未验证 提交 faa6d245 编写于 作者: W wangguanzhong 提交者: GitHub

fix ttfhead & doc link (#2653)

Co-authored-by: NFeng Ni <nemonameless@qq.com>
上级 2f7e4410
......@@ -4,14 +4,13 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 | 配置文件 |
| :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50-FPN | Cascade Faster | 1 | 1x | ---- | 41.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | ---- | 41.8 | 36.3 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-FPN | Cascade Faster | 1 | 1x | ---- | 41.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Cascade Mask | 1 | 1x | ---- | 41.8 | 36.3 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
**注意:** Cascade R-CNN模型精度依赖Paddle develop分支修改,精度复现须使用[每日版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev)或2.0.1版本(将于2021.03发布),使用Paddle 2.0.0版本会有少量精度损失。
## Citations
```
......
......@@ -2,17 +2,17 @@
| 骨架网络 | 网络类型 | 卷积 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | Mask AP | 下载 | 配置文件 |
| :------------------- | :------------- | :-----: |:--------: | :-----: | :-----------: |:----: | :-----: | :----------------------------------------------------------: | :----: |
| ResNet50-FPN | Faster | c3-c5 | 1 | 1x | - | 42.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/faster_rcnn_dcn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 42.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/faster_rcnn_dcn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | c3-c5 | 1 | 2x | - | 43.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 45.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/faster_rcnn_dcn_r101_vd_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 46.5 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams) |[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | - | 42.7 | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/mask_rcnn_dcn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | - | 44.6 | 39.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/mask_rcnn_dcn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | - | 45.6 | 40.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/mask_rcnn_dcn_r101_vd_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | - | 47.3 | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNet50-FPN | Cascade Faster | c3-c5 | 1 | 1x | - | 42.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/cascade_rcnn_dcn_r50_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 1 | 1x | - | 48.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | c3-c5 | 1 | 1x | - | 42.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/faster_rcnn_dcn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 42.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/faster_rcnn_dcn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | c3-c5 | 1 | 2x | - | 43.7 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/faster_rcnn_dcn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 45.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/faster_rcnn_dcn_r101_vd_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | c3-c5 | 1 | 1x | - | 46.5 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams) |[配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNet50-FPN | Mask | c3-c5 | 1 | 1x | - | 42.7 | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/mask_rcnn_dcn_r50_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Mask | c3-c5 | 1 | 2x | - | 44.6 | 39.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/mask_rcnn_dcn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Mask | c3-c5 | 1 | 1x | - | 45.6 | 40.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/mask_rcnn_dcn_r101_vd_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Mask | c3-c5 | 1 | 1x | - | 47.3 | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNet50-FPN | Cascade Faster | c3-c5 | 1 | 1x | - | 42.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_dcn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/cascade_rcnn_dcn_r50_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Cascade Faster | c3-c5 | 1 | 1x | - | 48.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dcn/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x_coco.yml) |
**注意事项:**
......
......@@ -33,7 +33,7 @@ DOTA数据集中总共有2806张图像,其中1411张图像作为训练集,45
| 模型 | GPU个数 | Conv类型 | mAP | 模型下载 | 配置文件 |
|:-----------:|:-------:|:----------:|:--------:| :----------:| :---------: |
| S2ANet | 8 | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_1x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_conv_1x_dota.yml) |
| S2ANet | 8 | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_1x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/dota/s2anet_conv_1x_dota.yml) |
**注意:**这里使用`multiclass_nms`,与原作者使用nms略有不同,精度相比原始论文中高0.15 (71.27-->71.42)。
......
......@@ -11,7 +11,7 @@
| 网络结构 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy/Medium/Hard Set | 预测时延(SD855)| 模型大小(MB) | 下载 | 配置文件 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | 640 | 8 | 1000e | 0.885 / 0.855 / 0.731 | - | 0.472 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/blazeface_1000e.yml) |
| BlazeFace | 640 | 8 | 1000e | 0.885 / 0.855 / 0.731 | - | 0.472 |[下载链接](https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/face_detection/blazeface_1000e.yml) |
**注意:**
- 我们使用多尺度评估策略得到`Easy/Medium/Hard Set`里的mAP。具体细节请参考[在WIDER-FACE数据集上评估](#在WIDER-FACE数据集上评估)
......
......@@ -4,24 +4,23 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50 | Faster | 1 | 1x | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_1x_coco.yml) |
| ResNet50-vd | Faster | 1 | 1x | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_1x_coco.yml) |
| ResNet101 | Faster | 1 | 1x | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_1x_coco.yml) |
| ResNet34-FPN | Faster | 1 | 1x | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r34_fpn_1x_coco.yml) |
| ResNet34-vd-FPN | Faster | 1 | 1x | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r34_vd_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 1x | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 2x | ---- | 40.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml) |
| ResNet50-vd-FPN | Faster | 1 | 1x | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | 1 | 2x | ---- | 40.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-FPN | Faster | 1 | 2x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Faster | 1 | 1x | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_vd_fpn_1x_coco.yml) |
| ResNet101-vd-FPN | Faster | 1 | 2x | ---- | 43.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_vd_fpn_2x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | 1 | 1x | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | 1 | 2x | ---- | 44.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_ssld_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) |
| ResNet50 | Faster | 1 | 1x | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_1x_coco.yml) |
| ResNet50-vd | Faster | 1 | 1x | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_1x_coco.yml) |
| ResNet101 | Faster | 1 | 1x | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r101_1x_coco.yml) |
| ResNet34-FPN | Faster | 1 | 1x | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r34_fpn_1x_coco.yml) |
| ResNet34-vd-FPN | Faster | 1 | 1x | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r34_vd_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 1x | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 2x | ---- | 40.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml) |
| ResNet50-vd-FPN | Faster | 1 | 1x | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | 1 | 2x | ---- | 40.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-FPN | Faster | 1 | 2x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Faster | 1 | 1x | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r101_vd_fpn_1x_coco.yml) |
| ResNet101-vd-FPN | Faster | 1 | 2x | ---- | 43.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r101_vd_fpn_2x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | 1 | 1x | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | 1 | 2x | ---- | 44.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_ssld_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) |
**注意:** Faster R-CNN模型精度依赖Paddle develop分支修改,精度复现须使用[每日版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev)或2.0.1版本(将于2021.03发布),使用Paddle 2.0.0版本会有少量精度损失。
## Citations
```
......
......@@ -19,7 +19,6 @@ FCOS (Fully Convolutional One-Stage Object Detection) is a fast anchor-free obje
**Notes:**
- FCOS is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.
- FCOS training performace is dependented on Paddle develop branch, performance reproduction shoule based on [Paddle daily version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) or Paddle 2.0.1(will be published on 2021.03), performace will loss slightly is training base on Paddle 2.0.0
## Citations
```
......
......@@ -4,10 +4,10 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | Mask AP | 下载 | 配置文件 |
| :------------- | :------------- | :-----------: | :------: | :--------: |:-----: | :-----: | :----: | :----: |
| ResNet50-FPN | Faster | 1 | 2x | - | 41.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 2x | - | 42.3 | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Cascade Faster | 1 | 2x | - | 44.6 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Cacade Mask | 1 | 2x | - | 45.0 | 39.3 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 2x | - | 41.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 2x | - | 42.3 | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Cascade Faster | 1 | 2x | - | 44.6 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/gn/cascade_rcnn_r50_fpn_gn_2x_coco.yml) |
| ResNet50-FPN | Cacade Mask | 1 | 2x | - | 45.0 | 39.3 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/gn/cascade_mask_rcnn_r50_fpn_gn_2x_coco.yml) |
**注意:** Faster R-CNN baseline仅使用 `2fc` head,而此处使用[`4conv1fc` head](https://arxiv.org/abs/1803.08494)(4层conv之间使用GN),并且FPN也使用GN,而对于Mask R-CNN是在mask head的4层conv之间也使用GN。
......
......@@ -30,5 +30,5 @@
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :------------- | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| HRNetV2p_W18 | Faster | 1 | 1x | - | 36.8 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.yml) |
| HRNetV2p_W18 | Faster | 1 | 2x | - | 39.0 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.yml) |
| HRNetV2p_W18 | Faster | 1 | 1x | - | 36.8 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.yml) |
| HRNetV2p_W18 | Faster | 1 | 2x | - | 39.0 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_hrnetv2p_w18_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.yml) |
......@@ -4,20 +4,19 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 | 配置文件 |
| :------------------- | :------------| :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50 | Mask | 1 | 1x | ---- | 37.4 | 32.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_1x_coco.yml) |
| ResNet50 | Mask | 1 | 2x | ---- | 39.7 | 34.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_2x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 1x | ---- | 39.2 | 35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 2x | ---- | 40.5 | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.yml) |
| ResNet50-vd-FPN | Mask | 1 | 1x | ---- | 40.3 | 36.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Mask | 1 | 2x | ---- | 41.4 | 37.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-FPN | Mask | 1 | 1x | ---- | 40.6 | 36.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.yml) |
| ResNet101-vd-FPN | Mask | 1 | 1x | ---- | 42.4 | 38.1 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r101_vd_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Mask | 1 | 1x | ---- | 44.0 | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Mask | 1 | 2x | ---- | 44.6 | 39.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 1x | ---- | 42.0 | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 2x | ---- | 42.7 | 38.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50 | Mask | 1 | 1x | ---- | 37.4 | 32.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_1x_coco.yml) |
| ResNet50 | Mask | 1 | 2x | ---- | 39.7 | 34.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_2x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 1x | ---- | 39.2 | 35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Mask | 1 | 2x | ---- | 40.5 | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.yml) |
| ResNet50-vd-FPN | Mask | 1 | 1x | ---- | 40.3 | 36.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Mask | 1 | 2x | ---- | 41.4 | 37.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-FPN | Mask | 1 | 1x | ---- | 40.6 | 36.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.yml) |
| ResNet101-vd-FPN | Mask | 1 | 1x | ---- | 42.4 | 38.1 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r101_vd_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Mask | 1 | 1x | ---- | 44.0 | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Mask | 1 | 2x | ---- | 44.6 | 39.8 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 1x | ---- | 42.0 | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 2x | ---- | 42.7 | 38.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
**注意:** Mask R-CNN模型精度依赖Paddle develop分支修改,精度复现须使用[每日版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev)或2.0.1版本(将于2021.03发布),使用Paddle 2.0.0版本会有少量精度损失。
## Citations
```
......
......@@ -5,7 +5,7 @@ We provide some models implemented by PaddlePaddle to detect objects in specific
| Task | Algorithm | Box AP | Download | Configs |
|:---------------------|:---------:|:------:| :-------------------------------------------------------------------------------------: |:------:|
| Pedestrian Detection | YOLOv3 | 51.8 | [model](https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/pedestrian/pedestrian_yolov3_darknet.yml) |
| Pedestrian Detection | YOLOv3 | 51.8 | [model](https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/pedestrian/pedestrian_yolov3_darknet.yml) |
## Pedestrian Detection
......@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
### 2. Configuration for training
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for pedestrian detection:
* num_classes: 1
* dataset_dir: dataset/pedestrian
......@@ -45,6 +45,6 @@ python -u tools/infer.py -c configs/pedestrian/pedestrian_yolov3_darknet.yml \
Some inference results are visualized below:
![](https://github.com/PaddlePaddle/PaddleDetection/tree/master/docs/images/PedestrianDetection_001.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/PedestrianDetection_001.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/master/docs/images/PedestrianDetection_004.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/PedestrianDetection_004.png)
......@@ -5,7 +5,7 @@
| 任务 | 算法 | 精度(Box AP) | 下载 | 配置文件 |
|:---------------------|:---------:|:------:| :---------------------------------------------------------------------------------: | :------:|
| 行人检测 | YOLOv3 | 51.8 | [下载链接](https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/pedestrian/pedestrian_yolov3_darknet.yml) |
| 行人检测 | YOLOv3 | 51.8 | [下载链接](https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/pedestrian/pedestrian_yolov3_darknet.yml) |
## 行人检测(Pedestrian Detection)
......@@ -18,7 +18,7 @@ Backbone为Dacknet53的YOLOv3。
### 2. 训练参数配置
PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件[yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml),与之相比,在进行行人检测的模型训练时,我们对以下参数进行了修改:
PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件[yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/configs/yolov3/yolov3_darknet53_270e_coco.yml),与之相比,在进行行人检测的模型训练时,我们对以下参数进行了修改:
* num_classes: 1
* dataset_dir: dataset/pedestrian
......@@ -46,6 +46,6 @@ python -u tools/infer.py -c configs/pedestrian/pedestrian_yolov3_darknet.yml \
预测结果示例:
![](../../../docs/images/PedestrianDetection_001.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/PedestrianDetection_001.png)
![](../../../docs/images/PedestrianDetection_004.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/PedestrianDetection_004.png)
......@@ -38,25 +38,25 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
| Model | GPU number | images/GPU | backbone | input shape | Box AP<sup>val</sup> | Box AP<sup>test</sup> | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config |
|:------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :------: |
| PP-YOLO | 8 | 24 | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 512 | 43.9 | 44.4 | 89.9 | 188.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 416 | 42.1 | 42.5 | 109.1 | 215.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 320 | 38.9 | 39.3 | 132.2 | 242.2 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 608 | 45.3 | 45.9 | 72.9 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO | 4 | 32 | ResNet18vd | 512 | 29.2 | 29.5 | 357.1 | 657.9 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO | 4 | 32 | ResNet18vd | 416 | 28.6 | 28.9 | 409.8 | 719.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO | 4 | 32 | ResNet18vd | 320 | 26.2 | 26.4 | 480.7 | 763.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLOv2 | 8 | 12 | ResNet50vd | 640 | 49.1 | 49.5 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |
| PP-YOLOv2 | 8 | 12 | ResNet101vd | 640 | 49.7 | 50.1 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolov2_r101vd_dcn_365e_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 512 | 43.9 | 44.4 | 89.9 | 188.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 416 | 42.1 | 42.5 | 109.1 | 215.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO | 8 | 24 | ResNet50vd | 320 | 38.9 | 39.3 | 132.2 | 242.2 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 608 | 45.3 | 45.9 | 72.9 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) |
| PP-YOLO | 4 | 32 | ResNet18vd | 512 | 29.2 | 29.5 | 357.1 | 657.9 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO | 4 | 32 | ResNet18vd | 416 | 28.6 | 28.9 | 409.8 | 719.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLO | 4 | 32 | ResNet18vd | 320 | 26.2 | 26.4 | 480.7 | 763.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r18vd_coco.yml) |
| PP-YOLOv2 | 8 | 12 | ResNet50vd | 640 | 49.1 | 49.5 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |
| PP-YOLOv2 | 8 | 12 | ResNet101vd | 640 | 49.7 | 50.1 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyolov2_r101vd_dcn_365e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolov2_r101vd_dcn_365e_coco.yml) |
**Notes:**
- PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/FAQ.md).
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
......@@ -65,26 +65,26 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods:
| Model | GPU number | images/GPU | Model Size | input shape | Box AP<sup>val</sup> | Box AP50<sup>val</sup> | Kirin 990 1xCore(FPS) | download | config |
|:----------------------------:|:-------:|:-------------:|:----------:| :-------:| :------------------: | :--------------------: | :--------------------: | :------: | :------: |
| PP-YOLO_MobileNetV3_large | 4 | 32 | 28MB | 320 | 23.2 | 42.6 | 14.1 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_large_coco.yml) |
| PP-YOLO_MobileNetV3_small | 4 | 32 | 16MB | 320 | 17.2 | 33.8 | 21.5 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_small_coco.yml) |
| PP-YOLO_MobileNetV3_large | 4 | 32 | 28MB | 320 | 23.2 | 42.6 | 14.1 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_mbv3_large_coco.yml) |
| PP-YOLO_MobileNetV3_small | 4 | 32 | 16MB | 320 | 17.2 | 33.8 | 21.5 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_mbv3_small_coco.yml) |
**Notes:**
- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/FAQ.md).
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md).
- PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread.
### PP-YOLO tiny
| Model | GPU number | images/GPU | Model Size | Post Quant Model Size | input shape | Box AP<sup>val</sup> | Kirin 990 4xCore(FPS) | download | config | post quant model |
|:----------------------------:|:-------:|:-------------:|:----------:| :-------------------: | :---------: | :------------------: | :-------------------: | :------: | :----: | :--------------: |
| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 320 | 20.6 | 92.3 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 416 | 22.7 | 65.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 320 | 20.6 | 92.3 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
| PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 416 | 22.7 | 65.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [inference model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) |
**Notes:**
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/FAQ.md).
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/static/docs/FAQ.md).
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance
......@@ -94,9 +94,9 @@ PP-YOLO trained on Pascal VOC dataset as follows:
| Model | GPU number | images/GPU | backbone | input shape | Box AP50<sup>val</sup> | download | config |
|:------------------:|:----------:|:----------:|:----------:| :----------:| :--------------------: | :------: | :-----: |
| PP-YOLO | 8 | 12 | ResNet50vd | 608 | 84.9 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml) |
| PP-YOLO | 8 | 12 | ResNet50vd | 416 | 84.3 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml) |
| PP-YOLO | 8 | 12 | ResNet50vd | 320 | 82.2 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml) |
| PP-YOLO | 8 | 12 | ResNet50vd | 608 | 84.9 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml) |
| PP-YOLO | 8 | 12 | ResNet50vd | 416 | 84.3 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml) |
| PP-YOLO | 8 | 12 | ResNet50vd | 320 | 82.2 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/ppyolo_r50vd_dcn_voc.yml) |
## Getting Start
......
......@@ -9,4 +9,4 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 | 配置文件 |
| :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :-------------: | :-----: |
| ResNet50-vd-FPN-Dcnv2 | Faster | 2 | 3x | 61.425 | 41.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_enhance_3x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rcnn_enhance/faster_rcnn_enhance_3x_coco.yml) |
| ResNet50-vd-FPN-Dcnv2 | Faster | 2 | 3x | 61.425 | 41.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_enhance_3x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/rcnn_enhance/faster_rcnn_enhance_3x_coco.yml) |
......@@ -12,12 +12,11 @@
## 实验环境
- Python 3.7+
- PaddlePaddle >= 2.0.0
- PaddlePaddle >= 2.0.1
- PaddleSlim >= 2.0.0
- CUDA 9.0+
- cuDNN >=7.5
**注意:** 量化训练需要依赖Paddle develop分支,可在[PaddlePaddle每日版本](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev)中下载安装合适的PaddlePaddle版本。
## 快速开始
......@@ -74,8 +73,8 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
| 模型 | 压缩策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | 预测时延(SD855)| Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------: | :------: | :-----------------------------------------------------: |:-------------: | :------: |
| YOLOv3-MobileNetV1 | baseline | 24.13 | 93 | 608 | 289.9ms | 75.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | - |
| YOLOv3-MobileNetV1 | 剪裁-l1_norm(sensity) | 15.78(-34.49%) | 66(-29%) | 608 | - | 77.6(+2.5) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_voc_prune_l1_norm.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/prune/yolov3_prune_l1_norm.yml) |
| YOLOv3-MobileNetV1 | baseline | 24.13 | 93 | 608 | 289.9ms | 75.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | - |
| YOLOv3-MobileNetV1 | 剪裁-l1_norm(sensity) | 15.78(-34.49%) | 66(-29%) | 608 | - | 77.6(+2.5) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_voc_prune_l1_norm.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/slim/prune/yolov3_prune_l1_norm.yml) |
- 目前剪裁支持YOLO系列、SSD、TTFNet、BlazeFace,其余模型正在开发支持中。
- SD855预测时延为使用PaddleLite部署,使用arm8架构并使用4线程(4 Threads)推理时延。
......@@ -86,16 +85,16 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
| 模型 | 压缩策略 | 输入尺寸 | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 普通在线量化 | 608 | 30.5 (+1.7) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/yolov3_mobilenet_v1_qat.yml) |
| YOLOv3-MobileNetV3 | baseline | 608 | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | - |
| YOLOv3-MobileNetV3 | PACT在线量化 | 608 | 29.1 (-2.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v3_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/yolov3_mobilenet_v3_qat.yml) |
| YOLOv3-DarkNet53 | baseline | 608 | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) | - |
| YOLOv3-DarkNet53 | 普通在线量化 | 608 | 38.7 (-0.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_darknet_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/yolov3_darknet_qat.yml) |
| SSD-MobileNet_v1 | baseline | 300 | 73.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_mobilenet_v1_300_120e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) | - |
| SSD-MobileNet_v1 | 普通在线量化 | 300 | 72.9(-0.9) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/ssd_mobilenet_v1_300_voc_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/ssd_mobilenet_v1_qat.yml) |
| Mask-ResNet50-FPN | baseline | (800, 1333) | 39.2/35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) | - |
| Mask-ResNet50-FPN | 普通在线量化 | (800, 1333) | 39.7(+0.5)/35.9(+0.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/mask_rcnn_r50_fpn_1x_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/quant/mask_rcnn_r50_fpn_1x_qat.yml) |
| YOLOv3-MobileNetV1 | baseline | 608 | 28.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 普通在线量化 | 608 | 30.5 (+1.7) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/quant/yolov3_mobilenet_v1_qat.yml) |
| YOLOv3-MobileNetV3 | baseline | 608 | 31.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | - |
| YOLOv3-MobileNetV3 | PACT在线量化 | 608 | 29.1 (-2.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v3_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/quant/yolov3_mobilenet_v3_qat.yml) |
| YOLOv3-DarkNet53 | baseline | 608 | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_darknet53_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_darknet53_270e_coco.yml) | - |
| YOLOv3-DarkNet53 | 普通在线量化 | 608 | 38.7 (-0.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_darknet_coco_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_darknet53_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/quant/yolov3_darknet_qat.yml) |
| SSD-MobileNet_v1 | baseline | 300 | 73.8 | [下载链接](https://paddledet.bj.bcebos.com/models/ssd_mobilenet_v1_300_120e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) | - |
| SSD-MobileNet_v1 | 普通在线量化 | 300 | 72.9(-0.9) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/ssd_mobilenet_v1_300_voc_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ssd/ssd_mobilenet_v1_300_120e_voc.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/quant/ssd_mobilenet_v1_qat.yml) |
| Mask-ResNet50-FPN | baseline | (800, 1333) | 39.2/35.6 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) | - |
| Mask-ResNet50-FPN | 普通在线量化 | (800, 1333) | 39.7(+0.5)/35.9(+0.3) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/mask_rcnn_r50_fpn_1x_qat.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/quant/mask_rcnn_r50_fpn_1x_qat.yml) |
### 蒸馏
......@@ -104,8 +103,8 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
| 模型 | 压缩策略 | 输入尺寸 | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 蒸馏 | 608 | 31.0(+1.6) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/distill/yolov3_mobilenet_v1_coco_distill.yml) |
| YOLOv3-MobileNetV1 | baseline | 608 | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 蒸馏 | 608 | 31.0(+1.6) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/distill/yolov3_mobilenet_v1_coco_distill.yml) |
- 具体蒸馏方法请参考[蒸馏策略文档](distill/README.md)
......@@ -115,5 +114,5 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
| 模型 | 压缩策略 | 输入尺寸 | GFLOPs | 模型体积(MB) | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| ------------------ | ------------ | -------- | :---------: |:---------: | :---------: |:----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 24.65 | 94.6 | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 蒸馏+剪裁 | 608 | 7.54(-69.4%) | 32.0(-66.0%) | 28.4(-1.0) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill_prune.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/extensions/yolov3_mobilenet_v1_coco_distill_prune.yml) |
| YOLOv3-MobileNetV1 | baseline | 608 | 24.65 | 94.6 | 29.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | - |
| YOLOv3-MobileNetV1 | 蒸馏+剪裁 | 608 | 7.54(-69.4%) | 32.0(-66.0%) | 28.4(-1.0) | [下载链接](https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill_prune.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml) | [slim配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/slim/extensions/yolov3_mobilenet_v1_coco_distill_prune.yml) |
......@@ -19,8 +19,8 @@ SOLOv2 (Segmenting Objects by Locations) is a fast instance segmentation framewo
| BlendMask | R50-FPN | True | 3x | 37.8 | 13.5 | V100 | - | - |
| SOLOv2 (Paper) | R50-FPN | False | 1x | 34.8 | 18.5 | V100 | - | - |
| SOLOv2 (Paper) | X101-DCN-FPN | True | 3x | 42.4 | 5.9 | V100 | - | - |
| SOLOv2 | R50-FPN | False | 1x | 35.5 | 21.9 | V100 | [model](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/solov2/solov2_r50_fpn_1x_coco.yml) |
| SOLOv2 | R50-FPN | True | 3x | 38.0 | 21.9 | V100 | [model](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/solov2/solov2_r50_fpn_3x_coco.yml) |
| SOLOv2 | R50-FPN | False | 1x | 35.5 | 21.9 | V100 | [model](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/solov2/solov2_r50_fpn_1x_coco.yml) |
| SOLOv2 | R50-FPN | True | 3x | 38.0 | 21.9 | V100 | [model](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/solov2/solov2_r50_fpn_3x_coco.yml) |
**Notes:**
......
......@@ -13,7 +13,7 @@ TTFNet是一种用于实时目标检测且对训练时间友好的网络,对Ce
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| DarkNet53 | TTFNet | 12 | 1x | ---- | 33.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ttfnet_darknet53_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ttfnet/ttfnet_darknet53_1x_coco.yml) |
| DarkNet53 | TTFNet | 12 | 1x | ---- | 33.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ttfnet_darknet53_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ttfnet/ttfnet_darknet53_1x_coco.yml) |
......@@ -40,7 +40,7 @@ PAFNet系列模型从如下方面优化TTFNet模型:
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :-------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50vd | PAFNet | 18 | 10x | ---- | 42.2 | [下载链接](https://paddledet.bj.bcebos.com/models/pafnet_10x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ttfnet/pafnet_10x_coco.yml) |
| ResNet50vd | PAFNet | 18 | 10x | ---- | 42.2 | [下载链接](https://paddledet.bj.bcebos.com/models/pafnet_10x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ttfnet/pafnet_10x_coco.yml) |
......@@ -48,7 +48,7 @@ PAFNet系列模型从如下方面优化TTFNet模型:
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 | Box AP | 麒麟990延时(ms) | 体积(M) | 下载 | 配置文件 |
| :-------------- | :------------- | :-----: | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| MobileNetv3 | PAFNet-Lite | 12 | 20x | 23.9 | 26.00 | 14 | [下载链接](https://paddledet.bj.bcebos.com/models/pafnet_lite_mobilenet_v3_20x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ttfnet/pafnet_lite_mobilenet_v3_20x_coco.yml) |
| MobileNetv3 | PAFNet-Lite | 12 | 20x | 23.9 | 26.00 | 14 | [下载链接](https://paddledet.bj.bcebos.com/models/pafnet_lite_mobilenet_v3_20x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ttfnet/pafnet_lite_mobilenet_v3_20x_coco.yml) |
......
English | [简体中文](CONTRIB_cn.md)
English | [简体中文](README_cn.md)
# PaddleDetection applied for specific scenarios
We provide some models implemented by PaddlePaddle to detect objects in specific scenarios, users can download the models and use them in these scenarios.
| Task | Algorithm | Box AP | Download | Configs |
|:---------------------|:---------:|:------:| :-------------------------------------------------------------------------------------: |:------:|
| Vehicle Detection | YOLOv3 | 54.5 | [model](https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/vehicle/vehicle_yolov3_darknet.yml) |
| Vehicle Detection | YOLOv3 | 54.5 | [model](https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/vehicle/vehicle_yolov3_darknet.yml) |
## Vehicle Detection
......@@ -17,7 +17,7 @@ The network for detecting vehicles is YOLOv3, the backbone of which is Dacknet53
### 2. Configuration for training
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection:
PaddleDetection provides users with a configuration file [yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/configs/yolov3/yolov3_darknet53_270e_coco.yml) to train YOLOv3 on the COCO dataset, compared with this file, we modify some parameters as followed to conduct the training for vehicle detection:
* num_classes: 6
* anchors: [[8, 9], [10, 23], [19, 15], [23, 33], [40, 25], [54, 50], [101, 80], [139, 145], [253, 224]]
......@@ -48,6 +48,6 @@ python -u tools/infer.py -c configs/vehicle/vehicle_yolov3_darknet.yml \
Some inference results are visualized below:
![](https://github.com/PaddlePaddle/PaddleDetection/tree/master/docs/images/VehicleDetection_001.jpeg)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/VehicleDetection_001.jpeg)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/master/docs/images/VehicleDetection_005.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/VehicleDetection_005.png)
[English](CONTRIB.md) | 简体中文
[English](README.md) | 简体中文
# 特色垂类检测模型
我们提供了针对不同场景的基于PaddlePaddle的检测模型,用户可以下载模型进行使用。
| 任务 | 算法 | 精度(Box AP) | 下载 | 配置文件 |
|:---------------------|:---------:|:------:| :---------------------------------------------------------------------------------: | :------:|
| 车辆检测 | YOLOv3 | 54.5 | [下载链接](https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/vehicle/vehicle_yolov3_darknet.yml) |
| 车辆检测 | YOLOv3 | 54.5 | [下载链接](https://paddledet.bj.bcebos.com/models/vehicle_yolov3_darknet.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/vehicle/vehicle_yolov3_darknet.yml) |
## 车辆检测(Vehicle Detection)
......@@ -18,7 +18,7 @@ Backbone为Dacknet53的YOLOv3。
### 2. 训练参数配置
PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件[yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/master/dygraph/configs/yolov3/yolov3_darknet53_270e_coco.yml),与之相比,在进行车辆检测的模型训练时,我们对以下参数进行了修改:
PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件[yolov3_darknet53_270e_coco.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/configs/yolov3/yolov3_darknet53_270e_coco.yml),与之相比,在进行车辆检测的模型训练时,我们对以下参数进行了修改:
* num_classes: 6
* anchors: [[8, 9], [10, 23], [19, 15], [23, 33], [40, 25], [54, 50], [101, 80], [139, 145], [253, 224]]
......@@ -49,6 +49,6 @@ python -u tools/infer.py -c configs/vehicle/vehicle_yolov3_darknet.yml \
预测结果示例:
![](https://github.com/PaddlePaddle/PaddleDetection/tree/master/docs/images/VehicleDetection_001.jpeg)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/VehicleDetection_001.jpeg)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/master/docs/images/VehicleDetection_005.png)
![](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/static/docs/images/VehicleDetection_005.png)
......@@ -13,7 +13,7 @@ python tools/infer.py -c --infer_img=demo/000000014439.jpg -o use_gpu=True weig
请参考[PaddleServing](https://github.com/PaddlePaddle/Serving/tree/v0.5.0) 中安装教程安装
## 3. 导出模型
PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/master/docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
PaddleDetection在训练过程包括网络的前向和优化器相关参数,而在部署过程中,我们只需要前向参数,具体参考:[导出模型](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0/docs/advanced_tutorials/deploy/EXPORT_MODEL.md)
```
python tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o weights=weights/yolov3_darknet53_270e_coco.pdparams --export_serving_model=True
......
......@@ -30,36 +30,36 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
### Faster R-CNN
请参考[Faster R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/faster_rcnn/)
请参考[Faster R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/)
### Mask R-CNN
请参考[Mask R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/mask_rcnn/)
请参考[Mask R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/)
### Cascade R-CNN
请参考[Cascade R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/cascade_rcnn/)
请参考[Cascade R-CNN](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/)
### YOLOv3
请参考[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/yolov3/)
请参考[YOLOv3](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/)
### SSD
请参考[SSD](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ssd/)
请参考[SSD](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ssd/)
### FCOS
请参考[FCOS](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/fcos/)
请参考[FCOS](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/fcos/)
### SOLOv2
请参考[SOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/solov2/)
请参考[SOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/solov2/)
### PP-YOLO
请参考[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/)
请参考[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ppyolo/)
### TTFNet
请参考[TTFNet](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ttfnet/)
请参考[TTFNet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/ttfnet/)
......@@ -6,34 +6,34 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | Mask AP | 下载 | 配置文件 |
| :------------------- | :------------| :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 1x | ---- | 42.0 | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 2x | ---- | 42.7 | 38.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 1x | ---- | 42.0 | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 2x | ---- | 42.7 | 38.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [下载链接](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
### YOLOv3 on COCO
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :----------------- | :-------- | :-----------: | :------: | :---------: | :----: | :----------------------------------------------------: | :-----: |
| MobileNet-V1-SSLD | 608 | 8 | 270e | ---- | 31.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | ---- | 30.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | ---- | 28.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 608 | 8 | 270e | ---- | 31.0 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | ---- | 30.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | ---- | 28.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
### YOLOv3 on Pasacl VOC
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :----------------- | :-------- | :-----------: | :------: | :---------: | :----: | :----------------------------------------------------: | :-----: |
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 77.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 416 | 8 | 270e | - | 79.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 320 | 8 | 270e | - | 77.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 79.6 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 77.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 416 | 8 | 270e | - | 79.2 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 320 | 8 | 270e | - | 77.3 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
**注意事项:**
......
......@@ -6,33 +6,33 @@ English | [简体中文](SSLD_PRETRAINED_MODEL.md)
| Backbone | Model | Images/GPU | Lr schd | FPS | Box AP | Mask AP | Download | Config |
| :------------------- | :------------| :-----: | :-----: | :------------: | :-----: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 1x | ---- | 42.0 | 38.2 | [model](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 2x | ---- | 42.7 | 38.9 | [model](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [model](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [model](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [model](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [model](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | - | [model](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 1x | ---- | 42.0 | 38.2 | [model](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Mask | 1 | 2x | ---- | 42.7 | 38.9 | [model](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/mask_rcnn/mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 1x | ---- | 44.4 | - | [model](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Faster | 1 | 2x | ---- | 45.0 | - | [model](https://paddledet.bj.bcebos.com/models/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 1x | ---- | 44.9 | 39.1 | [model](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Cascade Mask | 1 | 2x | ---- | 45.7 | 39.7 | [model](https://paddledet.bj.bcebos.com/models/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/cascade_rcnn/cascade_mask_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
### YOLOv3 on COCO
| Backbone | Input shape | Images/GPU | Lr schd | FPS | Box AP | Download | Config |
| :----------------- | :-------- | :-----------: | :------: | :---------: | :----: | :----------------------------------------------------: | :-----: |
| MobileNet-V1-SSLD | 608 | 8 | 270e | ---- | 31.0 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | ---- | 30.6 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | ---- | 28.4 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 608 | 8 | 270e | ---- | 31.0 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | ---- | 30.6 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | ---- | 28.4 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_coco.yml) |
### YOLOv3 on Pasacl VOC
| Backbone | Input shape | Images/GPU | Lr schd | FPS | Box AP | Download | Config |
| :----------------- | :-------- | :-----------: | :------: | :---------: | :----: | :----------------------------------------------------: | :-----: |
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 79.6 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 77.3 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 416 | 8 | 270e | - | 79.2 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 320 | 8 | 270e | - | 77.3 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 608 | 8 | 270e | - | 78.3 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 416 | 8 | 270e | - | 79.6 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V1-SSLD | 320 | 8 | 270e | - | 77.3 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v1_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 608 | 8 | 270e | - | 80.4 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 416 | 8 | 270e | - | 79.2 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
| MobileNet-V3-SSLD | 320 | 8 | 270e | - | 77.3 | [model](https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v3_large_ssld_270e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.0/configs/yolov3/yolov3_mobilenet_v3_large_ssld_270e_voc.yml) |
**Notes:**
......
......@@ -5,7 +5,7 @@ English | [简体中文](INSTALL_cn.md)
This document covers how to install PaddleDetection and its dependencies.
For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/).
For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0).
## Requirements:
......
......@@ -5,7 +5,7 @@
本文档包含了如何安装PaddleDetection以及相关依赖
其他更多PaddleDetection信息,请参考[README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/).
其他更多PaddleDetection信息,请参考[README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.0).
## 环境要求
......
......@@ -77,6 +77,10 @@ class DetDataset(Dataset):
copy.deepcopy(self.roidbs[np.random.randint(n)])
for _ in range(3)
]
if isinstance(roidb, Sequence):
for r in roidb:
r['curr_iter'] = self._curr_iter
else:
roidb['curr_iter'] = self._curr_iter
self._curr_iter += 1
......
......@@ -72,8 +72,7 @@ class HMHead(nn.Layer):
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
name='hm.' + name))
weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
else:
head_conv.add_sublayer(
name,
......@@ -151,8 +150,7 @@ class WHHead(nn.Layer):
in_channels=ch_in if i == 0 else ch_out,
out_channels=ch_out,
kernel_size=3,
weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
name='wh.' + name))
weight_attr=ParamAttr(initializer=Normal(0, 0.01))))
else:
head_conv.add_sublayer(
name,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册