diff --git a/ppdet/data/data_feed.py b/ppdet/data/data_feed.py index 0de5ad1ab97a5a42805af3f4664c60d3ac143558..d8fa69915fb222fc9b5e45440add7d72d75b2bf8 100644 --- a/ppdet/data/data_feed.py +++ b/ppdet/data/data_feed.py @@ -453,7 +453,7 @@ class FasterRCNNTrainFeed(DataFeed): 'image', 'im_info', 'im_id', 'gt_box', 'gt_label', 'is_crowd' ], - image_shape=[3, 800, 1333], + image_shape=[None, 3, None, None], sample_transforms=[ DecodeImage(to_rgb=True), RandomFlipImage(prob=0.5), @@ -505,7 +505,7 @@ class FasterRCNNEvalFeed(DataFeed): COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape', 'gt_box', 'gt_label', 'is_difficult'], - image_shape=[3, 800, 1333], + image_shape=[None, 3, None, None], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(mean=[0.485, 0.456, 0.406], @@ -552,7 +552,7 @@ class FasterRCNNTestFeed(DataFeed): dataset=SimpleDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 800, 1333], + image_shape=[None, 3, None, None], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(mean=[0.485, 0.456, 0.406], @@ -600,7 +600,7 @@ class MaskRCNNTrainFeed(DataFeed): 'image', 'im_info', 'im_id', 'gt_box', 'gt_label', 'is_crowd', 'gt_mask' ], - image_shape=[3, 800, 1333], + image_shape=[None, 3, None, None], sample_transforms=[ DecodeImage(to_rgb=True), RandomFlipImage(prob=0.5, is_mask_flip=True), @@ -646,7 +646,7 @@ class MaskRCNNEvalFeed(DataFeed): dataset=CocoDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 800, 1333], + image_shape=[None, 3, None, None], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(mean=[0.485, 0.456, 0.406], @@ -698,7 +698,7 @@ class MaskRCNNTestFeed(DataFeed): dataset=SimpleDataSet(COCO_VAL_ANNOTATION, COCO_VAL_IMAGE_DIR).__dict__, fields=['image', 'im_info', 'im_id', 'im_shape'], - image_shape=[3, 800, 1333], + image_shape=[None, 3, None, None], sample_transforms=[ DecodeImage(to_rgb=True), NormalizeImage(