未验证 提交 fd949c73 编写于 作者: U user1018 提交者: GitHub

Update layout (#6710)

上级 d446fd2f
...@@ -11,31 +11,36 @@ ...@@ -11,31 +11,36 @@
### 1.1 数据集 ### 1.1 数据集
训练版面分析模型时主要用到了以下几个数据集。 使用[PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet)训练英文文档版面分析模型,该数据面向英文文献类(论文)场景,分别训练集(333,703张标注图片)、验证集(11,245张标注图片)和测试集(11,405张图片),包含5类:Table、Figure、Title、Text、List,更多[版面分析数据集](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/layout/README.md#32)
| dataset | 简介 |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| [cTDaR2019_cTDaR](https://cndplab-founder.github.io/cTDaR2019/) | 用于表格检测(TRACKA)和表格识别(TRACKB)。图片类型包含历史数据集(以cTDaR_t0开头,如cTDaR_t00872.jpg)和现代数据集(以cTDaR_t1开头,cTDaR_t10482.jpg)。 |
| [IIIT-AR-13K](http://cvit.iiit.ac.in/usodi/iiitar13k.php) | 手动注释公开的年度报告中的图形或页面而构建的数据集,包含5类:table, figure, natural image, logo, and signature |
| [CDLA](https://github.com/buptlihang/CDLA) | 中文文档版面分析数据集,面向中文文献类(论文)场景,包含10类:Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation |
| [TableBank](https://github.com/doc-analysis/TableBank) | 用于表格检测和识别大型数据集,包含Word和Latex2种文档格式 |
| [DocBank](https://github.com/doc-analysis/DocBank) | 使用弱监督方法构建的大规模数据集(500K文档页面),用于文档布局分析,包含12类:Author、Caption、Date、Equation、Figure、Footer、List、Paragraph、Reference、Section、Table、Title |
### 1.2 模型库 ### 1.2 模型库
使用PicoDet模型在PubLayNet数据集进行训练,同时采用FGD蒸馏,预训练模型如下:
| 模型 | 图像输入尺寸 | mAP<sup>val<br/>0.5 | 下载地址 | 配置文件 | | 模型 | 图像输入尺寸 | mAP<sup>val<br/>0.5 | 下载地址 | 配置文件 |
| :-------- | :--------: | :----------------: | :---------------: | ----------------- | | :-------- | :--------: | :----------------: | :---------------: | ----------------- |
| PicoDet-LCNet_x1_0 | 800*608 | 93.5 | [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout.pdparams) &#124; [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) | [config](./picodet_lcnet_x1_0_layout.yml) | | PicoDet-LCNet_x1_0 | 800*608 | 93.5% | [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout.pdparams) &#124; [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout_infer.tar) | [config](./picodet_lcnet_x1_0_layout.yml) |
| PicoDet-LCNet_x1_0 + FGD | 800*608 | 94 | [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) &#124; [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout_infer.tar) | [teacher config](./picodet_lcnet_x2_5_layout.yml)&#124;[student config](./picodet_lcnet_x1_0_layout.yml) | | PicoDet-LCNet_x1_0 + FGD | 800*608 | 94.0% | [trained model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout.pdparams) &#124; [inference model](https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar) | [teacher config](./picodet_lcnet_x2_5_layout.yml)&#124;[student config](./picodet_lcnet_x1_0_layout.yml) |
[FGD蒸馏介绍](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/slim/distill/README.md)
### 1.3 模型推理 ### 1.3 模型推理
下载模型库中的inference_model模型,版面恢复任务进行推理,可以执行如下命令: 了解版面分析整个流程(数据准备、模型训练、评估等),请参考[版面分析](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppstructure/layout/README.md),这里仅展示模型推理过程。首先下载模型库中的inference_model模型。
```
mkdir inference_model
cd inference_model
# 下载并解压PubLayNet推理模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar && tar xf picodet_lcnet_x1_0_fgd_layout_infer.tar
cd ..
```
版面恢复任务进行推理,可以执行如下命令:
```bash ```bash
python3 deploy/python/infer.py \ python3 deploy/python/infer.py \
--model_dir=picodet_lcnet_x1_0_layout/ \ --model_dir=inference_model/picodet_lcnet_x1_0_fgd_layout_infer/ \
--image_file=docs/images/layout.jpg \ --image_file=docs/images/layout.jpg \
--device=CPU --device=CPU
``` ```
...@@ -46,3 +51,6 @@ python3 deploy/python/infer.py \ ...@@ -46,3 +51,6 @@ python3 deploy/python/infer.py \
<img src="images/layout_res.jpg" width="800"> <img src="images/layout_res.jpg" width="800">
</div> </div>
## 2 Reference
[1] Zhong X, Tang J, Yepes A J. Publaynet: largest dataset ever for document layout analysis[C]//2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019: 1015-1022.
...@@ -44,6 +44,10 @@ TestDataset: ...@@ -44,6 +44,10 @@ TestDataset:
worker_num: 8 worker_num: 8
eval_height: &eval_height 800
eval_width: &eval_width 608
eval_size: &eval_size [*eval_height, *eval_width]
TrainReader: TrainReader:
sample_transforms: sample_transforms:
- Decode: {} - Decode: {}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册