME(gongwb): avoid this set. + exec_strategy.num_threads = 1 + if build_strategy is None: build_strategy = BuildStrategy() @@ -135,11 +142,6 @@ class ParallelExecutor(object): main = main if main else framework.default_main_program() if scope == None: scope = executor.global_scope() - # FIXME(Yancey1989): it's a temporary approach to determinate the distribute - # train program, call self.bcast_param() at the end of each mini-batch. - self.is_dist = True if "recv" in [ - op.type for op in main.global_block().ops - ] else False if share_vars_from and not isinstance(share_vars_from, ParallelExecutor): @@ -279,21 +281,11 @@ class ParallelExecutor(object): self.executor.run(fetch_list, fetch_var_name) arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array() - if self.is_dist: - self._bcast_params() - if return_numpy: return executor.as_numpy(arr) return [arr[i] for i in range(len(arr))] - def _bcast_params(self): - """ - Broadcast the parameters to other devices. It is used during - distributed training. - """ - self.executor._bcast_params(set(self.persistable_vars)) - @property def device_count(self): return len(self._act_places) diff --git a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py index e5ae95e2d943917b9bc10f0d4c4bdc5f8fb07fdb..de276755bb1eb2746cc780575a40357255223809 100644 --- a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py +++ b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_resnet.py @@ -178,7 +178,4 @@ if __name__ == '__main__': for parallel in (False, True): if use_cuda and not core.is_compiled_with_cuda(): continue - # TODO(minqiyang): remove this line after fixing the deletion - # order problem of Scope in ParallelExecutor in manylinux - if six.PY2: - main(use_cuda=use_cuda, parallel=parallel) + main(use_cuda=use_cuda, parallel=parallel) diff --git a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py index ff91be72c918f8dac65b7030e45c4a00deb965ac..dd547f3448ae55c07b6c09f9de4ac08d8ec5ee88 100644 --- a/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py +++ b/python/paddle/fluid/tests/book/high-level-api/image_classification/test_image_classification_vgg.py @@ -152,7 +152,4 @@ if __name__ == '__main__': for parallel in (False, True): if use_cuda and not core.is_compiled_with_cuda(): continue - # TODO(minqiyang): remove this line after fixing the deletion - # order problem of Scope in ParallelExecutor in manylinux - if six.PY2: - main(use_cuda=use_cuda, parallel=parallel) + main(use_cuda=use_cuda, parallel=parallel) diff --git a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py index fa72c939e57356f26d60032dd0a91c894b28c505..973308498bec3cddde2ef651751ad5d0c9f84503 100644 --- a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py +++ b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py @@ -155,7 +155,4 @@ if __name__ == '__main__': for parallel in (False, True): if use_cuda and not core.is_compiled_with_cuda(): continue - # TODO(minqiyang): remove this line after fixing the deletion - # order problem of Scope in ParallelExecutor in manylinux - if six.PY2: - main(use_cuda=use_cuda, parallel=parallel) + main(use_cuda=use_cuda, parallel=parallel) diff --git a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py index 440d2a30835cb89089709f024a4dcc6e4113efa8..cb4aeb430e1a9662a183084c0cdacc41c5a8ec11 100644 --- a/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py +++ b/python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py @@ -137,7 +137,4 @@ if __name__ == '__main__': for parallel in (False, True): if use_cuda and not core.is_compiled_with_cuda(): continue - # TODO(minqiyang): remove this line after fixing the deletion - # order problem of Scope in ParallelExecutor in manylinux - if six.PY2: - main(use_cuda=use_cuda, parallel=parallel) + main(use_cuda=use_cuda, parallel=parallel) diff --git a/python/paddle/fluid/tests/test_detection.py b/python/paddle/fluid/tests/test_detection.py index e2564763d19d180f7c6933429dddf58c77be7bb8..56129641ce5900d82aedf243d2fa1eadfd6b8d86 100644 --- a/python/paddle/fluid/tests/test_detection.py +++ b/python/paddle/fluid/tests/test_detection.py @@ -148,51 +148,60 @@ class TestAnchorGenerator(unittest.TestCase): class TestGenerateProposalLabels(unittest.TestCase): def test_generate_proposal_labels(self): - rpn_rois = layers.data( - name='rpn_rois', - shape=[4, 4], - dtype='float32', - lod_level=1, - append_batch_size=False) - gt_classes = layers.data( - name='gt_classes', - shape=[6], - dtype='int32', - lod_level=1, - append_batch_size=False) - gt_boxes = layers.data( - name='gt_boxes', - shape=[6, 4], - dtype='float32', - lod_level=1, - append_batch_size=False) - im_scales = layers.data( - name='im_scales', - shape=[1], - dtype='float32', - lod_level=1, - append_batch_size=False) - class_nums = 5 - rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights = fluid.layers.generate_proposal_labels( - rpn_rois=rpn_rois, - gt_classes=gt_classes, - gt_boxes=gt_boxes, - im_scales=im_scales, - batch_size_per_im=2, - fg_fraction=0.5, - fg_thresh=0.5, - bg_thresh_hi=0.5, - bg_thresh_lo=0.0, - bbox_reg_weights=[0.1, 0.1, 0.2, 0.2], - class_nums=class_nums) - assert rois.shape[1] == 4 - assert rois.shape[0] == labels_int32.shape[0] - assert rois.shape[0] == bbox_targets.shape[0] - assert rois.shape[0] == bbox_inside_weights.shape[0] - assert rois.shape[0] == bbox_outside_weights.shape[0] - assert bbox_targets.shape[1] == 4 * class_nums - assert bbox_inside_weights.shape[1] == 4 * class_nums - assert bbox_outside_weights.shape[1] == 4 * class_nums + program = Program() + with program_guard(program): + rpn_rois = layers.data( + name='rpn_rois', + shape=[4, 4], + dtype='float32', + lod_level=1, + append_batch_size=False) + gt_classes = layers.data( + name='gt_classes', + shape=[6], + dtype='int32', + lod_level=1, + append_batch_size=False) + is_crowd = layers.data( + name='is_crowd', + shape=[6], + dtype='int32', + lod_level=1, + append_batch_size=False) + gt_boxes = layers.data( + name='gt_boxes', + shape=[6, 4], + dtype='float32', + lod_level=1, + append_batch_size=False) + im_info = layers.data( + name='im_info', + shape=[1, 3], + dtype='float32', + lod_level=1, + append_batch_size=False) + class_nums = 5 + rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights = fluid.layers.generate_proposal_labels( + rpn_rois=rpn_rois, + gt_classes=gt_classes, + is_crowd=is_crowd, + gt_boxes=gt_boxes, + im_info=im_info, + batch_size_per_im=2, + fg_fraction=0.5, + fg_thresh=0.5, + bg_thresh_hi=0.5, + bg_thresh_lo=0.0, + bbox_reg_weights=[0.1, 0.1, 0.2, 0.2], + class_nums=class_nums) + assert rois.shape[1] == 4 + assert rois.shape[0] == labels_int32.shape[0] + assert rois.shape[0] == bbox_targets.shape[0] + assert rois.shape[0] == bbox_inside_weights.shape[0] + assert rois.shape[0] == bbox_outside_weights.shape[0] + assert bbox_targets.shape[1] == 4 * class_nums + assert bbox_inside_weights.shape[1] == 4 * class_nums + assert bbox_outside_weights.shape[1] == 4 * class_nums class TestMultiBoxHead(unittest.TestCase): @@ -254,18 +263,18 @@ class TestRpnTargetAssign(unittest.TestCase): def test_rpn_target_assign(self): program = Program() with program_guard(program): - loc_shape = [10, 50, 4] - score_shape = [10, 50, 2] + bbox_pred_shape = [10, 50, 4] + cls_logits_shape = [10, 50, 2] anchor_shape = [50, 4] - loc = layers.data( - name='loc', - shape=loc_shape, + bbox_pred = layers.data( + name='bbox_pred', + shape=bbox_pred_shape, append_batch_size=False, dtype='float32') - scores = layers.data( - name='scores', - shape=score_shape, + cls_logits = layers.data( + name='cls_logits', + shape=cls_logits_shape, append_batch_size=False, dtype='float32') anchor_box = layers.data( @@ -278,17 +287,31 @@ class TestRpnTargetAssign(unittest.TestCase): shape=anchor_shape, append_batch_size=False, dtype='float32') - gt_box = layers.data( - name='gt_box', shape=[4], lod_level=1, dtype='float32') - + gt_boxes = layers.data( + name='gt_boxes', shape=[4], lod_level=1, dtype='float32') + is_crowd = layers.data( + name='is_crowd', + shape=[10], + dtype='int32', + lod_level=1, + append_batch_size=False) + im_info = layers.data( + name='im_info', + shape=[1, 3], + dtype='float32', + lod_level=1, + append_batch_size=False) pred_scores, pred_loc, tgt_lbl, tgt_bbox = layers.rpn_target_assign( - loc=loc, - scores=scores, + bbox_pred=bbox_pred, + cls_logits=cls_logits, anchor_box=anchor_box, anchor_var=anchor_var, - gt_box=gt_box, + gt_boxes=gt_boxes, + is_crowd=is_crowd, + im_info=im_info, rpn_batch_size_per_im=256, - fg_fraction=0.25, + rpn_straddle_thresh=0.0, + rpn_fg_fraction=0.5, rpn_positive_overlap=0.7, rpn_negative_overlap=0.3) diff --git a/python/paddle/fluid/tests/unittests/CMakeLists.txt b/python/paddle/fluid/tests/unittests/CMakeLists.txt index 8ac1cb164e158cf38d1c0570f5bf37ee6a6badae..9892d3f8075d21b9aa01cfda0bb73e4d12008852 100644 --- a/python/paddle/fluid/tests/unittests/CMakeLists.txt +++ b/python/paddle/fluid/tests/unittests/CMakeLists.txt @@ -28,6 +28,10 @@ list(REMOVE_ITEM TEST_OPS test_cond_op) # FIXME(qijun): https://github.com/Paddl list(REMOVE_ITEM TEST_OPS op_test) # op_test is a helper python file, not a test list(REMOVE_ITEM TEST_OPS decorators) # decorators is a helper python file, not a test +if(APPLE) + # this op is not support on mac + list(REMOVE_ITEM TEST_OPS test_fusion_seqexpand_concat_fc_op) +endif() function(py_test_modules TARGET_NAME) if(WITH_TESTING) @@ -46,6 +50,7 @@ function(py_test_modules TARGET_NAME) endfunction() list(REMOVE_ITEM TEST_OPS test_warpctc_op) list(REMOVE_ITEM TEST_OPS test_dist_train) +list(REMOVE_ITEM TEST_OPS test_dist_transpiler) list(REMOVE_ITEM TEST_OPS test_parallel_executor_crf) list(REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed) list(REMOVE_ITEM TEST_OPS test_dist_se_resnext) @@ -61,11 +66,12 @@ if(WITH_DISTRIBUTE) set_tests_properties(test_listen_and_serv_op PROPERTIES TIMEOUT 20) set_tests_properties(test_dist_mnist PROPERTIES TIMEOUT 200) set_tests_properties(test_dist_word2vec PROPERTIES TIMEOUT 200) + py_test_modules(test_dist_transpiler MODULES test_dist_transpiler) + py_test_modules(test_dist_transformer MODULES test_dist_transformer SERIAL) + py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext SERIAL) endif() py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SERIAL) py_test_modules(test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL) set_tests_properties(test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 150) -py_test_modules(test_dist_transformer MODULES test_dist_transformer SERIAL) -py_test_modules(test_dist_se_resnext MODULES test_dist_se_resnext SERIAL) py_test_modules(test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL) py_test_modules(test_image_classification_resnet MODULES test_image_classification_resnet SERIAL) diff --git a/python/paddle/fluid/tests/unittests/test_cross_entropy_op.py b/python/paddle/fluid/tests/unittests/test_cross_entropy_op.py index fa367f95fc9c65dd782d53a2799cacadf74dcfd2..f22badbea0c67b210f7ac4e14e5d647f1cffa6cc 100644 --- a/python/paddle/fluid/tests/unittests/test_cross_entropy_op.py +++ b/python/paddle/fluid/tests/unittests/test_cross_entropy_op.py @@ -209,5 +209,34 @@ class TestCrossEntropyOp6(OpTest): ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001) +class TestCrossEntropyOp7(OpTest): + """Test cross-entropy with ignore index. + """ + + def setUp(self): + self.op_type = "cross_entropy" + batch_size = 30 + class_num = 10 + ignore_index = 3 + + X = randomize_probability(batch_size, class_num, dtype='float64') + + label = np.random.randint(0, class_num, (batch_size, 1), dtype="int64") + cross_entropy = np.asmatrix( + [[-np.log(X[i][label[i][0]])] + if label[i][0] != ignore_index else [0] + for i in range(X.shape[0])], + dtype="float64") + self.inputs = {"X": X, "Label": label} + self.outputs = {"Y": cross_entropy} + self.attrs = {"soft_label": False, "ignore_index": ignore_index} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Y", numeric_grad_delta=0.001) + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_data_balance.py b/python/paddle/fluid/tests/unittests/test_data_balance.py index e39eedd282daf6bbe0603a22c357e06c95c086b6..4bd24510bc8ac7f0fbaad3fd1919ab589cd21c4b 100644 --- a/python/paddle/fluid/tests/unittests/test_data_balance.py +++ b/python/paddle/fluid/tests/unittests/test_data_balance.py @@ -84,7 +84,7 @@ class TestDataBalance(unittest.TestCase): self.data_file_name = './data_balance_test.recordio' self.lod_data_file_name = './data_balance_with_lod_test.recordio' self.total_ins_num = 50 - self.batch_size = 10 + self.batch_size = 12 self.prepare_data() self.prepare_lod_data() diff --git a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py index b85501ef6b80d1f5004aa0dd08c3123d3bda48a5..a198b25520f97ce23b9c1ebb9cd82fc458222d73 100644 --- a/python/paddle/fluid/tests/unittests/test_dist_transpiler.py +++ b/python/paddle/fluid/tests/unittests/test_dist_transpiler.py @@ -62,7 +62,7 @@ class TranspilerTest(unittest.TestCase): t = self._transpiler_instance(config) - trainer_main = t.get_trainer_program() + trainer_main = t.get_trainer_program(wait_port=False) trainer_startup = fluid.default_startup_program() assert (src.num_blocks == 1) diff --git a/python/paddle/fluid/tests/unittests/test_generate_proposal_labels.py b/python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py similarity index 77% rename from python/paddle/fluid/tests/unittests/test_generate_proposal_labels.py rename to python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py index 6dc101b6dad8813893c6a891da0e16f952bb4c2d..2d5cd3b24bff52d82353ccf3fd2ecb69166c66c6 100644 --- a/python/paddle/fluid/tests/unittests/test_generate_proposal_labels.py +++ b/python/paddle/fluid/tests/unittests/test_generate_proposal_labels_op.py @@ -20,10 +20,10 @@ import paddle.fluid as fluid from op_test import OpTest -def generate_proposal_labels_in_python( - rpn_rois, gt_classes, gt_boxes, im_scales, batch_size_per_im, - fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, - class_nums): +def generate_proposal_labels_in_python(rpn_rois, gt_classes, is_crowd, gt_boxes, + im_info, batch_size_per_im, fg_fraction, + fg_thresh, bg_thresh_hi, bg_thresh_lo, + bbox_reg_weights, class_nums): rois = [] labels_int32 = [] bbox_targets = [] @@ -31,13 +31,13 @@ def generate_proposal_labels_in_python( bbox_outside_weights = [] lod = [] assert len(rpn_rois) == len( - im_scales), 'batch size of rpn_rois and ground_truth is not matched' + im_info), 'batch size of rpn_rois and ground_truth is not matched' - for im_i in range(len(im_scales)): + for im_i in range(len(im_info)): frcn_blobs = _sample_rois( - rpn_rois[im_i], gt_classes[im_i], gt_boxes[im_i], im_scales[im_i], - batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi, - bg_thresh_lo, bbox_reg_weights, class_nums) + rpn_rois[im_i], gt_classes[im_i], is_crowd[im_i], gt_boxes[im_i], + im_info[im_i], batch_size_per_im, fg_fraction, fg_thresh, + bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums) lod.append(frcn_blobs['rois'].shape[0]) @@ -50,13 +50,14 @@ def generate_proposal_labels_in_python( return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights, lod -def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im, - fg_fraction, fg_thresh, bg_thresh_hi, bg_thresh_lo, - bbox_reg_weights, class_nums): +def _sample_rois(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info, + batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi, + bg_thresh_lo, bbox_reg_weights, class_nums): rois_per_image = int(batch_size_per_im) fg_rois_per_im = int(np.round(fg_fraction * rois_per_image)) # Roidb + im_scale = im_info[2] inv_im_scale = 1. / im_scale rpn_rois = rpn_rois * inv_im_scale @@ -78,6 +79,9 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im, box_to_gt_ind_map[overlapped_boxes_ind] = overlaps_argmax[ overlapped_boxes_ind] + crowd_ind = np.where(is_crowd)[0] + gt_overlaps[crowd_ind] = -1 + max_overlaps = gt_overlaps.max(axis=1) max_classes = gt_overlaps.argmax(axis=1) @@ -85,9 +89,10 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im, fg_inds = np.where(max_overlaps >= fg_thresh)[0] fg_rois_per_this_image = np.minimum(fg_rois_per_im, fg_inds.shape[0]) # Sample foreground if there are too many - if fg_inds.shape[0] > fg_rois_per_this_image: - fg_inds = np.random.choice( - fg_inds, size=fg_rois_per_this_image, replace=False) + # if fg_inds.shape[0] > fg_rois_per_this_image: + # fg_inds = np.random.choice( + # fg_inds, size=fg_rois_per_this_image, replace=False) + fg_inds = fg_inds[:fg_rois_per_this_image] # Background bg_inds = np.where((max_overlaps < bg_thresh_hi) & (max_overlaps >= @@ -96,9 +101,10 @@ def _sample_rois(rpn_rois, gt_classes, gt_boxes, im_scale, batch_size_per_im, bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_inds.shape[0]) # Sample background if there are too many - if bg_inds.shape[0] > bg_rois_per_this_image: - bg_inds = np.random.choice( - bg_inds, size=bg_rois_per_this_image, replace=False) + # if bg_inds.shape[0] > bg_rois_per_this_image: + # bg_inds = np.random.choice( + # bg_inds, size=bg_rois_per_this_image, replace=False) + bg_inds = bg_inds[:bg_rois_per_this_image] keep_inds = np.append(fg_inds, bg_inds) sampled_labels = max_classes[keep_inds] @@ -208,8 +214,9 @@ class TestGenerateProposalLabelsOp(OpTest): self.inputs = { 'RpnRois': (self.rpn_rois[0], self.rpn_rois_lod), 'GtClasses': (self.gt_classes[0], self.gts_lod), + 'IsCrowd': (self.is_crowd[0], self.gts_lod), 'GtBoxes': (self.gt_boxes[0], self.gts_lod), - 'ImScales': self.im_scales[0] + 'ImInfo': self.im_info } self.attrs = { 'batch_size_per_im': self.batch_size_per_im, @@ -218,14 +225,15 @@ class TestGenerateProposalLabelsOp(OpTest): 'bg_thresh_hi': self.bg_thresh_hi, 'bg_thresh_lo': self.bg_thresh_lo, 'bbox_reg_weights': self.bbox_reg_weights, - 'class_nums': self.class_nums + 'class_nums': self.class_nums, + 'use_random': False } self.outputs = { - 'Rois': (self.rois[0], [self.lod]), - 'LabelsInt32': (self.labels_int32[0], [self.lod]), - 'BboxTargets': (self.bbox_targets[0], [self.lod]), - 'BboxInsideWeights': (self.bbox_inside_weights[0], [self.lod]), - 'BboxOutsideWeights': (self.bbox_outside_weights[0], [self.lod]), + 'Rois': (self.rois, [self.lod]), + 'LabelsInt32': (self.labels_int32, [self.lod]), + 'BboxTargets': (self.bbox_targets, [self.lod]), + 'BboxInsideWeights': (self.bbox_inside_weights, [self.lod]), + 'BboxOutsideWeights': (self.bbox_outside_weights, [self.lod]), } def test_check_output(self): @@ -236,8 +244,8 @@ class TestGenerateProposalLabelsOp(OpTest): self.set_data() def init_test_params(self): - self.batch_size_per_im = 10 - self.fg_fraction = 1.0 + self.batch_size_per_im = 512 + self.fg_fraction = 0.25 self.fg_thresh = 0.5 self.bg_thresh_hi = 0.5 self.bg_thresh_lo = 0.0 @@ -246,14 +254,14 @@ class TestGenerateProposalLabelsOp(OpTest): def init_test_input(self): np.random.seed(0) - image_nums = 1 gt_nums = 6 # Keep same with batch_size_per_im for unittest - proposal_nums = self.batch_size_per_im - gt_nums - images_shape = [] - self.im_scales = [] - for i in range(image_nums): - images_shape.append(np.random.randint(200, size=2)) - self.im_scales.append(np.ones((1)).astype(np.float32)) + proposal_nums = 2000 #self.batch_size_per_im - gt_nums + images_shape = [[64, 64]] + self.im_info = np.ones((len(images_shape), 3)).astype(np.float32) + for i in range(len(images_shape)): + self.im_info[i, 0] = images_shape[i][0] + self.im_info[i, 1] = images_shape[i][1] + self.im_info[i, 2] = 0.8 #scale self.rpn_rois, self.rpn_rois_lod = _generate_proposals(images_shape, proposal_nums) @@ -261,16 +269,23 @@ class TestGenerateProposalLabelsOp(OpTest): images_shape, self.class_nums, gt_nums) self.gt_classes = [gt['gt_classes'] for gt in ground_truth] self.gt_boxes = [gt['boxes'] for gt in ground_truth] + self.is_crowd = [gt['is_crowd'] for gt in ground_truth] def init_test_output(self): self.rois, self.labels_int32, self.bbox_targets, \ self.bbox_inside_weights, self.bbox_outside_weights, \ self.lod = generate_proposal_labels_in_python( - self.rpn_rois, self.gt_classes, self.gt_boxes, self.im_scales, + self.rpn_rois, self.gt_classes, self.is_crowd, self.gt_boxes, self.im_info, self.batch_size_per_im, self.fg_fraction, self.fg_thresh, self.bg_thresh_hi, self.bg_thresh_lo, self.bbox_reg_weights, self.class_nums ) + self.rois = np.vstack(self.rois) + self.labels_int32 = np.hstack(self.labels_int32) + self.labels_int32 = self.labels_int32[:, np.newaxis] + self.bbox_targets = np.vstack(self.bbox_targets) + self.bbox_inside_weights = np.vstack(self.bbox_inside_weights) + self.bbox_outside_weights = np.vstack(self.bbox_outside_weights) def _generate_proposals(images_shape, proposal_nums): @@ -280,7 +295,7 @@ def _generate_proposals(images_shape, proposal_nums): for i, image_shape in enumerate(images_shape): proposals = _generate_boxes(image_shape, proposal_nums) rpn_rois.append(proposals) - num_proposals += len(proposals) + num_proposals = len(proposals) rpn_rois_lod.append(num_proposals) return rpn_rois, [rpn_rois_lod] @@ -294,7 +309,11 @@ def _generate_groundtruth(images_shape, class_nums, gt_nums): gt_classes = np.random.randint( low=1, high=class_nums, size=gt_nums).astype(np.int32) gt_boxes = _generate_boxes(image_shape, gt_nums) - ground_truth.append(dict(gt_classes=gt_classes, boxes=gt_boxes)) + is_crowd = np.zeros((gt_nums), dtype=np.int32) + is_crowd[0] = 1 + ground_truth.append( + dict( + gt_classes=gt_classes, boxes=gt_boxes, is_crowd=is_crowd)) num_gts += len(gt_classes) gts_lod.append(num_gts) return ground_truth, [gts_lod] diff --git a/python/paddle/fluid/tests/unittests/test_generate_proposals.py b/python/paddle/fluid/tests/unittests/test_generate_proposals_op.py similarity index 88% rename from python/paddle/fluid/tests/unittests/test_generate_proposals.py rename to python/paddle/fluid/tests/unittests/test_generate_proposals_op.py index 3fbd2ce95a4f22b91cd4955f914e12f422b0ee83..86e27fe29ed945ec77fbbcdbd1c7cc6ecfba0fd5 100644 --- a/python/paddle/fluid/tests/unittests/test_generate_proposals.py +++ b/python/paddle/fluid/tests/unittests/test_generate_proposals_op.py @@ -114,10 +114,10 @@ def box_coder(all_anchors, bbox_deltas, variances): #anchor_loc: width, height, center_x, center_y anchor_loc = np.zeros_like(bbox_deltas, dtype=np.float32) - anchor_loc[:, 0] = all_anchors[:, 2] - all_anchors[:, 0] - anchor_loc[:, 1] = all_anchors[:, 3] - all_anchors[:, 1] - anchor_loc[:, 2] = (all_anchors[:, 2] + all_anchors[:, 0]) / 2 - anchor_loc[:, 3] = (all_anchors[:, 3] + all_anchors[:, 1]) / 2 + anchor_loc[:, 0] = all_anchors[:, 2] - all_anchors[:, 0] + 1 + anchor_loc[:, 1] = all_anchors[:, 3] - all_anchors[:, 1] + 1 + anchor_loc[:, 2] = all_anchors[:, 0] + 0.5 * anchor_loc[:, 0] + anchor_loc[:, 3] = all_anchors[:, 1] + 0.5 * anchor_loc[:, 1] #predicted bbox: bbox_center_x, bbox_center_y, bbox_width, bbox_height pred_bbox = np.zeros_like(bbox_deltas, dtype=np.float32) @@ -127,23 +127,29 @@ def box_coder(all_anchors, bbox_deltas, variances): i, 0] + anchor_loc[i, 2] pred_bbox[i, 1] = variances[i, 1] * bbox_deltas[i, 1] * anchor_loc[ i, 1] + anchor_loc[i, 3] - pred_bbox[i, 2] = math.exp(variances[i, 2] * - bbox_deltas[i, 2]) * anchor_loc[i, 0] - pred_bbox[i, 3] = math.exp(variances[i, 3] * - bbox_deltas[i, 3]) * anchor_loc[i, 1] + pred_bbox[i, 2] = math.exp( + min(variances[i, 2] * bbox_deltas[i, 2], math.log( + 1000 / 16.0))) * anchor_loc[i, 0] + pred_bbox[i, 3] = math.exp( + min(variances[i, 3] * bbox_deltas[i, 3], math.log( + 1000 / 16.0))) * anchor_loc[i, 1] else: for i in range(bbox_deltas.shape[0]): pred_bbox[i, 0] = bbox_deltas[i, 0] * anchor_loc[i, 0] + anchor_loc[ i, 2] pred_bbox[i, 1] = bbox_deltas[i, 1] * anchor_loc[i, 1] + anchor_loc[ i, 3] - pred_bbox[i, 2] = math.exp(bbox_deltas[i, 2]) * anchor_loc[i, 0] - pred_bbox[i, 3] = math.exp(bbox_deltas[i, 3]) * anchor_loc[i, 1] + pred_bbox[i, 2] = math.exp( + min(bbox_deltas[i, 2], math.log(1000 / 16.0))) * anchor_loc[i, + 0] + pred_bbox[i, 3] = math.exp( + min(bbox_deltas[i, 3], math.log(1000 / 16.0))) * anchor_loc[i, + 1] proposals[:, 0] = pred_bbox[:, 0] - pred_bbox[:, 2] / 2 proposals[:, 1] = pred_bbox[:, 1] - pred_bbox[:, 3] / 2 - proposals[:, 2] = pred_bbox[:, 0] + pred_bbox[:, 2] / 2 - proposals[:, 3] = pred_bbox[:, 1] + pred_bbox[:, 3] / 2 + proposals[:, 2] = pred_bbox[:, 0] + pred_bbox[:, 2] / 2 - 1 + proposals[:, 3] = pred_bbox[:, 1] + pred_bbox[:, 3] / 2 - 1 return proposals @@ -170,13 +176,16 @@ def filter_boxes(boxes, min_size, im_info): """Only keep boxes with both sides >= min_size and center within the image. """ # Scale min_size to match image scale - min_size *= im_info[2] + im_scale = im_info[2] + min_size = max(min_size, 1.0) ws = boxes[:, 2] - boxes[:, 0] + 1 hs = boxes[:, 3] - boxes[:, 1] + 1 + ws_orig_scale = (boxes[:, 2] - boxes[:, 0]) / im_scale + 1 + hs_orig_scale = (boxes[:, 3] - boxes[:, 1]) / im_scale + 1 x_ctr = boxes[:, 0] + ws / 2. y_ctr = boxes[:, 1] + hs / 2. - keep = np.where((ws >= min_size) & (hs >= min_size) & (x_ctr < im_info[1]) & - (y_ctr < im_info[0]))[0] + keep = np.where((ws_orig_scale >= min_size) & (hs_orig_scale >= min_size) & + (x_ctr < im_info[1]) & (y_ctr < im_info[0]))[0] return keep @@ -204,7 +213,7 @@ def iou(box_a, box_b): xb = min(xmax_a, xmax_b) yb = min(ymax_a, ymax_b) - inter_area = max(xb - xa, 0.0) * max(yb - ya, 0.0) + inter_area = max(xb - xa + 1, 0.0) * max(yb - ya + 1, 0.0) iou_ratio = inter_area / (area_a + area_b - inter_area) diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index bc4d364c74c6cb6b8f0df59e7ede77e6271f4b96..b04346b052903959f44aa96f6fccb7d20652e854 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -556,6 +556,15 @@ class TestBook(unittest.TestCase): out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0) print(str(program)) + def test_cross_entropy(self): + program = Program() + with program_guard(program): + x = layers.data(name="x", shape=[30, 10], dtype="float32") + label = layers.data(name="label", shape=[30, 1], dtype="int32") + mode = 'channel' + out = layers.cross_entropy(x, label, False, 4) + self.assertIsNotNone(out) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_norm_op.py b/python/paddle/fluid/tests/unittests/test_norm_op.py index 22bc45ff1ea0efea0ec766a6a9e819cdd81b0866..a424260312eab850e579b4365efd071de599bd4f 100644 --- a/python/paddle/fluid/tests/unittests/test_norm_op.py +++ b/python/paddle/fluid/tests/unittests/test_norm_op.py @@ -63,5 +63,27 @@ class TestNormOp3(TestNormOp): self.epsilon = 1e-8 +class TestNormOp4(TestNormOp): + def init_test_case(self): + self.shape = [128, 1024, 14, 14] + self.axis = 2 + self.epsilon = 1e-8 + + def test_check_grad(self): + # since the gradient check is very slow in large shape, so skip check_grad + pass + + +class TestNormOp5(TestNormOp): + def init_test_case(self): + self.shape = [2048, 2048] + self.axis = 1 + self.epsilon = 1e-8 + + def test_check_grad(self): + # since the gradient check is very slow in large shape, so skip check_grad + pass + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py b/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py index 5ad922725a0b692e28552737a99b745ed09ddbd5..a55b2002ed989d4588716202a37aa6f4139825ea 100644 --- a/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor_transformer.py @@ -20,6 +20,7 @@ import numpy as np from parallel_executor_test_base import TestParallelExecutorBase import unittest import paddle +import paddle.fluid.core as core import paddle.dataset.wmt16 as wmt16 import os @@ -170,7 +171,8 @@ class TestTransformer(TestParallelExecutorBase): writer.complete_append_tensor() def test_main(self): - self.check_network_convergence(transformer, use_cuda=True) + if core.is_compiled_with_cuda(): + self.check_network_convergence(transformer, use_cuda=True) self.check_network_convergence(transformer, use_cuda=False, iter=5) diff --git a/python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py b/python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py index 931cac409f26fce4ecca18c4b0cfcca2e675046f..b7fad9b3a60632adb564e1d155a3d935706b467f 100644 --- a/python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py +++ b/python/paddle/fluid/tests/unittests/test_py_reader_using_executor.py @@ -96,7 +96,8 @@ class TestPyReaderUsingExecutor(unittest.TestCase): self.queue_capacity = 50 def test(self): - for use_cuda in [False, True]: + for use_cuda in ([False, True] + if core.is_compiled_with_cuda() else [False]): for use_parallel_executor in [False, True]: for use_double_buffer in [False, True]: print('Test Parameters:'), diff --git a/python/paddle/fluid/tests/unittests/test_reader_reset.py b/python/paddle/fluid/tests/unittests/test_reader_reset.py index 8ad11d76f683d556f05cafc3251acc942efef72f..e97a05b6f929821f82d96b462598a5ff03cf0a48 100644 --- a/python/paddle/fluid/tests/unittests/test_reader_reset.py +++ b/python/paddle/fluid/tests/unittests/test_reader_reset.py @@ -13,7 +13,7 @@ # limitations under the License. from __future__ import print_function - +import os import paddle.fluid as fluid import paddle import numpy as np @@ -41,6 +41,8 @@ class TestReaderReset(unittest.TestCase): self.data_file_name, reader, feeder) def setUp(self): + # set parallel threads to fit 20 batches in line 49 + os.environ['CPU_NUM'] = str(20) self.use_cuda = fluid.core.is_compiled_with_cuda() self.data_file_name = './reader_reset_test.recordio' self.ins_shape = [3] diff --git a/python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py b/python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py index bd548009b3ada9512e4b5f7d7b61b67b0717a39b..f63dbcd3d7f6bfce3ccc1c42ae41afe42bfad003 100644 --- a/python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py +++ b/python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py @@ -19,48 +19,58 @@ import numpy as np import paddle.fluid.core as core from op_test import OpTest from test_anchor_generator_op import anchor_generator_in_python -from test_generate_proposal_labels import _generate_groundtruth -from test_generate_proposal_labels import _bbox_overlaps, _box_to_delta - - -def rpn_target_assign(gt_anchor_iou, rpn_batch_size_per_im, - rpn_positive_overlap, rpn_negative_overlap, fg_fraction): - iou = np.transpose(gt_anchor_iou) - anchor_to_gt_max = iou.max(axis=1) - anchor_to_gt_argmax = iou.argmax(axis=1) - - gt_to_anchor_argmax = iou.argmax(axis=0) - gt_to_anchor_max = iou[gt_to_anchor_argmax, np.arange(iou.shape[1])] - anchors_with_max_overlap = np.where(iou == gt_to_anchor_max)[0] - - tgt_lbl = np.ones((iou.shape[0], ), dtype=np.int32) * -1 - tgt_lbl[anchors_with_max_overlap] = 1 - tgt_lbl[anchor_to_gt_max >= rpn_positive_overlap] = 1 - - num_fg = int(fg_fraction * rpn_batch_size_per_im) - fg_inds = np.where(tgt_lbl == 1)[0] - if len(fg_inds) > num_fg: +from test_generate_proposal_labels_op import _generate_groundtruth +from test_generate_proposal_labels_op import _bbox_overlaps, _box_to_delta + + +def rpn_target_assign(anchor_by_gt_overlap, + rpn_batch_size_per_im, + rpn_positive_overlap, + rpn_negative_overlap, + rpn_fg_fraction, + use_random=True): + anchor_to_gt_argmax = anchor_by_gt_overlap.argmax(axis=1) + anchor_to_gt_max = anchor_by_gt_overlap[np.arange( + anchor_by_gt_overlap.shape[0]), anchor_to_gt_argmax] + + gt_to_anchor_argmax = anchor_by_gt_overlap.argmax(axis=0) + gt_to_anchor_max = anchor_by_gt_overlap[gt_to_anchor_argmax, np.arange( + anchor_by_gt_overlap.shape[1])] + anchors_with_max_overlap = np.where( + anchor_by_gt_overlap == gt_to_anchor_max)[0] + + labels = np.ones((anchor_by_gt_overlap.shape[0], ), dtype=np.int32) * -1 + labels[anchors_with_max_overlap] = 1 + labels[anchor_to_gt_max >= rpn_positive_overlap] = 1 + + num_fg = int(rpn_fg_fraction * rpn_batch_size_per_im) + fg_inds = np.where(labels == 1)[0] + if len(fg_inds) > num_fg and use_random: disable_inds = np.random.choice( fg_inds, size=(len(fg_inds) - num_fg), replace=False) - tgt_lbl[disable_inds] = -1 - fg_inds = np.where(tgt_lbl == 1)[0] + else: + disable_inds = fg_inds[num_fg:] + labels[disable_inds] = -1 + fg_inds = np.where(labels == 1)[0] - num_bg = rpn_batch_size_per_im - np.sum(tgt_lbl == 1) + num_bg = rpn_batch_size_per_im - np.sum(labels == 1) bg_inds = np.where(anchor_to_gt_max < rpn_negative_overlap)[0] - tgt_lbl[bg_inds] = 0 - if len(bg_inds) > num_bg: + if len(bg_inds) > num_bg and use_random: enable_inds = bg_inds[np.random.randint(len(bg_inds), size=num_bg)] - tgt_lbl[enable_inds] = 0 - bg_inds = np.where(tgt_lbl == 0)[0] - tgt_lbl[bg_inds] = 0 + else: + enable_inds = bg_inds[:num_bg] + labels[enable_inds] = 0 + fg_inds = np.where(labels == 1)[0] + bg_inds = np.where(labels == 0)[0] loc_index = fg_inds score_index = np.hstack((fg_inds, bg_inds)) - tgt_lbl = np.expand_dims(tgt_lbl, axis=1) + labels = labels[score_index] + assert not np.any(labels == -1), "Wrong labels with -1" gt_inds = anchor_to_gt_argmax[fg_inds] - return loc_index, score_index, tgt_lbl, gt_inds + return loc_index, score_index, labels, gt_inds def get_anchor(n, c, h, w): @@ -75,85 +85,129 @@ def get_anchor(n, c, h, w): return anchors -def rpn_blob(anchor, gt_boxes, iou, lod, rpn_batch_size_per_im, - rpn_positive_overlap, rpn_negative_overlap, fg_fraction): - - loc_indexes = [] - score_indexes = [] - tmp_tgt_labels = [] - tgt_bboxes = [] - anchor_num = anchor.shape[0] - +def rpn_target_assign_in_python(all_anchors, + gt_boxes, + is_crowd, + im_info, + lod, + rpn_straddle_thresh, + rpn_batch_size_per_im, + rpn_positive_overlap, + rpn_negative_overlap, + rpn_fg_fraction, + use_random=True): + anchor_num = all_anchors.shape[0] batch_size = len(lod) - 1 for i in range(batch_size): + im_height = im_info[i][0] + im_width = im_info[i][1] + im_scale = im_info[i][2] + if rpn_straddle_thresh >= 0: + # Only keep anchors inside the image by a margin of straddle_thresh + inds_inside = np.where( + (all_anchors[:, 0] >= -rpn_straddle_thresh) & + (all_anchors[:, 1] >= -rpn_straddle_thresh) & ( + all_anchors[:, 2] < im_width + rpn_straddle_thresh) & ( + all_anchors[:, 3] < im_height + rpn_straddle_thresh))[0] + # keep only inside anchors + inside_anchors = all_anchors[inds_inside, :] + else: + inds_inside = np.arange(all_anchors.shape[0]) + inside_anchors = all_anchors + b, e = lod[i], lod[i + 1] - iou_slice = iou[b:e, :] - bboxes_slice = gt_boxes[b:e, :] + gt_boxes_slice = gt_boxes[b:e, :] * im_scale + is_crowd_slice = is_crowd[b:e] - loc_idx, score_idx, tgt_lbl, gt_inds = rpn_target_assign( - iou_slice, rpn_batch_size_per_im, rpn_positive_overlap, - rpn_negative_overlap, fg_fraction) + not_crowd_inds = np.where(is_crowd_slice == 0)[0] + gt_boxes_slice = gt_boxes_slice[not_crowd_inds] + iou = _bbox_overlaps(inside_anchors, gt_boxes_slice) - fg_bboxes = bboxes_slice[gt_inds] - fg_anchors = anchor[loc_idx] - box_deltas = _box_to_delta(fg_anchors, fg_bboxes, [1., 1., 1., 1.]) + loc_inds, score_inds, labels, gt_inds = rpn_target_assign( + iou, rpn_batch_size_per_im, rpn_positive_overlap, + rpn_negative_overlap, rpn_fg_fraction, use_random) + # unmap to all anchor + loc_inds = inds_inside[loc_inds] + score_inds = inds_inside[score_inds] + + sampled_gt = gt_boxes_slice[gt_inds] + sampled_anchor = all_anchors[loc_inds] + box_deltas = _box_to_delta(sampled_anchor, sampled_gt, [1., 1., 1., 1.]) if i == 0: - loc_indexes = loc_idx - score_indexes = score_idx - tmp_tgt_labels = tgt_lbl + loc_indexes = loc_inds + score_indexes = score_inds + tgt_labels = labels tgt_bboxes = box_deltas else: loc_indexes = np.concatenate( - [loc_indexes, loc_idx + i * anchor_num]) + [loc_indexes, loc_inds + i * anchor_num]) score_indexes = np.concatenate( - [score_indexes, score_idx + i * anchor_num]) - tmp_tgt_labels = np.concatenate([tmp_tgt_labels, tgt_lbl]) + [score_indexes, score_inds + i * anchor_num]) + tgt_labels = np.concatenate([tgt_labels, labels]) tgt_bboxes = np.vstack([tgt_bboxes, box_deltas]) - tgt_labels = tmp_tgt_labels[score_indexes] return loc_indexes, score_indexes, tgt_bboxes, tgt_labels class TestRpnTargetAssignOp(OpTest): def setUp(self): n, c, h, w = 2, 4, 14, 14 - anchor = get_anchor(n, c, h, w) + all_anchors = get_anchor(n, c, h, w) gt_num = 10 - anchor = anchor.reshape(-1, 4) - anchor_num = anchor.shape[0] - - im_shapes = [[64, 64], [64, 64]] - gt_box, lod = _generate_groundtruth(im_shapes, 3, 4) - bbox = np.vstack([v['boxes'] for v in gt_box]) - - iou = _bbox_overlaps(bbox, anchor) - - anchor = anchor.astype('float32') - bbox = bbox.astype('float32') - iou = iou.astype('float32') - - loc_index, score_index, tgt_bbox, tgt_lbl = rpn_blob( - anchor, bbox, iou, [0, 4, 8], 25600, 0.95, 0.03, 0.25) + all_anchors = all_anchors.reshape(-1, 4) + anchor_num = all_anchors.shape[0] + + images_shape = [[64, 64], [64, 64]] + #images_shape = [[64, 64]] + groundtruth, lod = _generate_groundtruth(images_shape, 3, 4) + lod = [0, 4, 8] + #lod = [0, 4] + + im_info = np.ones((len(images_shape), 3)).astype(np.float32) + for i in range(len(images_shape)): + im_info[i, 0] = images_shape[i][0] + im_info[i, 1] = images_shape[i][1] + im_info[i, 2] = 0.8 #scale + gt_boxes = np.vstack([v['boxes'] for v in groundtruth]) + is_crowd = np.hstack([v['is_crowd'] for v in groundtruth]) + + all_anchors = all_anchors.astype('float32') + gt_boxes = gt_boxes.astype('float32') + + rpn_straddle_thresh = 0.0 + rpn_batch_size_per_im = 256 + rpn_positive_overlap = 0.7 + rpn_negative_overlap = 0.3 + rpn_fg_fraction = 0.5 + use_random = False + + loc_index, score_index, tgt_bbox, labels = rpn_target_assign_in_python( + all_anchors, gt_boxes, is_crowd, im_info, lod, rpn_straddle_thresh, + rpn_batch_size_per_im, rpn_positive_overlap, rpn_negative_overlap, + rpn_fg_fraction, use_random) + labels = labels[:, np.newaxis] self.op_type = "rpn_target_assign" self.inputs = { - 'Anchor': anchor, - 'GtBox': (bbox, [[4, 4]]), - 'DistMat': (iou, [[4, 4]]), + 'Anchor': all_anchors, + 'GtBoxes': (gt_boxes, [[4, 4]]), + 'IsCrowd': (is_crowd, [[4, 4]]), + 'ImInfo': (im_info, [[1, 1]]) } self.attrs = { - 'rpn_batch_size_per_im': 25600, - 'rpn_positive_overlap': 0.95, - 'rpn_negative_overlap': 0.03, - 'fg_fraction': 0.25, - 'fix_seed': True + 'rpn_batch_size_per_im': rpn_batch_size_per_im, + 'rpn_straddle_thresh': rpn_straddle_thresh, + 'rpn_positive_overlap': rpn_positive_overlap, + 'rpn_negative_overlap': rpn_negative_overlap, + 'rpn_fg_fraction': rpn_fg_fraction, + 'use_random': use_random } self.outputs = { 'LocationIndex': loc_index.astype('int32'), 'ScoreIndex': score_index.astype('int32'), 'TargetBBox': tgt_bbox.astype('float32'), - 'TargetLabel': tgt_lbl.astype('int64'), + 'TargetLabel': labels.astype('int32') } def test_check_output(self): diff --git a/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py b/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py index b7e5ff6d52ad7dde3dd94b3bd660cfca383e1ada..a18941dd3126ac027f022ddafbbaed8516166233 100644 --- a/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py +++ b/python/paddle/fluid/tests/unittests/test_softmax_with_cross_entropy_op.py @@ -88,5 +88,40 @@ class TestSoftmaxWithCrossEntropyOp2(OpTest): self.check_grad(["Logits"], "Loss") +class TestSoftmaxWithCrossEntropyOp3(OpTest): + """ + Test softmax with cross entropy operator with ignore_index. + """ + + def setUp(self): + self.op_type = "softmax_with_cross_entropy" + batch_size = 41 + class_num = 37 + + logits = np.random.uniform(0.1, 1.0, + [batch_size, class_num]).astype("float64") + softmax = np.apply_along_axis(stable_softmax, 1, logits) + labels = np.random.randint(0, class_num, [batch_size, 1], dtype="int64") + ignore_index = 7 + cross_entropy = np.asmatrix( + [[-np.log(softmax[i][labels[i][0]])] + if labels[i] != ignore_index else [0] + for i in range(softmax.shape[0])], + dtype="float64") + + self.inputs = {"Logits": logits, "Label": labels} + self.outputs = { + "Softmax": softmax.astype("float64"), + "Loss": cross_entropy.astype("float64") + } + self.attrs = {"ignore_index": ignore_index} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["Logits"], "Loss") + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/fluid/transpiler/details/__init__.py b/python/paddle/fluid/transpiler/details/__init__.py index 5e98266a761c7e01bd6668e85e6adeb54103ca80..f33c05ed2f48c2498b98fc486d6ff7471088d77e 100644 --- a/python/paddle/fluid/transpiler/details/__init__.py +++ b/python/paddle/fluid/transpiler/details/__init__.py @@ -16,3 +16,4 @@ from __future__ import print_function from .program_utils import * from .ufind import * +from .checkport import * diff --git a/python/paddle/fluid/transpiler/details/checkport.py b/python/paddle/fluid/transpiler/details/checkport.py new file mode 100644 index 0000000000000000000000000000000000000000..7bad4b427a2d53bd14c7a1f870ce74a883158d04 --- /dev/null +++ b/python/paddle/fluid/transpiler/details/checkport.py @@ -0,0 +1,50 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import time +import socket +from contextlib import closing + + +def wait_server_ready(endpoints): + """ + Wait until parameter servers are ready, use connext_ex to detect + port readiness. + + Args: + endpoints (list): endpoints string list, like: + ["127.0.0.1:8080", "127.0.0.1:8081"] + + Examples: + .. code-block:: python + + wait_server_ready(["127.0.0.1:8080", "127.0.0.1:8081"]) + """ + while True: + all_ok = True + for ep in endpoints: + ip_port = ep.split(":") + with closing(socket.socket(socket.AF_INET, + socket.SOCK_STREAM)) as sock: + sock.settimeout(2) + result = sock.connect_ex((ip_port[0], int(ip_port[1]))) + if result != 0: + all_ok = False + if not all_ok: + sys.stderr.write("pserver not ready, wait 3 sec to retry...\n") + sys.stderr.flush() + time.sleep(3) + else: + break diff --git a/python/paddle/fluid/transpiler/distribute_transpiler.py b/python/paddle/fluid/transpiler/distribute_transpiler.py index d4d218d547a394a56c040ade2a9ba703b691b86b..53c9cbe23dd82af866658fe46d1d631b0a3b26f3 100644 --- a/python/paddle/fluid/transpiler/distribute_transpiler.py +++ b/python/paddle/fluid/transpiler/distribute_transpiler.py @@ -381,7 +381,7 @@ class DistributeTranspiler(object): pserver_endpoints) self._split_table_grad_and_add_send_vars(program, pserver_endpoints) - def get_trainer_program(self): + def get_trainer_program(self, wait_port=True): """ Get transpiled trainer side program. @@ -393,6 +393,9 @@ class DistributeTranspiler(object): delete_ops(self.origin_program.global_block(), self.optimize_ops) self.origin_program.__str__() + if wait_port: + wait_server_ready(self.pserver_endpoints) + return self.origin_program def _get_trainer_startup_program(self, recv_vars, eplist): diff --git a/python/paddle/fluid/transpiler/inference_transpiler.py b/python/paddle/fluid/transpiler/inference_transpiler.py index f79fcb24bb5a48de00d03fc468b6526e48656d07..49ba2cfd55bc881ed753fcefbd41f5b8fd4ebaf7 100644 --- a/python/paddle/fluid/transpiler/inference_transpiler.py +++ b/python/paddle/fluid/transpiler/inference_transpiler.py @@ -60,13 +60,81 @@ class InferenceTranspiler(object): if not isinstance(scope, core.Scope): raise TypeError("scope should be as Scope type or None") use_mkldnn = bool(os.getenv("FLAGS_use_mkldnn", False)) + + self._fuse_batch_norm(program, place, scope) if use_mkldnn: - self._fuse_relu_mkldnn(program) self._fuse_conv_bias_mkldnn(program) - else: - self._fuse_batch_norm(program, place, scope) + self._fuse_conv_relu_mkldnn(program) + self._fuse_conv_eltwise_mkldnn(program) + self._fuse_conv_relu_mkldnn( + program) # ResNet residual block merging + self._fuse_bn_relu_mkldnn(program) + + def _fuse_conv_eltwise_mkldnn(self, program): + ''' + Transpile the program fusing elementwise_add into conv for MKLDNN + program. Elementwise add following convolution OP can be fused by adding + 'fuse_eltwise' attribute to convolution OP and replacing its output + Tensor with second parameter of elementwise_add. + The result of fuse is: + - before: + - conv->elementwise_add->any_other_op + - after: + - conv->any_other_op + :param program: program to transpile + :type program: Program + ''' + self.block = program.block(0) + + i = 0 + while i < len(self.block.ops): + current_op = self.block.ops[i] + if current_op.type in ['conv2d']: + next_op = self.block.ops[i + 1] + if next_op.type == 'elementwise_add': + self._fuse_conv_eltwise(current_op, next_op) + self.block._remove_op(i + 1) # Remove elementwise_add + i = i + 1 + self._adjust_input() + self._remove_unused_var() + # TODO(luotao): use clone() method to flush the program.desc in force, + # since some large program.desc will not be flushed immediately. + # And a better solution will be considered later. + program = program.clone() + + def _fuse_conv_relu_mkldnn(self, program): + ''' + Transpile the program by fused relu activation for MKLDNN program. + Relu activation following convolution OP can be fused by adding + 'fuse_relu' attribute to convolution OP. + The result of fuse is: + - before: + - conv->relu->any_other_op + - after: + - conv->any_other_op + :param program: program to transpile + :type program: Program + ''' + self.block = program.block(0) + + i = 0 + while i < len(self.block.ops): + current_op = self.block.ops[i] + if current_op.type in ['conv2d']: + next_op = self.block.ops[i + 1] + if next_op.type == 'relu': + # modify bnorm OP to include relu + current_op.set_attr("fuse_relu", True) + # remove relu OP + self.block._remove_op(i + 1) + i = i + 1 - def _fuse_relu_mkldnn(self, program): + # TODO(luotao): use clone() method to flush the program.desc in force, + # since some large program.desc will not be flushed immediately. + # And a better solution will be considered later. + program = program.clone() + + def _fuse_bn_relu_mkldnn(self, program): ''' Transpile the program by fused relu activation for MKLDNN program. @@ -160,7 +228,6 @@ class InferenceTranspiler(object): self._fuse_conv_bias(i, current_op, next_op) self.block._remove_op(i + 1) # Remove old conv self.block._remove_op(i + 1) # Remove elementwise_add - i = i + 1 i = i + 1 self._remove_unused_var() @@ -377,6 +444,20 @@ class InferenceTranspiler(object): outputs={"Output": out_var}, attrs=attrs) + def _fuse_conv_eltwise(self, conv_op, eltwise_op): + ''' + fuse the conv op with elementwise_add + + :param conv_op: convolution operator + :type conv_op: Operator + :param eltwise_op: operator adding data from skip connection + :type eltwise_op: Operator + ''' + + conv_op.set_attr("fuse_eltwise", True) + self.input_map[conv_op.output("Output")[0]] = eltwise_op.input("Y")[0] + self.input_map[eltwise_op.output("Out")[0]] = eltwise_op.input("Y")[0] + def _adjust_input(self): for i in range(len(self.block.ops)): current_op = self.block.ops[i] diff --git a/python/paddle/reader/decorator.py b/python/paddle/reader/decorator.py index 6d7ac876fdf65fe0e85cceb94c311a93d9ea39c2..5b9459b670ac8583ee0e65a3c1b51f6248bb6303 100644 --- a/python/paddle/reader/decorator.py +++ b/python/paddle/reader/decorator.py @@ -14,11 +14,14 @@ __all__ = [ 'map_readers', 'buffered', 'compose', 'chain', 'shuffle', - 'ComposeNotAligned', 'firstn', 'xmap_readers', 'PipeReader' + 'ComposeNotAligned', 'firstn', 'xmap_readers', 'PipeReader', + 'multiprocess_reader' ] from threading import Thread import subprocess +import multiprocessing +import sys from six.moves.queue import Queue from six.moves import zip_longest @@ -332,6 +335,100 @@ def xmap_readers(mapper, reader, process_num, buffer_size, order=False): return xreader +def multiprocess_reader(readers, use_pipe=True, queue_size=1000): + """ + multiprocess_reader use python multi process to read data from readers + and then use multiprocess.Queue or multiprocess.Pipe to merge all + data. The process number is equal to the number of input readers, each + process call one reader. + + Multiprocess.Queue require the rw access right to /dev/shm, some + platform does not support. + + you need to create multiple readers first, these readers should be independent + to each other so that each process can work independently. + + An example: + + .. code-block:: python + + reader0 = reader(["file01", "file02"]) + reader1 = reader(["file11", "file12"]) + reader1 = reader(["file21", "file22"]) + reader = multiprocess_reader([reader0, reader1, reader2], + queue_size=100, use_pipe=False) + """ + + try: + import ujson as json + except Exception as e: + sys.stderr.write("import ujson error: " + str(e) + " use json\n") + import json + + assert type(readers) is list and len(readers) > 0 + + def _read_into_queue(reader, queue): + for sample in reader(): + if sample is None: + raise ValueError("sample has None") + queue.put(sample) + queue.put(None) + + def queue_reader(): + queue = multiprocessing.Queue(queue_size) + for reader in readers: + p = multiprocessing.Process( + target=_read_into_queue, args=(reader, queue)) + p.start() + + reader_num = len(readers) + finish_num = 0 + while finish_num < reader_num: + sample = queue.get() + if sample is None: + finish_num += 1 + else: + yield sample + + def _read_into_pipe(reader, conn): + for sample in reader(): + if sample is None: + raise ValueError("sample has None!") + conn.send(json.dumps(sample)) + conn.send(json.dumps(None)) + conn.close() + + def pipe_reader(): + conns = [] + for reader in readers: + parent_conn, child_conn = multiprocessing.Pipe() + conns.append(parent_conn) + p = multiprocessing.Process( + target=_read_into_pipe, args=(reader, child_conn)) + p.start() + + reader_num = len(readers) + finish_num = 0 + conn_to_remove = [] + while finish_num < reader_num: + for conn in conn_to_remove: + conns.remove(conn) + conn_to_remove = [] + for conn in conns: + sample = json.loads(conn.recv()) + if sample is None: + finish_num += 1 + conn.close() + conn_to_remove.append(conn) + else: + yield sample + + if use_pipe: + return pipe_reader + else: + return queue_reader + + def _buf2lines(buf, line_break="\n"): # FIXME: line_break should be automatically configured. lines = buf.split(line_break) diff --git a/python/paddle/reader/tests/decorator_test.py b/python/paddle/reader/tests/decorator_test.py index 537df489b9738864933b3a7922d178701db3d19f..c324092f8850e4bd64955aa9c987746b5cec54b5 100644 --- a/python/paddle/reader/tests/decorator_test.py +++ b/python/paddle/reader/tests/decorator_test.py @@ -14,6 +14,7 @@ import time import unittest +import functools import paddle.reader @@ -174,5 +175,33 @@ class TestPipeReader(unittest.TestCase): temp.close() +class TestMultiProcessReader(unittest.TestCase): + def setup(self): + self.samples = [] + for i in range(1000): + self.samples.append([[i], [i + 1, i + 2], i + 3]) + + def reader(index): + for i in range(len(self.samples)): + if i % 3 == index: + yield self.samples[i] + + self.reader0 = functools.partial(reader, 0) + self.reader1 = functools.partial(reader, 1) + self.reader2 = functools.partial(reader, 2) + + def reader_test(self, use_pipe): + self.setup() + results = [] + for data in paddle.reader.multiprocess_reader( + [self.reader0, self.reader1, self.reader2], 100, use_pipe)(): + results.append(data) + self.assertEqual(sorted(self.samples), sorted(results)) + + def test_multi_process_reader(self): + self.reader_test(use_pipe=False) + self.reader_test(use_pipe=True) + + if __name__ == '__main__': unittest.main()