diff --git a/doc/build/build_from_source.md b/doc/build/build_from_source.md index 36681727f6430e09c6a10ac7189ada049d627687..a8de2c42d9a5700d4f5af924c3145fdc640aebdd 100644 --- a/doc/build/build_from_source.md +++ b/doc/build/build_from_source.md @@ -37,11 +37,12 @@ PaddlePaddle also support some build options, you have to install related librar ```bash # necessary sudo apt-get update -sudo apt-get install -y g++ make cmake build-essential libatlas-base-dev python python-pip libpython-dev m4 libprotobuf-dev protobuf-compiler python-protobuf python-numpy git +sudo apt-get install -y g++ make cmake build-essential libatlas-base-dev python python-pip libpython-dev m4 libprotobuf-dev protobuf-compiler python-protobuf python-numpy git # optional sudo apt-get install libgoogle-glog-dev sudo apt-get install libgflags-dev sudo apt-get install libgtest-dev +pip install wheel pushd /usr/src/gtest cmake . make diff --git a/doc/demo/quick_start/index_en.md b/doc/demo/quick_start/index_en.md index dc0c6255f32edc88a742af097d396585f854862c..179da870e87e4354616a252921789288d0917054 100644 --- a/doc/demo/quick_start/index_en.md +++ b/doc/demo/quick_start/index_en.md @@ -59,7 +59,7 @@ To build your text classification system, your code will need to perform five st ## Preprocess data into standardized format In this example, you are going to use [Amazon electronic product review dataset](http://jmcauley.ucsd.edu/data/amazon/) to build a bunch of deep neural network models for text classification. Each text in this dataset is a product review. This dataset has two categories: “positive” and “negative”. Positive means the reviewer likes the product, while negative means the reviewer does not like the product. -`demo/quick_start` provides scripts for downloading data and preprocessing data as shown below. The data process takes several minutes (about 3 minutes in our machine). +`demo/quick_start` in the source code provides scripts for downloading data and preprocessing data as shown below. The data process takes several minutes (about 3 minutes in our machine). ```bash cd demo/quick_start @@ -423,7 +423,7 @@ paddle train \ mv rank-00000 result.txt ``` -There are several differences between training and inference network configurations. +User can choose the best model base on the training log instead of model `output/pass-00003`. There are several differences between training and inference network configurations. - You do not need labels during inference. - Outputs need to be specified to the classification probability layer (the output of softmax layer), or the id of maximum probability (`max_id` layer). An example to output the id and probability is given in the code snippet. - batch_size = 1. diff --git a/doc_cn/demo/quick_start/index.md b/doc_cn/demo/quick_start/index.md index b1de49068d0a24c29f4d843fce0492a8bf078ca7..05089267b238ee5cf2350fdfa4dcc859bd41d6d0 100644 --- a/doc_cn/demo/quick_start/index.md +++ b/doc_cn/demo/quick_start/index.md @@ -32,7 +32,7 @@ ## 数据格式准备(Data Preparation) 在本问题中,我们使用[Amazon电子产品评论数据](http://jmcauley.ucsd.edu/data/amazon/), -将评论分为好评(正样本)和差评(负样本)两类。`demo/quick_start`里提供了数据下载脚本 +将评论分为好评(正样本)和差评(负样本)两类。源码的`demo/quick_start`里提供了数据下载脚本 和预处理脚本。 ```bash @@ -144,7 +144,7 @@ PyDataProviderWrapper。 我们将以基本的逻辑回归网络作为起点,并逐渐展示更加深入的功能。更详细的网络配置 连接请参考Layer文档。 -所有配置在`demo/quick_start`目录,首先列举逻辑回归网络。 +所有配置在源码`demo/quick_start`目录,首先列举逻辑回归网络。 ### 逻辑回归模型(Logistic Regression) @@ -407,7 +407,7 @@ paddle train \ mv rank-00000 result.txt ``` -与训练网络配置不同的是:无需label相关的层,指定outputs输出概率层(softmax输出), +这里以`output/pass-00003`为例进行预测,用户可以根据训练log选择test结果最好的模型来预测。与训练网络配置不同的是:无需label相关的层,指定outputs输出概率层(softmax输出), 指定batch_size=1,数据传输无需label数据,预测数据指定test_list的位置。 预测结果以文本的形式保存在`result.txt`中,一行为一个样本,格式如下: