未验证 提交 ef65c7e1 编写于 作者: G Guanghua Yu 提交者: GitHub

adapt keypoint detection for deploy (#1899)

上级 8a083263
......@@ -9,6 +9,7 @@ save_dir: output
weights: output/blazeface_keypoint/model_final.pdparams
# 1(label_class) + 1(background)
num_classes: 2
with_lmk: true
BlazeFace:
backbone: BlazeNet
......@@ -19,7 +20,6 @@ BlazeFace:
score_threshold: 0.01
min_sizes: [[16.,24.], [32., 48., 64., 80., 96., 128.]]
use_density_prior_box: false
with_lmk: true
lmk_loss:
overlap_threshold: 0.35
neg_overlap: 0.35
......@@ -103,12 +103,11 @@ EvalReader:
- !DecodeImage
to_rgb: true
- !NormalizeBox {}
- !Permute {}
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [123, 117, 104]
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
- !Permute {}
batch_size: 1
TestReader:
......@@ -120,10 +119,12 @@ TestReader:
sample_transforms:
- !DecodeImage
to_rgb: true
- !ResizeImage
target_size: 640
interp: 1
- !Permute {}
- !NormalizeImage
is_channel_first: false
is_scale: false
mean: [123, 117, 104]
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
- !Permute {}
batch_size: 1
......@@ -34,8 +34,7 @@ import numpy as np
import paddle
import paddle.fluid as fluid
from preprocess import preprocess, Resize, Normalize, Permute, PadStride
from visualize import visualize_box_mask
from ppdet.utils.check import enable_static_mode
from visualize import visualize_box_mask, lmk2out
# Global dictionary
SUPPORT_MODELS = {
......@@ -90,9 +89,12 @@ class Detector(object):
inputs = create_inputs(im, im_info, self.config.arch)
return inputs, im_info
def postprocess(self, np_boxes, np_masks, im_info, threshold=0.5):
def postprocess(self, np_boxes, np_masks, np_lmk, im_info, threshold=0.5):
# postprocess output of predictor
results = {}
if np_lmk is not None:
results['landmark'] = lmk2out(np_boxes, np_lmk, im_info, threshold)
if self.config.arch in ['SSD', 'Face']:
w, h = im_info['origin_shape']
np_boxes[:, 2] *= h
......@@ -129,7 +131,7 @@ class Detector(object):
shape:[N, class_num, mask_resolution, mask_resolution]
'''
inputs, im_info = self.preprocess(image)
np_boxes, np_masks = None, None
np_boxes, np_masks, np_lmk = None, None, None
if self.config.use_python_inference:
for i in range(warmup):
outs = self.executor.run(self.program,
......@@ -164,6 +166,17 @@ class Detector(object):
output_names[1])
np_masks = masks_tensor.copy_to_cpu()
if self.config.with_lmk is not None and self.config.with_lmk == True:
face_index = self.predictor.get_output_tensor(output_names[
1])
landmark = self.predictor.get_output_tensor(output_names[2])
prior_boxes = self.predictor.get_output_tensor(output_names[
3])
np_face_index = face_index.copy_to_cpu()
np_prior_boxes = prior_boxes.copy_to_cpu()
np_landmark = landmark.copy_to_cpu()
np_lmk = [np_face_index, np_landmark, np_prior_boxes]
t1 = time.time()
for i in range(repeats):
self.predictor.zero_copy_run()
......@@ -174,6 +187,17 @@ class Detector(object):
masks_tensor = self.predictor.get_output_tensor(
output_names[1])
np_masks = masks_tensor.copy_to_cpu()
if self.config.with_lmk is not None and self.config.with_lmk == True:
face_index = self.predictor.get_output_tensor(output_names[
1])
landmark = self.predictor.get_output_tensor(output_names[2])
prior_boxes = self.predictor.get_output_tensor(output_names[
3])
np_face_index = face_index.copy_to_cpu()
np_prior_boxes = prior_boxes.copy_to_cpu()
np_landmark = landmark.copy_to_cpu()
np_lmk = [np_face_index, np_landmark, np_prior_boxes]
t2 = time.time()
ms = (t2 - t1) * 1000.0 / repeats
print("Inference: {} ms per batch image".format(ms))
......@@ -186,7 +210,7 @@ class Detector(object):
results = {'boxes': np.array([])}
else:
results = self.postprocess(
np_boxes, np_masks, im_info, threshold=threshold)
np_boxes, np_masks, np_lmk, im_info, threshold=threshold)
return results
......@@ -325,6 +349,9 @@ class Config():
self.mask_resolution = None
if 'mask_resolution' in yml_conf:
self.mask_resolution = yml_conf['mask_resolution']
self.with_lmk = None
if 'with_lmk' in yml_conf:
self.with_lmk = yml_conf['with_lmk']
self.print_config()
def check_model(self, yml_conf):
......@@ -522,7 +549,10 @@ def main():
if __name__ == '__main__':
enable_static_mode()
try:
paddle.enable_static()
except:
pass
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--model_dir",
......
......@@ -56,6 +56,8 @@ def visualize_box_mask(im, results, labels, mask_resolution=14, threshold=0.5):
results['score'],
labels,
threshold=threshold)
if 'landmark' in results:
im = draw_lmk(im, results['landmark'])
return im
......@@ -247,3 +249,50 @@ def draw_segm(im,
1,
lineType=cv2.LINE_AA)
return Image.fromarray(im.astype('uint8'))
def lmk2out(bboxes, np_lmk, im_info, threshold=0.5, is_bbox_normalized=True):
image_w, image_h = im_info['origin_shape']
scale = im_info['scale']
face_index, landmark, prior_box = np_lmk[:]
xywh_res = []
if bboxes.shape == (1, 1) or bboxes is None:
return np.array([])
prior = np.reshape(prior_box, (-1, 4))
predict_lmk = np.reshape(landmark, (-1, 10))
k = 0
for i in range(bboxes.shape[0]):
score = bboxes[i][1]
if score < threshold:
continue
theindex = face_index[i][0]
me_prior = prior[theindex, :]
lmk_pred = predict_lmk[theindex, :]
prior_h = me_prior[2] - me_prior[0]
prior_w = me_prior[3] - me_prior[1]
prior_h_center = (me_prior[2] + me_prior[0]) / 2
prior_w_center = (me_prior[3] + me_prior[1]) / 2
lmk_decode = np.zeros((10))
for j in [0, 2, 4, 6, 8]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_w + prior_h_center
for j in [1, 3, 5, 7, 9]:
lmk_decode[j] = lmk_pred[j] * 0.1 * prior_h + prior_w_center
if is_bbox_normalized:
lmk_decode = lmk_decode * np.array([
image_h, image_w, image_h, image_w, image_h, image_w, image_h,
image_w, image_h, image_w
])
xywh_res.append(lmk_decode)
return np.asarray(xywh_res)
def draw_lmk(image, lmk_results):
draw = ImageDraw.Draw(image)
for lmk_decode in lmk_results:
for j in range(5):
x1 = int(round(lmk_decode[2 * j]))
y1 = int(round(lmk_decode[2 * j + 1]))
draw.ellipse(
(x1 - 2, y1 - 2, x1 + 3, y1 + 3), fill='green', outline='green')
return image
......@@ -109,18 +109,24 @@ class WIDERFaceDataSet(DataSet):
file_dict = {}
num_class = 0
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for i in range(len(lines_input_txt)):
line_txt = lines_input_txt[i].strip('\n\t\r')
if '.jpg' in line_txt:
split_str = line_txt.split(' ')
if len(split_str) == 1:
img_file_name = os.path.split(split_str[0])[1]
split_txt = img_file_name.split('.')
if len(split_txt) < 2:
continue
elif split_txt[-1] in exts:
if i != 0:
num_class += 1
file_dict[num_class] = []
file_dict[num_class].append(line_txt)
if '.jpg' not in line_txt:
file_dict[num_class] = [line_txt]
else:
if len(line_txt) <= 6:
continue
result_boxs = []
split_str = line_txt.split(' ')
xmin = float(split_str[0])
ymin = float(split_str[1])
w = float(split_str[2])
......
......@@ -51,7 +51,7 @@ class BlazeFace(object):
__category__ = 'architecture'
__inject__ = ['backbone', 'output_decoder']
__shared__ = ['num_classes']
__shared__ = ['num_classes', 'with_lmk']
def __init__(self,
backbone="BlazeNet",
......
......@@ -141,6 +141,10 @@ def dump_infer_config(FLAGS, config):
infer_arch))
os._exit(0)
# support land mark output
if 'with_lmk' in config and config['with_lmk'] == True:
infer_cfg['with_lmk'] = True
if 'Mask' in config['architecture']:
infer_cfg['mask_resolution'] = config['MaskHead']['resolution']
infer_cfg['with_background'], infer_cfg['Preprocess'], infer_cfg[
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册