Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
fca6a9c4
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fca6a9c4
编写于
9月 22, 2020
作者:
W
wangxinxin08
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add augmentation ops
fix bugs
上级
caf816a2
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
453 addition
and
16 deletion
+453
-16
ppdet/data/transform/op_helper.py
ppdet/data/transform/op_helper.py
+66
-15
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+387
-1
未找到文件。
ppdet/data/transform/op_helper.py
浏览文件 @
fca6a9c4
...
...
@@ -61,7 +61,10 @@ def is_overlap(object_bbox, sample_bbox):
return
True
def
filter_and_process
(
sample_bbox
,
bboxes
,
labels
,
scores
=
None
,
def
filter_and_process
(
sample_bbox
,
bboxes
,
labels
,
scores
=
None
,
keypoints
=
None
):
new_bboxes
=
[]
new_labels
=
[]
...
...
@@ -92,8 +95,8 @@ def filter_and_process(sample_bbox, bboxes, labels, scores=None,
for
j
in
range
(
len
(
sample_keypoint
)):
kp_len
=
sample_height
if
j
%
2
else
sample_width
sample_coord
=
sample_bbox
[
1
]
if
j
%
2
else
sample_bbox
[
0
]
sample_keypoint
[
j
]
=
(
sample_keypoint
[
j
]
-
sample_coord
)
/
kp_len
sample_keypoint
[
j
]
=
(
sample_keypoint
[
j
]
-
sample_coord
)
/
kp_len
sample_keypoint
[
j
]
=
max
(
min
(
sample_keypoint
[
j
],
1.0
),
0.0
)
new_keypoints
.
append
(
sample_keypoint
)
new_kp_ignore
.
append
(
keypoints
[
1
][
i
])
...
...
@@ -261,12 +264,12 @@ def jaccard_overlap(sample_bbox, object_bbox):
intersect_ymin
=
max
(
sample_bbox
[
1
],
object_bbox
[
1
])
intersect_xmax
=
min
(
sample_bbox
[
2
],
object_bbox
[
2
])
intersect_ymax
=
min
(
sample_bbox
[
3
],
object_bbox
[
3
])
intersect_size
=
(
intersect_xmax
-
intersect_xmin
)
*
(
intersect_ymax
-
intersect_ymin
)
intersect_size
=
(
intersect_xmax
-
intersect_xmin
)
*
(
intersect_ymax
-
intersect_ymin
)
sample_bbox_size
=
bbox_area
(
sample_bbox
)
object_bbox_size
=
bbox_area
(
object_bbox
)
overlap
=
intersect_size
/
(
sample_bbox_size
+
object_bbox_size
-
intersect_size
)
overlap
=
intersect_size
/
(
sample_bbox_size
+
object_bbox_size
-
intersect_size
)
return
overlap
...
...
@@ -276,8 +279,10 @@ def intersect_bbox(bbox1, bbox2):
intersection_box
=
[
0.0
,
0.0
,
0.0
,
0.0
]
else
:
intersection_box
=
[
max
(
bbox1
[
0
],
bbox2
[
0
]),
max
(
bbox1
[
1
],
bbox2
[
1
]),
min
(
bbox1
[
2
],
bbox2
[
2
]),
min
(
bbox1
[
3
],
bbox2
[
3
])
max
(
bbox1
[
0
],
bbox2
[
0
]),
max
(
bbox1
[
1
],
bbox2
[
1
]),
min
(
bbox1
[
2
],
bbox2
[
2
]),
min
(
bbox1
[
3
],
bbox2
[
3
])
]
return
intersection_box
...
...
@@ -401,8 +406,8 @@ def crop_image_sampling(img, sample_bbox, image_width, image_height,
sample_img
[
roi_y1
:
roi_y2
,
roi_x1
:
roi_x2
]
=
\
img
[
cross_y1
:
cross_y2
,
cross_x1
:
cross_x2
]
sample_img
=
cv2
.
resize
(
sample_img
,
(
target_size
,
target_size
),
interpolation
=
cv2
.
INTER_AREA
)
sample_img
=
cv2
.
resize
(
sample_img
,
(
target_size
,
target_size
),
interpolation
=
cv2
.
INTER_AREA
)
return
sample_img
...
...
@@ -449,8 +454,8 @@ def draw_gaussian(heatmap, center, radius, k=1, delte=6):
top
,
bottom
=
min
(
y
,
radius
),
min
(
height
-
y
,
radius
+
1
)
masked_heatmap
=
heatmap
[
y
-
top
:
y
+
bottom
,
x
-
left
:
x
+
right
]
masked_gaussian
=
gaussian
[
radius
-
top
:
radius
+
bottom
,
radius
-
left
:
radius
+
right
]
masked_gaussian
=
gaussian
[
radius
-
top
:
radius
+
bottom
,
radius
-
left
:
radius
+
right
]
np
.
maximum
(
masked_heatmap
,
masked_gaussian
*
k
,
out
=
masked_heatmap
)
...
...
@@ -458,7 +463,53 @@ def gaussian2D(shape, sigma_x=1, sigma_y=1):
m
,
n
=
[(
ss
-
1.
)
/
2.
for
ss
in
shape
]
y
,
x
=
np
.
ogrid
[
-
m
:
m
+
1
,
-
n
:
n
+
1
]
h
=
np
.
exp
(
-
(
x
*
x
/
(
2
*
sigma_x
*
sigma_x
)
+
y
*
y
/
(
2
*
sigma_y
*
sigma_y
)))
h
=
np
.
exp
(
-
(
x
*
x
/
(
2
*
sigma_x
*
sigma_x
)
+
y
*
y
/
(
2
*
sigma_y
*
sigma_y
)))
h
[
h
<
np
.
finfo
(
h
.
dtype
).
eps
*
h
.
max
()]
=
0
return
h
def
transform_bbox
(
bbox
,
label
,
M
,
w
,
h
,
area_thr
=
0.25
,
wh_thr
=
2
,
ar_thr
=
20
,
perspective
=
False
):
# rotate bbox
n
=
len
(
bbox
)
xy
=
np
.
ones
((
n
*
4
,
3
),
dtype
=
np
.
float32
)
xy
[:,
:
2
]
=
bbox
[:,
[
0
,
1
,
2
,
3
,
0
,
3
,
2
,
1
]].
reshape
(
n
*
4
,
2
)
xy
=
xy
@
M
.
T
if
perspective
:
xy
=
(
xy
[:,
:
2
]
/
xy
[:,
2
:
3
]).
reshape
(
n
,
8
)
else
:
xy
=
xy
[:,
:
2
].
reshape
(
n
,
8
)
# get new bboxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
new_bbox
=
np
.
concatenate
(
(
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
))).
reshape
(
4
,
n
).
T
# clip boxes
new_bbox
,
mask
=
clip_bbox
(
new_bbox
,
w
,
h
,
area_thr
)
new_label
=
label
[
mask
]
return
new_bbox
,
new_label
def
clip_bbox
(
bbox
,
w
,
h
,
area_thr
=
0.25
,
wh_thr
=
2
,
ar_thr
=
20
):
# clip boxes
area1
=
(
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]).
prod
(
1
)
bbox
[:,
[
0
,
2
]]
=
bbox
[:,
[
0
,
2
]].
clip
(
0
,
w
)
bbox
[:,
[
1
,
3
]]
=
bbox
[:,
[
1
,
3
]].
clip
(
0
,
h
)
# compute
area2
=
(
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]).
prod
(
1
)
area_ratio
=
area2
/
(
area1
+
1e-16
)
wh
=
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]
ar_ratio
=
np
.
maximum
(
wh
[:,
1
]
/
(
wh
[:,
0
]
+
1e-16
),
wh
[:,
0
]
/
(
wh
[:,
1
]
+
1e-16
))
mask
=
(
area_ratio
>
area_thr
)
&
(
(
wh
>
wh_thr
).
all
(
1
))
&
(
ar_ratio
<
ar_thr
)
bbox
=
bbox
[
mask
]
return
bbox
,
mask
ppdet/data/transform/operators.py
浏览文件 @
fca6a9c4
...
...
@@ -44,7 +44,7 @@ from .op_helper import (satisfy_sample_constraint, filter_and_process,
generate_sample_bbox
,
clip_bbox
,
data_anchor_sampling
,
satisfy_sample_constraint_coverage
,
crop_image_sampling
,
generate_sample_bbox_square
,
bbox_area_sampling
,
is_poly
,
gaussian_radius
,
draw_gaussian
)
is_poly
,
gaussian_radius
,
draw_gaussian
,
transform_bbox
,
clip_bbox
)
logger
=
logging
.
getLogger
(
__name__
)
...
...
@@ -2555,3 +2555,389 @@ class DebugVisibleImage(BaseOperator):
save_path
=
os
.
path
.
join
(
self
.
output_dir
,
out_file_name
)
image
.
save
(
save_path
,
quality
=
95
)
return
sample
@
register_op
class
Rotate
(
BaseOperator
):
def
__init__
(
self
,
degree
,
scale
=
1.0
,
center
=
None
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Rotate
,
self
).
__init__
()
self
.
degree
=
degree
self
.
scale
=
scale
self
.
center
=
center
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# rotate image
height
,
width
=
im
.
shape
[:
2
]
if
self
.
center
is
None
:
self
.
center
=
(
width
//
2
,
height
//
2
)
M
=
cv2
.
getRotationMatrix2D
(
self
.
center
,
self
.
degree
,
self
.
scale
)
im
=
cv2
.
warpAffine
(
im
,
M
,
(
width
,
height
),
borderValue
=
self
.
border_value
)
# rotate bbox
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
,
new_label
=
transform_bbox
(
bbox
,
label
,
M
,
width
,
height
,
self
.
area_thr
)
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomRotate
(
BaseOperator
):
def
__init__
(
self
,
degree
,
scale
=
0.0
,
center
=
None
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomRotate
,
self
).
__init__
()
if
isinstance
(
degree
,
(
int
,
float
)):
degree
=
abs
(
degree
)
degree
=
(
-
degree
,
degree
)
elif
isinstance
(
degree
,
list
)
or
isinstance
(
degree
,
tuple
):
assert
len
(
degree
)
==
2
,
'len of degree is not equal to 2'
else
:
raise
ValueError
(
'degree is not reasonable'
)
self
.
degree
=
degree
self
.
scale
=
scale
self
.
center
=
center
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
degree
=
random
.
uniform
(
*
self
.
degree
)
scale
=
random
.
uniform
(
1
-
self
.
scale
,
1
+
self
.
scale
)
rotate
=
Rotate
(
degree
,
scale
,
self
.
center
,
self
.
area_thr
,
self
.
border_value
)
return
rotate
(
sample
,
context
)
@
register_op
class
Shear
(
BaseOperator
):
def
__init__
(
self
,
shear
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Shear
,
self
).
__init__
()
if
isinstance
(
shear
,
(
int
,
float
)):
shear
=
(
shear
,
shear
)
elif
isinstance
(
shear
,
list
)
or
isinstance
(
shear
,
tuple
):
assert
len
(
shear
)
==
2
,
'len of shear is not equal to 2'
else
:
raise
ValueError
(
'shear is not reasonable'
)
self
.
shear
=
shear
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# shear image
height
,
width
=
im
.
shape
[:
2
]
shear_x
=
math
.
tan
(
self
.
shear
[
0
]
*
math
.
pi
/
180
)
shear_y
=
math
.
tan
(
self
.
shear
[
1
]
*
math
.
pi
/
180
)
M
=
np
.
array
([[
1
,
shear_x
,
0
],
[
shear_y
,
1
,
0
]])
im
=
cv2
.
warpAffine
(
im
,
M
,
(
width
,
height
),
borderValue
=
self
.
border_value
)
# shear box
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
,
new_label
=
transform_bbox
(
bbox
,
label
,
M
,
width
,
height
,
self
.
area_thr
)
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomShear
(
BaseOperator
):
def
__init__
(
self
,
shear_x
,
shear_y
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomShear
,
self
).
__init__
()
if
isinstance
(
shear_x
,
(
int
,
float
)):
shear_x
=
abs
(
shear_x
)
shear_x
=
(
-
shear_x
,
shear_x
)
elif
isinstance
(
shear_x
,
list
)
or
isinstance
(
shear_x
,
tuple
):
assert
len
(
shear_x
)
==
2
,
'len of shear_x is not equal to 2'
else
:
raise
ValueError
(
'shear_x is not reasonable'
)
if
isinstance
(
shear_y
,
(
int
,
float
)):
shear_y
=
abs
(
shear_y
)
shear_y
=
(
-
shear_y
,
shear_y
)
elif
isinstance
(
shear_y
,
list
)
or
isinstance
(
shear_y
,
tuple
):
assert
len
(
shear_y
)
==
2
,
'len of shear_y is not equal to 2'
else
:
raise
ValueError
(
'shear_y is not reasonable'
)
self
.
shear_x
=
shear_x
self
.
shear_y
=
shear_y
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
shear_x
=
random
.
uniform
(
*
self
.
shear_x
)
shear_y
=
random
.
uniform
(
*
self
.
shear_y
)
shear
=
Shear
((
shear_x
,
shear_y
),
self
.
area_thr
,
self
.
border_value
)
return
shear
(
sample
,
context
)
@
register_op
class
Translate
(
BaseOperator
):
def
__init__
(
self
,
translate
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Translate
,
self
).
__init__
()
if
isinstance
(
translate
,
(
int
,
float
)):
translate
=
(
translate
,
translate
)
elif
isinstance
(
translate
,
list
)
or
isinstance
(
translate
,
tuple
):
assert
len
(
translate
)
==
2
,
'len of translate is not equal to 2'
else
:
raise
ValueError
(
'translate is not reasonable'
)
assert
abs
(
translate
[
0
])
<
1
and
abs
(
translate
[
1
])
<
1
,
'translate should be in (-1, 1)'
self
.
translate
=
translate
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# translate image
height
,
width
=
im
.
shape
[:
2
]
translate_x
=
int
(
self
.
translate
[
0
]
*
width
)
translate_y
=
int
(
self
.
translate
[
1
]
*
height
)
dst_cords
=
[
max
(
0
,
translate_y
),
max
(
0
,
translate_x
),
min
(
height
,
translate_y
+
height
),
min
(
width
,
translate_x
+
width
)
]
src_cords
=
[
max
(
-
translate_y
,
0
),
max
(
-
translate_x
,
0
),
min
(
-
translate_y
+
height
,
height
),
min
(
-
translate_x
+
width
,
width
)
]
canvas
=
np
.
ones
(
im
.
shape
,
dtype
=
np
.
uint8
)
*
self
.
border_value
canvas
[
dst_cords
[
0
]:
dst_cords
[
2
],
dst_cords
[
1
]:
dst_cords
[
3
],
:]
=
im
[
src_cords
[
0
]:
src_cords
[
2
],
src_cords
[
1
]:
src_cords
[
3
],
:]
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
=
bbox
+
[
translate_x
,
translate_y
,
translate_x
,
translate_y
]
# compute
new_bbox
,
mask
=
clip_bbox
(
new_bbox
,
width
,
height
,
self
.
area_thr
)
new_label
=
label
[
mask
]
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
canvas
.
astype
(
np
.
uint8
)
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomTranslate
(
BaseOperator
):
def
__init__
(
self
,
translate_x
,
translate_y
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomTranslate
,
self
).
__init__
()
if
isinstance
(
translate_x
,
(
int
,
float
)):
translate_x
=
abs
(
translate_x
)
translate_x
=
(
-
translate_x
,
translate_x
)
elif
isinstance
(
translate_x
,
list
)
or
isinstance
(
translate_x
,
tuple
):
assert
len
(
translate_x
)
==
2
,
'len of translate_x is not equal to 2'
else
:
raise
ValueError
(
'translate_x is not reasonable'
)
if
isinstance
(
translate_y
,
(
int
,
float
)):
translate_y
=
abs
(
translate_y
)
translate_y
=
(
-
translate_y
,
translate_y
)
elif
isinstance
(
translate_y
,
list
)
or
isinstance
(
translate_y
,
tuple
):
assert
len
(
translate_y
)
==
2
,
'len of translate_y is not equal to 2'
else
:
raise
ValueError
(
'translate_y is not reasonable'
)
self
.
translate_x
=
translate_x
self
.
translate_y
=
translate_y
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
translate_x
=
random
.
uniform
(
*
self
.
translate_x
)
translate_y
=
random
.
uniform
(
*
self
.
translate_y
)
translate
=
Translate
((
translate_x
,
translate_y
),
self
.
area_thr
,
self
.
border_value
)
return
translate
(
sample
,
context
)
@
register_op
class
Scale
(
BaseOperator
):
def
__init__
(
self
,
scale
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
Scale
,
self
).
__init__
()
if
isinstance
(
scale
,
(
int
,
float
)):
scale
=
(
scale
,
scale
)
elif
isinstance
(
scale
,
list
)
or
isinstance
(
scale
,
tuple
):
assert
len
(
scale
)
==
2
,
'len of scale is not equal to 2'
else
:
raise
ValueError
(
'scale is not reasonable'
)
assert
scale
[
0
]
>
0.
and
scale
[
1
]
>
0.
,
'scale should be great than 0'
self
.
scale
=
scale
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
# scale image
height
,
width
=
im
.
shape
[:
2
]
dsize
=
(
int
(
self
.
scale
[
0
]
*
width
),
int
(
self
.
scale
[
1
]
*
height
))
dst_img
=
cv2
.
resize
(
im
,
dsize
)
canvas
=
np
.
ones_like
(
im
,
dtype
=
np
.
uint8
)
*
self
.
border_value
y_lim
=
min
(
height
,
dsize
[
1
])
x_lim
=
min
(
width
,
dsize
[
0
])
canvas
[:
y_lim
,
:
x_lim
,
:]
=
dst_img
[:
y_lim
,
:
x_lim
,
:]
# scale bbox
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
=
bbox
*
[
self
.
scale
[
0
],
self
.
scale
[
1
],
self
.
scale
[
0
],
self
.
scale
[
1
]]
new_bbox
,
mask
=
clip_bbox
(
new_bbox
,
width
,
height
,
self
.
area_thr
)
new_label
=
label
[
mask
]
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
canvas
.
astype
(
np
.
uint8
)
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
@
register_op
class
RandomScale
(
BaseOperator
):
def
__init__
(
self
,
scale_x
,
scale_y
,
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomScale
,
self
).
__init__
()
if
isinstance
(
scale_x
,
(
int
,
float
)):
assert
scale_x
>
0.
,
'scale_x should be great than 0'
scale_x
=
(
0.
,
scale_x
)
elif
isinstance
(
scale_x
,
list
)
or
isinstance
(
scale_x
,
tuple
):
assert
len
(
scale_x
)
==
2
,
'len of scale_x is not equal to 2'
else
:
raise
ValueError
(
'scale_x is not reasonable'
)
if
isinstance
(
scale_y
,
(
int
,
float
)):
assert
scale_y
>
0.
,
'scale_y should be great than 0'
scale_y
=
(
0.
,
scale_y
)
elif
isinstance
(
scale_y
,
list
)
or
isinstance
(
scale_y
,
tuple
):
assert
len
(
scale_y
)
==
2
,
'len of scale_y is not equal to 2'
else
:
raise
ValueError
(
'scale_y is not reasonable'
)
self
.
scale_x
=
scale_x
self
.
scale_y
=
scale_y
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
scale_x
=
random
.
uniform
(
*
self
.
scale_x
)
scale_y
=
random
.
uniform
(
*
self
.
scale_y
)
scale
=
Scale
((
scale_x
,
scale_y
),
self
.
area_thr
,
self
.
border_value
)
return
scale
(
sample
,
context
)
@
register_op
class
RandomPerspective
(
BaseOperator
):
def
__init__
(
self
,
degree
=
10
,
translate
=
0.1
,
scale
=
0.1
,
shear
=
10
,
perspective
=
0.0
,
border
=
(
0
,
0
),
area_thr
=
0.25
,
border_value
=
(
114
,
114
,
114
)):
super
(
RandomPerspective
,
self
).
__init__
()
self
.
degree
=
degree
self
.
translate
=
translate
self
.
scale
=
scale
self
.
shear
=
shear
self
.
perspective
=
perspective
self
.
border
=
border
self
.
area_thr
=
area_thr
self
.
border_value
=
border_value
def
__call__
(
self
,
sample
,
context
=
None
):
im
=
sample
[
'image'
]
bbox
=
sample
[
'gt_bbox'
]
label
=
sample
[
'gt_class'
]
height
=
im
.
shape
[
0
]
+
self
.
border
[
0
]
width
=
im
.
shape
[
1
]
+
self
.
border
[
1
]
# center
C
=
np
.
eye
(
3
)
C
[
0
,
2
]
=
-
im
.
shape
[
1
]
/
2
C
[
1
,
2
]
=
-
im
.
shape
[
0
]
/
2
# perspective
P
=
np
.
eye
(
3
)
P
[
2
,
0
]
=
random
.
uniform
(
-
self
.
perspective
,
self
.
perspective
)
P
[
2
,
1
]
=
random
.
uniform
(
-
self
.
perspective
,
self
.
perspective
)
# Rotation and scale
R
=
np
.
eye
(
3
)
a
=
random
.
uniform
(
-
self
.
degree
,
self
.
degree
)
s
=
random
.
uniform
(
1
-
self
.
scale
,
1
+
self
.
scale
)
R
[:
2
]
=
cv2
.
getRotationMatrix2D
(
angle
=
a
,
center
=
(
0
,
0
),
scale
=
s
)
# Shear
S
=
np
.
eye
(
3
)
# shear x (deg)
S
[
0
,
1
]
=
math
.
tan
(
random
.
uniform
(
-
self
.
shear
,
self
.
shear
)
*
math
.
pi
/
180
)
# shear y (deg)
S
[
1
,
0
]
=
math
.
tan
(
random
.
uniform
(
-
self
.
shear
,
self
.
shear
)
*
math
.
pi
/
180
)
# Translation
T
=
np
.
eye
(
3
)
T
[
0
,
2
]
=
random
.
uniform
(
0.5
-
self
.
translate
,
0.5
+
self
.
translate
)
*
width
T
[
1
,
2
]
=
random
.
uniform
(
0.5
-
self
.
translate
,
0.5
+
self
.
translate
)
*
height
# matmul
M
=
T
@
S
@
R
@
P
@
C
if
(
self
.
border
[
0
]
!=
0
)
or
(
self
.
border
[
1
]
!=
0
)
or
(
M
!=
np
.
eye
(
3
)).
any
():
if
self
.
perspective
:
im
=
cv2
.
warpPerspective
(
im
,
M
,
dsize
=
(
width
,
height
),
borderValue
=
self
.
border_value
)
else
:
im
=
cv2
.
warpAffine
(
im
,
M
[:
2
],
dsize
=
(
width
,
height
),
borderValue
=
self
.
border_value
)
if
bbox
.
shape
[
0
]
>
0
:
new_bbox
,
new_label
=
transform_bbox
(
bbox
,
label
,
M
,
width
,
height
,
area_thr
=
self
.
area_thr
,
perspective
=
self
.
perspective
)
else
:
new_bbox
,
new_label
=
bbox
,
label
sample
[
'image'
]
=
im
sample
[
'gt_bbox'
]
=
new_bbox
.
astype
(
np
.
float32
)
sample
[
'gt_class'
]
=
new_label
.
astype
(
np
.
int32
)
return
sample
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录