diff --git a/.travis.yml b/.travis.yml index 3fadf8deb787bfb1d055496c5987798297f80bbf..e217c8f5a740ef5ab7315656ed7839ffa219c805 100644 --- a/.travis.yml +++ b/.travis.yml @@ -21,7 +21,6 @@ addons: - python - python-pip - python2.7-dev - - python-numpy - python-wheel - libboost-dev - curl @@ -35,8 +34,8 @@ before_install: - if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi # Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python # protobuf version. - - pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt - - pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker + - sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt + - sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker - curl https://glide.sh/get | bash - eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - go get -u github.com/alecthomas/gometalinter diff --git a/CMakeLists.txt b/CMakeLists.txt index ad559672ad2f83a3d62cdf332b47c6cf1e730f70..08237cd850ae20c515a39c8783a18deaac431626 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -65,8 +65,8 @@ if(NOT CMAKE_BUILD_TYPE) endif() if(ANDROID) - if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21") - message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 21") + if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16") + message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16") endif() set(WITH_GPU OFF CACHE STRING diff --git a/doc/design/functions_operators_layers.md b/doc/design/functions_operators_layers.md index 7a2e8fd0ace2e3f4462b15215de22c31e944b7cb..d23ba56b5773a36d448a99e4abdebc1475ed789c 100644 --- a/doc/design/functions_operators_layers.md +++ b/doc/design/functions_operators_layers.md @@ -86,12 +86,13 @@ def layer.fc(X): We'd like to have Python bindings to operators in package `paddle.operator`, and Python compositions of operators in package `paddle.layer`. So we have the following concepts in above illustrative example: -``` + | C++ functions/functors | mul | add | | | +|------------------------|--------------|--------------|-------------|----------| | C++ operator class | mulOp | addOp | FCOp | | | Python binding | operator.mul | operator.add | operator.fc | | | Python function | | | | layer.fc | -``` + This is how we differentiate layer and operators in PaddlePaddle: diff --git a/doc/design/ops/dist_train.md b/doc/design/ops/dist_train.md new file mode 100644 index 0000000000000000000000000000000000000000..fa3c5d7990213cf2b0d236e66e592dd2699da876 --- /dev/null +++ b/doc/design/ops/dist_train.md @@ -0,0 +1,106 @@ +# Design Doc: Operation Graph Based Parameter Server + +## Abstract + +We propose an approach to implement the parameter server. In this +approach, there is no fundamental difference between the trainer and +the parameter server: they both run subgraphs, but subgraphs of +different purposes. + +## Background + +The previous implementations of the parameter server does not run a +subgraph. parameter initialization, optimizer computation, network +communication and checkpointing are implemented twice on both the +trainer and the parameter server. + +It would be great if we can write code once and use them on both the +trainer and the parameter server: reduces code duplication and +improves extensibility. Given that after the current refactor, we are +representing everything as a computing graph on the +trainer. Representing everything as a computing graph on the parameter +server becomes a natural extension. + +## Design + +### Graph Converter + +The *graph converter* converts the user-defined operation (OP) graph +into subgraphs to be scheduled on different nodes with the following +steps: + +1. OP placement: the OPs will be placed on different nodes according + to heuristic that minimizes estimated total computation + time. Currently we will use a simple heuristic that puts parameter + varable on parameter server workers and everything else on trainer + workers. + +1. Add communication OPs to enable the communication between nodes. + +We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*. + +Below is an example of converting the user defined graph to the +subgraphs for the trainer and the parameter server: + + + +After converting: + + + +1. The parameter variable W and it's optimizer subgraph are placed on the parameter server. +1. Operators are added to the subgraphs. + - *Send* sends data to the connected *Recv* operator. The + scheduler on the receive node will only schedule *Recv* operator + to run when the *Send* operator has ran (the *Send* OP will mark + the *Recv* OP runnable automatically). + - *Enueue* enqueues the input variable, it can block until space + become available in the queue. + - *Dequeue* outputs configurable numbers of tensors from the + queue. It will block until the queue have the required number of + tensors. + + +### Benefits + +- Model parallelism become easier to implement: it's an extension to + the trainer - parameter server approach. we already have the + communication OPs, but need to extend the graph converter's + placement functionality. + +- User-defined optimizer is easier to add - user can now express it as + a subgraph. + +- No more duplication logic inside the trainer and the parameter + server mentioned in the background section. + +### Challenges + +- It might be hard for the graph converter to cut a general graph + (without any hint for which subgraph is the optimizer). We may need + to label which subgraph inside the OP graph is the optimizer. + +- It's important to balance the parameter shards of on multiple + parameter server. If a single parameter is very big (some + word-embedding, fully connected, softmax layer), we need to + automatically partition the single parameter onto different + parameter servers when possible (only element-wise optimizer depends + on the parameter variable). + +### Discussion + +- In the "Aync SGD" figure, the "W" variable on the parameter server + could be read and wrote concurrently, what is our locking strategy? + E.g., each variable have a lock cpp method to be invoked by every + OP, or, have a lock OP. + +- Can the Enqueue OP be implemented under our current tensor design + (puts the input tensor into the queue tensor)? + +- *Dequeue* OP will have variable numbers of output (depends on the + `min_count` attribute), does our current design support it? (similar + question for the *Add* OP) + + +### References: +[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf) diff --git a/doc/design/ops/src/dist-graph.graffle b/doc/design/ops/src/dist-graph.graffle new file mode 100644 index 0000000000000000000000000000000000000000..941399c6ced8d5f65b6c595522b770c88259df4b Binary files /dev/null and b/doc/design/ops/src/dist-graph.graffle differ diff --git a/doc/design/ops/src/dist-graph.png b/doc/design/ops/src/dist-graph.png new file mode 100644 index 0000000000000000000000000000000000000000..3546b09f1c2ee3e4f60f519d5e47f823f08051a7 Binary files /dev/null and b/doc/design/ops/src/dist-graph.png differ diff --git a/doc/design/ops/src/local-graph.graffle b/doc/design/ops/src/local-graph.graffle new file mode 100644 index 0000000000000000000000000000000000000000..19e509bd9af3c1e9a3f5e0f16ddd281457a339c5 Binary files /dev/null and b/doc/design/ops/src/local-graph.graffle differ diff --git a/doc/design/ops/src/local-graph.png b/doc/design/ops/src/local-graph.png new file mode 100644 index 0000000000000000000000000000000000000000..ada51200f793a9bb18911e7d63cfdb3244b967d7 Binary files /dev/null and b/doc/design/ops/src/local-graph.png differ diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md index 58665e9f2b6299ec3959ed6858ab01d459f64dd8..e3892849abe21fc207d2fcbe4adc65184ba771f4 100644 --- a/doc/howto/dev/new_op_cn.md +++ b/doc/howto/dev/new_op_cn.md @@ -262,7 +262,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, - 生成库 - 无需修改 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件,`paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。 + `paddle/operators` 目录下新增的 `*_op.cc` 文件会被自动添加链接到生成的lib库中。 ## 实现单元测试 @@ -354,11 +354,7 @@ class TestMulGradOp(GradientChecker): ### 编译和执行单元测试 -单元测试编写完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)中添加以下内容,将单元测试加入工程: - -``` -py_test(test_mul_op SRCS test_mul_op.py) -``` +`python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。 请注意,**不同于Op的编译测试,运行单元测试测时需要编译整个工程**,并且编译时需要打开`WITH_TESTING`, 即`cmake paddle_dir -DWITH_TESTING=ON`。编译成功后,执行下面的命令来运行单元测试: diff --git a/doc/howto/dev/write_docs_cn.rst b/doc/howto/dev/write_docs_cn.rst index 36e5d420c986fc8d88eefee4aa221dba0a0480f2..731a63f945c29ba78538b3d71289b234e569354d 100644 --- a/doc/howto/dev/write_docs_cn.rst +++ b/doc/howto/dev/write_docs_cn.rst @@ -5,15 +5,13 @@ PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc`` 和 ``doc_cn`` 两个子目录下。 -如何构建PaddlePaddle的文档 -========================== +如何构建文档 +============ -PaddlePaddle的文档构建有直接构建和基于Docker构建两种方式,我们提供了一个构建脚本build_docs.sh来进行构建。 -PaddlePaddle文档需要准备的环境相对较复杂,所以我们推荐使用基于Docker来构建PaddlePaddle的文档。 +PaddlePaddle的文档构建有两种方式。 - -使用Docker构建PaddlePaddle的文档 --------------------------------- +使用Docker构建 +-------------- 使用Docker构建PaddlePaddle的文档,需要在系统里先安装好Docker工具包。Docker安装请参考 `Docker的官网 `_ 。安装好Docker之后可以使用源码目录下的脚本构建文档,即 @@ -21,58 +19,46 @@ PaddlePaddle文档需要准备的环境相对较复杂,所以我们推荐使 cd TO_YOUR_PADDLE_CLONE_PATH cd paddle/scripts/tools/build_docs - bash build_docs.sh with_docker - -编译完成后,会在当前目录生成两个子目录\: - -* doc 英文文档目录 -* doc_cn 中文文档目录 + sh build_docs.sh +编译完成之后,会在当前目录生成两个子目录\: doc(英文文档目录)和 doc_cn(中文文档目录)。 打开浏览器访问对应目录下的index.html即可访问本地文档。 - - -直接构建PaddlePaddle的文档 --------------------------- - -因为PaddlePaddle的v2 api文档生成过程依赖于py_paddle Python包,用户需要首先确认py_paddle包已经安装。 - -.. code-block:: bash - - python -c "import py_paddle" - -如果提示错误,那么用户需要在本地编译安装PaddlePaddle,请参考 `源码编译文档 `_ 。 -注意,用户在首次编译安装PaddlePaddle时,请将WITH_DOC选项关闭。在编译安装正确之后,请再次确认py_paddle包已经安装,即可进行下一步操作。 +直接构建 +-------- 如果提示正确,可以执行以下命令编译生成文档,即 .. code-block:: bash cd TO_YOUR_PADDLE_CLONE_PATH - cd paddle/scripts/tools/build_docs - bash build_docs.sh local - -编译完成之后,会在当前目录生成两个子目录\: - -* doc 英文文档目录 -* doc_cn 中文文档目录 + mkdir -p build + cd build + cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKLDNN=OFF -DWITH_MKLML=OFF -DWITH_DOC=ON + make gen_proto_py + make paddle_docs paddle_docs_cn +编译完成之后,会在当前目录生成两个子目录\: doc(英文文档目录)和 doc_cn(中文文档目录)。 打开浏览器访问对应目录下的index.html即可访问本地文档。 -如何书写PaddlePaddle的文档 -========================== +如何书写文档 +============ PaddlePaddle文档使用 `sphinx`_ 自动生成,用户可以参考sphinx教程进行书写。 -如何更新www.paddlepaddle.org文档 -================================ +如何更新文档主题 +================ + +PaddlePaddle文档主题在 `TO_YOUR_PADDLE_CLONE_PATH/doc_theme` 文件夹下,包含所有和前端网页设计相关的文件。 -开发者给PaddlePaddle代码增加的注释以PR的形式提交到github中,提交方式可参见 `贡献文档 `_ 。 +如何更新doc.paddlepaddle.org +============================ + +更新的文档以PR的形式提交到github中,提交方式参见 `贡献文档 `_ 。 目前PaddlePaddle的develop分支的文档是自动触发更新的,用户可以分别查看最新的 `中文文档 `_ 和 `英文文档 `_ 。 - .. _cmake: https://cmake.org/ .. _sphinx: http://www.sphinx-doc.org/en/1.4.8/ diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index c0838d9b759110fd706577386d2c81bda6876223..3371962c635c3731f00a6af2a6e287ece33397cd 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -9,6 +9,7 @@ cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor) +nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor) cc_test(variable_test SRCS variable_test.cc) diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index cde3dfa1d3d19b1bee9fd23dad52ecbbe628c3a9..2b788a76cafe198abb9aed8ba842e37cc6ff73a6 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -45,7 +45,19 @@ class GreaterThanChecker { public: explicit GreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {} void operator()(T& value) const { - PADDLE_ENFORCE(value > lower_bound_, "larger_than check fail"); + PADDLE_ENFORCE(value > lower_bound_, "larger_than check fails."); + } + + private: + T lower_bound_; +}; + +template +class EqualGreaterThanChecker { + public: + explicit EqualGreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {} + void operator()(T& value) const { + PADDLE_ENFORCE_GE(value, lower_bound_, "equal_larger_than check fails."); } private: @@ -115,6 +127,11 @@ class TypedAttrChecker { return *this; } + TypedAttrChecker& EqualGreaterThan(const T& lower_bound) { + value_checkers_.push_back(EqualGreaterThanChecker(lower_bound)); + return *this; + } + // we can add more common limits, like LessThan(), Between()... TypedAttrChecker& SetDefault(const T& default_value) { diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md index 8aa6728a95bc464ab8884986f0cec6c817d3303b..0a6d762bc8be5201ac196b4bc6107c06d07a31d7 100644 --- a/paddle/framework/backward.md +++ b/paddle/framework/backward.md @@ -2,20 +2,31 @@ ## Motivation -In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the fundmental gradient operators/expressions together with chain rule . Every forward network need a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass. - -## Backward Operator Registry +In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass. -A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs and output gradients and then calculate its input gradients. +## Implementation + +In this design doc, we exported only one API for generating the backward pass. + +```c++ +std::unique_ptr Backward(const OperatorBase& forwardOp, + const std::unordered_set& no_grad_vars); +``` + +The implementation behind it can be divided into two parts, **Backward Operator Creating** and **Backward Operator Building**. + +### Backward Operator Registry + +A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs, and output gradients and then calculate its input gradients. | | forward operator | backward operator | ---------------------- | ---------------- |------------------------- | | **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients | | **Operator::outputs_** | Outputs | InputGradients | - In most cases, there is a one-to-one correspondence between forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced. + In most cases, there is a one-to-one correspondence between the forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced. -For example, we have got a `mul_op`, and we can register it's information and corresponding backward operator by the following macro: +For example, we have got a `mul_op`, and we can register its information and corresponding backward operator by the following macro: ```cpp REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); @@ -25,58 +36,65 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); `mul_grad` is the type of backward operator, and `MulOpGrad` is its class name. -## Backward Opeartor Creating +### Backward Opeartor Creating -Given a certain forward operator, we can get its corresponding backward opeartor by calling: +Given a certain forward operator, we can get its corresponding backward operator by calling: ```cpp OperatorBase* bwd_op = BuildGradOp(const OperatorBase* fwd_op); -``` +``` The function `BuildGradOp` will sequentially execute following processes: 1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`. -2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these are not necessary for gradient computing. +2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing. 3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`. 4. Building backward operator with `inputs`, `outputs` and forward operator's attributes. -## Backward Network Building +### Backward Network Building -A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and put them together. - -In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network. - -given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`,`InputGradients`. +A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially. 1. Op - when the input forward network is a Op, return its gradient Operator Immediately. + When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`. 2. NetOp - when the input forward network is a NetOp, it need to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to forward NetOp. + In our design, the network itself is also a kind of operator(**NetOp**). So the operators contained by a big network may be some small network. When the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp. + +3. RnnOp + + RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet. + +4. Sharing Variables + + **sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable. + +

+
- **shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwirte their shared input variable. +​ pic 1. Sharing variables in operators. -

-
+

- 1. shared variable in two operators. +​ Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links. -

+

+
- Share variable between operators or same input variable used in multiple operators lead to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively, and add a generic add operator replace the overwirte links. +​ pic 2. Replace sharing variable's gradient with `Add` operator. -

-
+

- 2. replace shared variable gradient with `Add` Operator +​ Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise. -

+5. Part of Gradient is Zero. + In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator. -​ Then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. +Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. diff --git a/paddle/framework/ddim.cc b/paddle/framework/ddim.cc index 85b7de79743bb0390d66b8999f2e8342a51d14a9..fc3d508553c0e966978b28d58127bdbff10d45f1 100644 --- a/paddle/framework/ddim.cc +++ b/paddle/framework/ddim.cc @@ -283,5 +283,14 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) { DDim::DDim(std::initializer_list init_list) { *this = make_ddim(init_list); } + +DDim flatten_to_2d(const DDim& src, int num_col_dims) { + int rank = src.size(); + return make_ddim({product(slice_ddim(src, 0, num_col_dims)), + product(slice_ddim(src, num_col_dims, rank))}); +} + +DDim flatten_to_1d(const DDim& src) { return make_ddim({product(src)}); } + } // namespace framework } // namespace paddle diff --git a/paddle/framework/ddim.h b/paddle/framework/ddim.h index db30c523948b1d437615aa0e9bfecb5e25569296..ca29e7e8c7776de6adf3e3b0e8f11f0d4d8487c3 100644 --- a/paddle/framework/ddim.h +++ b/paddle/framework/ddim.h @@ -115,6 +115,12 @@ int arity(const DDim& ddim); std::ostream& operator<<(std::ostream&, const DDim&); +// Reshape a tensor to a matrix. The matrix's first dimension(column length) +// will be the product of tensor's first `num_col_dims` dimensions. +DDim flatten_to_2d(const DDim& src, int num_col_dims); + +DDim flatten_to_1d(const DDim& src); + } // namespace framework } // namespace paddle diff --git a/paddle/framework/eigen.h b/paddle/framework/eigen.h index 2d8d9ae10c56e0632414a5bbc754d35bfa9ce6a5..54bbeafcabdeeb1e2c1017c156b3512c83dada3a 100644 --- a/paddle/framework/eigen.h +++ b/paddle/framework/eigen.h @@ -63,20 +63,35 @@ struct EigenTensor { template -struct EigenMatrix : public EigenTensor {}; +struct EigenMatrix : public EigenTensor { + static typename EigenMatrix::Type Reshape(Tensor& tensor, int num_col_dims) { + int rank = tensor.dims_.size(); + PADDLE_ENFORCE(num_col_dims > 0 && num_col_dims < rank, + "`num_col_dims` must be between (0, rank_of_tensor)."); + return EigenMatrix::From(tensor, + flatten_to_2d(tensor.dims(), num_col_dims)); + } + + static typename EigenMatrix::ConstType Reshape(const Tensor& tensor, + int num_col_dims) { + int rank = tensor.dims_.size(); + PADDLE_ENFORCE(num_col_dims > 0 && num_col_dims < rank, + "`num_col_dims` must be between (0, rank_of_tensor)."); + return EigenMatrix::From(tensor, + flatten_to_2d(tensor.dims(), num_col_dims)); + } +}; template struct EigenVector : public EigenTensor { // Flatten reshapes a Tensor into an EigenVector. static typename EigenVector::Type Flatten(Tensor& tensor) { - return EigenVector::From( - tensor, make_ddim({static_cast(product(tensor.dims_))})); + return EigenVector::From(tensor, {product(tensor.dims_)}); } static typename EigenVector::ConstType Flatten(const Tensor& tensor) { - return EigenVector::From( - tensor, make_ddim({static_cast(product(tensor.dims_))})); + return EigenVector::From(tensor, {product(tensor.dims_)}); } }; diff --git a/paddle/framework/eigen_test.cc b/paddle/framework/eigen_test.cc index dc1957691b1a202826e10e84c21ac8874df9e378..bc4a2db32cfba66bef2c444e1f822e0d2a57b91e 100644 --- a/paddle/framework/eigen_test.cc +++ b/paddle/framework/eigen_test.cc @@ -108,5 +108,24 @@ TEST(Eigen, Matrix) { } } +TEST(Eigen, MatrixReshape) { + Tensor t; + float* p = t.mutable_data({2, 3, 6, 4}, platform::CPUPlace()); + for (int i = 0; i < 2 * 3 * 6 * 4; ++i) { + p[i] = static_cast(i); + } + + EigenMatrix::Type em = EigenMatrix::Reshape(t, 2); + + ASSERT_EQ(2 * 3, em.dimension(0)); + ASSERT_EQ(6 * 4, em.dimension(1)); + + for (int i = 0; i < 2 * 3; i++) { + for (int j = 0; j < 6 * 4; j++) { + ASSERT_NEAR(i * 6 * 4 + j, em(i, j), 1e-6f); + } + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/images/duplicate_op2.graffle b/paddle/framework/images/duplicate_op2.graffle index 2b658085d6a55d368c320051ba7f94ec2900f13c..5cec3bc64dbd44dc99e348485969f29bd128ceb1 100644 Binary files a/paddle/framework/images/duplicate_op2.graffle and b/paddle/framework/images/duplicate_op2.graffle differ diff --git a/paddle/framework/images/duplicate_op2.png b/paddle/framework/images/duplicate_op2.png index c5588015d1450fd8c1bda3580680d884494868bb..21cdd5cabf1b5203e1435a75b57770d2f702fa92 100644 Binary files a/paddle/framework/images/duplicate_op2.png and b/paddle/framework/images/duplicate_op2.png differ diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 154068fef69bc96edbd85b731fe8091b3b1ff823..568f4e89819c8345d8908634f6fa56f09483a763 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -18,8 +18,10 @@ #ifndef PADDLE_ONLY_CPU #include #include +#include #endif +#include #include "paddle/framework/ddim.h" #include "paddle/framework/tensor.h" #include "paddle/platform/enforce.h" @@ -32,7 +34,8 @@ template using Vector = std::vector; #else template -using Vector = thrust::host_vector; +using Vector = thrust::host_vector< + T, thrust::system::cuda::experimental::pinned_allocator>; #endif using LoD = std::vector>; diff --git a/paddle/framework/lod_tensor_test.cu b/paddle/framework/lod_tensor_test.cu new file mode 100644 index 0000000000000000000000000000000000000000..1079a36a2e7b24f6f8a5bcbb296355567305a765 --- /dev/null +++ b/paddle/framework/lod_tensor_test.cu @@ -0,0 +1,52 @@ +/* + Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. +*/ + +#include +#include +#include "paddle/framework/lod_tensor.h" +#include "paddle/platform/assert.h" + +#include + +__global__ void test(size_t* a, int size) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < size; + i += blockDim.x * gridDim.x) { + a[i] *= 2; + } +} + +TEST(LoDTensor, LoDInGPU) { + paddle::framework::Tensor tensor; + paddle::framework::LoDTensor lod_tensor; + paddle::platform::GPUPlace place(0); + + paddle::framework::LoD src_lod; + src_lod.push_back(std::vector{0, 2, 4, 6, 8, 10, 12, 14}); + + tensor.Resize({14, 16}); + tensor.mutable_data(place); + + lod_tensor.set_lod(src_lod); + lod_tensor.set_tensor(&tensor); + CHECK_EQ(lod_tensor.lod_element(0, 2), 4); + CHECK_EQ(lod_tensor.lod_element(0, 4), 8); + + auto lod = lod_tensor.lod(); + + test<<<1, 8>>>(lod[0].data(), lod[0].size()); + cudaDeviceSynchronize(); + + for (size_t i = 0; i < src_lod[0].size(); ++i) { + CHECK_EQ(lod[0].data()[i], src_lod[0].data()[i] * 2); + } +} diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 790cfc4746b1d34da413fa3c29a266f962c6dde6..e1e122091f7759b1a68f1f982bc2a35e8241f9f0 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -123,6 +123,15 @@ OperatorBase::OperatorBase(const std::string& type, CheckAllInputOutputSet(); } +std::vector OperatorBase::InputVars() const { + std::vector ret_val; + for (auto& o : outputs_) { + ret_val.reserve(ret_val.size() + o.second.size()); + ret_val.insert(ret_val.end(), o.second.begin(), o.second.end()); + } + return ret_val; +} + std::vector OperatorBase::OutputVars(bool has_intermediate) const { std::vector ret_val; if (has_intermediate) { diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 9a98d4d3be0d1cb875d614b263f1e4365ede4113..4600b06009bcef7d0774d25b816aac4733f30795 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -94,11 +94,14 @@ class OperatorBase { const VariableNameMap& Inputs() const { return inputs_; } const VariableNameMap& Outputs() const { return outputs_; } + //! Get a input with argument's name described in `op_proto` std::string Input(const std::string& name) const; //! Get a input which has multiple variables. const std::vector& Inputs(const std::string& name) const; + std::vector InputVars() const; + //! Get a output with argument's name described in `op_proto` std::string Output(const std::string& name) const; //! Get an output which has multiple variables. @@ -311,9 +314,9 @@ class InferShapeContext { } template - std::vector MultiOutput(const std::string& name) const { + std::vector MultiOutput(const std::string& name) const { auto names = op_.Outputs(name); - std::vector res; + std::vector res; res.reserve(names.size()); std::transform(names.begin(), names.end(), std::back_inserter(res), [&](const std::string& sub_name) { diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index 643f875491724bf443bd7727391734377ee6180c..4b5a2ae523f2f7fde5445f0534cd99969ad9d59e 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -43,6 +43,9 @@ class Tensor { template friend struct EigenTensor; + template + friend struct EigenMatrix; + template friend struct EigenVector; @@ -78,6 +81,9 @@ class Tensor { /*! Return the dimensions of the memory block. */ inline const DDim& dims() const; + /*! Return the numel of the memory block. */ + inline int64_t numel() const; + /*! Resize the dimensions of the memory block. */ inline Tensor& Resize(const DDim& dims); @@ -159,6 +165,12 @@ class Tensor { /*! points to dimensions of memory block. */ DDim dims_; + /** + * A cache of the number of elements in a tensor. + * Would be 0 for an uninitialized tensor. + */ + int64_t numel_; + /** * @brief A PlaceHolder may be shared by more than one tensor. * diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 94f436294f350e2a39785a09959efb3b17bd00a5..642b53efc7095d25712ca324638f5fe9b8316c0c 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -24,7 +24,7 @@ inline void Tensor::check_memory_size() const { PADDLE_ENFORCE_NOT_NULL( holder_, "Tenosr holds no memory. Call Tensor::mutable_data first."); PADDLE_ENFORCE_GE( - holder_->size(), product(dims_) * sizeof(T) + offset_, + holder_->size(), numel() * sizeof(T) + offset_, "Tensor's dims_ is out of bound. Call Tensor::mutable_data " "first to re-allocate memory.\n" "or maybe the required data-type mismatches the data already stored."); @@ -54,11 +54,11 @@ inline T* Tensor::mutable_data(DDim dims, platform::Place place) { template inline T* Tensor::mutable_data(platform::Place place) { static_assert(std::is_pod::value, "T must be POD"); - PADDLE_ENFORCE_GT(product(dims_), 0, + PADDLE_ENFORCE_GT(numel(), 0, "Tensor's numel must be larger than zero to call " "Tensor::mutable_data. Call Tensor::set_dim first."); /* some versions of boost::variant don't have operator!= */ - int64_t size = product(dims_) * sizeof(T); + int64_t size = numel() * sizeof(T); if (holder_ == nullptr || !(holder_->place() == place) || holder_->size() < size + offset_) { if (platform::is_cpu_place(place)) { @@ -97,7 +97,7 @@ inline void Tensor::CopyFrom(const Tensor& src, auto dst_ptr = static_cast(mutable_data(dst_place)); - auto size = product(src.dims_) * sizeof(T); + auto size = src.numel() * sizeof(T); if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) { memory::Copy(boost::get(dst_place), dst_ptr, @@ -131,7 +131,7 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { PADDLE_ENFORCE_LT(begin_idx, end_idx, "Begin index must be less than end index."); PADDLE_ENFORCE_NE(dims_[0], 1, "Can not slice a tensor with dims_[0] = 1."); - size_t base = product(dims_) / dims_[0]; + size_t base = numel() / dims_[0]; Tensor dst; dst.holder_ = holder_; DDim dst_dims = dims_; @@ -143,10 +143,21 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { inline Tensor& Tensor::Resize(const DDim& dims) { dims_ = dims; + numel_ = product(dims_); return *this; } inline const DDim& Tensor::dims() const { return dims_; } +inline int64_t Tensor::numel() const { return numel_; } + +template +inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) { + Tensor res; + res.ShareDataWith(src); + res.Resize(flatten_to_2d(src.dims(), num_col_dims)); + return res; +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc index 7db38d5caeebccf710334e854faf785ef0f64063..55302ea47120f420e952b26830c8ea4cbcce6435 100644 --- a/paddle/framework/tensor_test.cc +++ b/paddle/framework/tensor_test.cc @@ -262,3 +262,16 @@ TEST(Tensor, CopyFrom) { } #endif } + +TEST(Tensor, ReshapeToMatrix) { + using namespace paddle::framework; + using namespace paddle::platform; + Tensor src; + int* src_ptr = src.mutable_data({2, 3, 4, 9}, CPUPlace()); + for (int i = 0; i < 2 * 3 * 4 * 9; ++i) { + src_ptr[i] = i; + } + Tensor res = ReshapeToMatrix(src, 2); + ASSERT_EQ(res.dims()[0], 2 * 3); + ASSERT_EQ(res.dims()[1], 4 * 9); +} \ No newline at end of file diff --git a/paddle/gserver/layers/BatchNormBaseLayer.cpp b/paddle/gserver/layers/BatchNormBaseLayer.cpp index 1ceaaaa206ee3cbc5421238574c7f310011ccaa5..f7a80e23e1bd49549bec57b360587adc6b423794 100644 --- a/paddle/gserver/layers/BatchNormBaseLayer.cpp +++ b/paddle/gserver/layers/BatchNormBaseLayer.cpp @@ -62,14 +62,18 @@ void BatchNormBaseLayer::calFeatureMapSize() { const ImageConfig& conf = config_.inputs(0).image_conf(); imageH_ = inputLayers_[0]->getOutput().getFrameHeight(); imageW_ = inputLayers_[0]->getOutput().getFrameWidth(); + imageD_ = inputLayers_[0]->getOutput().getFrameDepth(); + + if (0 == imageD_) imageD_ = conf.img_size_z(); if (imageH_ == 0 && imageW_ == 0) { imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); imageW_ = conf.img_size(); } else { getOutput().setFrameHeight(imageH_); getOutput().setFrameWidth(imageW_); + getOutput().setFrameDepth(imageD_); } - imgPixels_ = imageH_ * imageW_; + imgPixels_ = imageH_ * imageW_ * imageD_; } } // namespace paddle diff --git a/paddle/gserver/layers/BatchNormBaseLayer.h b/paddle/gserver/layers/BatchNormBaseLayer.h index 230bafc31d96bbd49481a7ed135be6888688627e..e721d2d267a31cae46407673b8b1281e87055608 100644 --- a/paddle/gserver/layers/BatchNormBaseLayer.h +++ b/paddle/gserver/layers/BatchNormBaseLayer.h @@ -80,6 +80,7 @@ protected: /// Height or width of input image feature. /// Both of them are 1 if the input is fully-connected layer. + int imageD_; int imageH_; int imageW_; /// Height * Width. diff --git a/paddle/gserver/layers/CudnnBatchNormLayer.cpp b/paddle/gserver/layers/CudnnBatchNormLayer.cpp index 44ba2c4b7d1562d2ce839b5f4b4de1af35e6925f..49a9540c0b6e36b59ed786287ff5c4569b69a6a5 100644 --- a/paddle/gserver/layers/CudnnBatchNormLayer.cpp +++ b/paddle/gserver/layers/CudnnBatchNormLayer.cpp @@ -37,7 +37,7 @@ bool CudnnBatchNormLayer::init(const LayerMap& layerMap, } void CudnnBatchNormLayer::reshape(int batchSize) { - hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_, imageW_); + hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_ * imageD_, imageW_); } void CudnnBatchNormLayer::forward(PassType passType) { @@ -104,7 +104,7 @@ void CudnnBatchNormLayer::forward(PassType passType) { EPS, batchSize, channels_, - imageH_, + imageH_ * imageD_, imageW_); } } diff --git a/paddle/gserver/layers/DeConv3DLayer.cpp b/paddle/gserver/layers/DeConv3DLayer.cpp index 1b59ed60c57fe3bbfa814befa8a63408a2621715..3eea638649e8ebfdd7efa18615977a9e1344c695 100644 --- a/paddle/gserver/layers/DeConv3DLayer.cpp +++ b/paddle/gserver/layers/DeConv3DLayer.cpp @@ -53,27 +53,27 @@ bool DeConv3DLayer::init(const LayerMap &layerMap, size_t DeConv3DLayer::getSize() { CHECK_NE(inputLayers_.size(), 0UL); - outputH_.clear(); - outputW_.clear(); - outputD_.clear(); + imgSizeW_.clear(); + imgSizeH_.clear(); + imgSizeD_.clear(); N_.clear(); NOut_.clear(); size_t layerSize = 0; for (size_t i = 0; i < inputLayers_.size(); ++i) { - outputW_.push_back( - imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true)); - outputH_.push_back(imageSize( - imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true)); - outputD_.push_back(imageSize( - imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true)); - NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]); - N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]); + imgSizeW_.push_back( + imageSize(outputW_[i], filterSize_[i], padding_[i], stride_[i], true)); + imgSizeH_.push_back(imageSize( + outputH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true)); + imgSizeD_.push_back(imageSize( + outputD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true)); + NOut_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]); + N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]); CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize); layerSize += NOut_[i] * numFilters_; } - getOutput().setFrameHeight(outputH_[0]); - getOutput().setFrameWidth(outputW_[0]); - getOutput().setFrameDepth(outputD_[0]); + getOutput().setFrameHeight(imgSizeH_[0]); + getOutput().setFrameWidth(imgSizeW_[0]); + getOutput().setFrameDepth(imgSizeD_[0]); return layerSize; } @@ -103,9 +103,9 @@ void DeConv3DLayer::forward(PassType passType) { } colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(), numFilters_, - outputD_[i], - outputH_[i], - outputW_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], filterSizeZ_[i], filterSizeY_[i], filterSize_[i], @@ -144,9 +144,9 @@ void DeConv3DLayer::backward(const UpdateCallback &callback) { colBuf_->vol2Col( getOutputGrad()->getData() + n * getOutputGrad()->getStride(), numFilters_, - outputD_[i], - outputH_[i], - outputW_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], filterSizeZ_[i], filterSizeY_[i], filterSize_[i], diff --git a/paddle/gserver/layers/DetectionOutputLayer.cpp b/paddle/gserver/layers/DetectionOutputLayer.cpp index 8ab838e191314ab25469631626c0b0564d7fffda..0cf0a92bf4bd8f9b8eba2016b2377d9dfb18c70a 100644 --- a/paddle/gserver/layers/DetectionOutputLayer.cpp +++ b/paddle/gserver/layers/DetectionOutputLayer.cpp @@ -139,7 +139,13 @@ void DetectionOutputLayer::forward(PassType passType) { allDecodedBBoxes, &allIndices); - resetOutput(numKept, 7); + if (numKept > 0) { + resetOutput(numKept, 7); + } else { + MatrixPtr outV = getOutputValue(); + outV = NULL; + return; + } MatrixPtr outV = getOutputValue(); getDetectionOutput(confBuffer_->getData(), numKept, diff --git a/paddle/gserver/layers/DetectionUtil.cpp b/paddle/gserver/layers/DetectionUtil.cpp index 3e61adc66e60c54250e4f323452aa13045310879..d83674f45a70212a8adc94a31ff58eb0e01baa00 100644 --- a/paddle/gserver/layers/DetectionUtil.cpp +++ b/paddle/gserver/layers/DetectionUtil.cpp @@ -469,7 +469,7 @@ size_t getDetectionIndices( const size_t numClasses, const size_t backgroundId, const size_t batchSize, - const size_t confThreshold, + const real confThreshold, const size_t nmsTopK, const real nmsThreshold, const size_t keepTopK, diff --git a/paddle/gserver/layers/DetectionUtil.h b/paddle/gserver/layers/DetectionUtil.h index fe4f9f075e4cf011c97f68f49598a828d62327b3..641ed873b4c8645b6455e5ef5e63593e3005b770 100644 --- a/paddle/gserver/layers/DetectionUtil.h +++ b/paddle/gserver/layers/DetectionUtil.h @@ -275,7 +275,7 @@ size_t getDetectionIndices( const size_t numClasses, const size_t backgroundId, const size_t batchSize, - const size_t confThreshold, + const real confThreshold, const size_t nmsTopK, const real nmsThreshold, const size_t keepTopK, diff --git a/paddle/gserver/layers/Layer.h b/paddle/gserver/layers/Layer.h index edef36194aabdb9c122ec3423deb036169a34d7c..4002a3d0747a86ab7b495ffe52247521831b71b8 100644 --- a/paddle/gserver/layers/Layer.h +++ b/paddle/gserver/layers/Layer.h @@ -49,6 +49,12 @@ struct LayerState { }; typedef std::shared_ptr LayerStatePtr; +/// Paddle device ID, MKLDNN is -2, CPU is -1 +enum PADDLE_DEVICE_ID { + MKLDNN_DEVICE = -2, + CPU_DEVICE = -1, +}; + /** * @brief Base class for layer. * Define necessary variables and functions for every layer. @@ -59,11 +65,6 @@ protected: LayerConfig config_; /// whether to use GPU bool useGpu_; - /// Paddle device ID, MKLDNN is -2, CPU is -1 - enum PADDLE_DEVICE_ID { - MKLDNN_DEVICE = -2, - CPU_DEVICE = -1, - }; /// Device Id. MKLDNN is -2, CPU is -1, and GPU is 0, 1, 2 ... int deviceId_; /// Input layers diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index 8318c8c519a4cec1610eadd28320ee5ce0b4147d..f70343251ad4fbb99f9614618f6d1bff1174f15e 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -14,7 +14,6 @@ limitations under the License. */ #include "MKLDNNFcLayer.h" #include "paddle/utils/Logging.h" -#include "paddle/utils/Stat.h" using namespace mkldnn; // NOLINT typedef memory::format format; @@ -40,6 +39,8 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap, oc_ = getSize(); oh_ = 1; ow_ = 1; + ih_ = 1; + iw_ = 1; // input size can not change in FC iLayerSize_ = inputLayers_[0]->getSize(); @@ -77,111 +78,86 @@ void MKLDNNFcLayer::convertWeightsToPaddle() { wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); } -void MKLDNNFcLayer::convertOutputToOtherDevice() { - copyOutputInfoToOtherDevice(); - // find other cpu device and reorder output to cpu device - int cnt = 0; - for (size_t i = 0; i < outputOtherDevice_.size(); i++) { - if (outputOtherDevice_[i].deviceId == CPU_DEVICE) { - // fc cpu output value do not need convert - // just share point - outputOtherDevice_[i].value = output_.value; - ++cnt; - } - } - - if (cnt > 1) { - LOG(WARNING) << "should not have more than one CPU devie"; - } -} +void MKLDNNFcLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) { + reshapeInput(bs, ih, iw); -void MKLDNNFcLayer::reshape() { - const Argument& input = getInput(0, getPrev(0)->getDeviceId()); - int batchSize = input.getBatchSize(); - if (bs_ == batchSize) { - return; - } - bs_ = batchSize; - ih_ = input.getFrameHeight(); - iw_ = input.getFrameWidth(); - if (ih_ == 0) { - ih_ = 1; - } - if (iw_ == 0) { - iw_ = 1; - } CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); - ic_ = iLayerSize_ / (ih_ * iw_); - CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible"; - CHECK_EQ(size_t(oc_), getSize()); - printSizeInfo(); + ic = iLayerSize_ / (ih * iw); + CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible"; + CHECK_EQ(size_t(oc), getSize()); - // reset output - output_.setFrameHeight(oh_); - output_.setFrameWidth(ow_); - resetOutput(bs_, oc_); + reshapeOutput(oh, ow); + resizeOutput(bs, oc); - // reset mkldnn forward - resetFwd(); - needResetBwd_ = true; - - convertWeightsFromPaddle(); + printSizeInfo(); } -void MKLDNNFcLayer::resetFwd() { +void MKLDNNFcLayer::resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); bool hasBias = biases_ && biases_->getW(); - const MatrixPtr& wgt = weight_->getW(); - const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr; - const MatrixPtr& out = output_.value; + const MatrixPtr& wgtVal = weight_->getW(); + const MatrixPtr& biasVal = hasBias ? biases_->getW() : nullptr; + const MatrixPtr& outVal = output_.value; if (inputIsOnlyMKLDNN()) { - const MatrixPtr& in = getInputValue(0); - inVal_ = std::dynamic_pointer_cast(in); - CHECK(inVal_) << "Input should be MKLDNNMatrix"; + const MatrixPtr& inVal = getInputValue(0); + in = std::dynamic_pointer_cast(inVal); + CHECK(in) << "Input should be MKLDNNMatrix"; } else { CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; - const MatrixPtr& in = getInputValue(0, CPU_DEVICE); - inVal_ = MKLDNNMatrix::create( - in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); - } - inVal_->downSpatial(); - wgtVal_ = MKLDNNMatrix::create( - wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); - wgtVal_->downSpatial(); - biasVal_ = - hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr; - outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_); + const MatrixPtr& inVal = getInputValue(0, CPU_DEVICE); + in = MKLDNNMatrix::create( + inVal, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); + } + in->downSpatial(); + wgt = MKLDNNMatrix::create( + wgtVal, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); + wgt->downSpatial(); + bias = hasBias ? MKLDNNMatrix::create(biasVal, {oc_}, format::x, engine_) + : nullptr; + out = MKLDNNMatrix::create(outVal, {bs_, oc_}, format::nc, engine_); // change original output value to mkldnn output value - output_.value = std::dynamic_pointer_cast(outVal_); + output_.value = std::dynamic_pointer_cast(out); if (!outputIsOnlyMKLDNN()) { - convertOutputToOtherDevice(); + // fc cpu output value do not need create convert + // just share point + getOutput(CPU_DEVICE).value->setData(output_.value->getData()); } // create forward handle prop_kind pk = prop_kind::forward; fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk, - inVal_->getMemoryDesc(), - wgtVal_->getMemoryDesc(), - biasVal_->getMemoryDesc(), - outVal_->getMemoryDesc()) + in->getMemoryDesc(), + wgt->getMemoryDesc(), + bias->getMemoryDesc(), + out->getMemoryDesc()) : fc_fwd::desc(pk, - inVal_->getMemoryDesc(), - wgtVal_->getMemoryDesc(), - outVal_->getMemoryDesc()); + in->getMemoryDesc(), + wgt->getMemoryDesc(), + out->getMemoryDesc()); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); if (hasBias) { - fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_)); + fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *bias, *out)); } else { - fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_)); + fwd_.reset(new fc_fwd(fwdPD, *in, *wgt, *out)); } printValueFormatFlow(); - pipelineFwd_.clear(); - pipelineFwd_.push_back(*fwd_); + pipeline.push_back(*fwd_); } -void MKLDNNFcLayer::resetBwd() { +void MKLDNNFcLayer::resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) { + pipeline.clear(); if (!needResetBwd_) { return; } @@ -190,8 +166,8 @@ void MKLDNNFcLayer::resetBwd() { /// backward weight CHECK(inVal_) << "Should have input value"; - const MatrixPtr& wgt = weight_->getWGrad(); - const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr; + const MatrixPtr& wgtGrad = weight_->getWGrad(); + const MatrixPtr& biasGrad = hasBias ? biases_->getWGrad() : nullptr; // TODO(TJ): merge outgrad int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; @@ -202,101 +178,66 @@ void MKLDNNFcLayer::resetBwd() { // for CPU device: // fc do not need to convert from cpu device since output is always nc format // only need create from cpu device - const MatrixPtr& out = getOutput(device).grad; - outGrad_ = MKLDNNMatrix::create(out, outVal_->getPrimitiveDesc()); - wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPrimitiveDesc()); - biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPrimitiveDesc()) - : nullptr; + const MatrixPtr& outGrad = getOutput(device).grad; + out = MKLDNNMatrix::create(outGrad, outVal_->getPrimitiveDesc()); + wgt = MKLDNNMatrix::create(wgtGrad, wgtVal_->getPrimitiveDesc()); + bias = hasBias ? MKLDNNMatrix::create(biasGrad, biasVal_->getPrimitiveDesc()) + : nullptr; // create memory primitive desc fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, inVal_->getMemoryDesc(), - wgtGrad_->getMemoryDesc(), - outGrad_->getMemoryDesc()); + wgt->getMemoryDesc(), + out->getMemoryDesc()); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); fc_bwdWgt::desc bwdWgtDesc = hasBias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(), - wgtGrad_->getMemoryDesc(), - biasGrad_->getMemoryDesc(), - outGrad_->getMemoryDesc()) + wgt->getMemoryDesc(), + bias->getMemoryDesc(), + out->getMemoryDesc()) : fc_bwdWgt::desc(inVal_->getMemoryDesc(), - wgtGrad_->getMemoryDesc(), - outGrad_->getMemoryDesc()); + wgt->getMemoryDesc(), + out->getMemoryDesc()); fc_bwdWgt::primitive_desc bwdWgtPD = fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD); if (hasBias) { - bwdWgt_.reset( - new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_)); + bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt, *bias)); } else { - bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_)); + bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *out, *wgt)); } - pipelineBwd_.clear(); - pipelineBwd_.push_back(*bwdWgt_); + pipeline.push_back(*bwdWgt_); /// backward data - device = inputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; - const MatrixPtr& in = getInputGrad(0, device); - if (in == nullptr) { + const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad; + if (inGrad == nullptr) { return; } - if (getInput(0, device).getAllCount() > 1) { - // TODO(TJ): use outputMaps_ ways when merge outgrad done + if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) { + // TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done } else { - inGrad_ = MKLDNNMatrix::create(in, inVal_->getPrimitiveDesc()); + in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc()); } - fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMemoryDesc(), - wgtGrad_->getMemoryDesc(), - outGrad_->getMemoryDesc()); + fc_bwdData::desc bwdDataDesc = fc_bwdData::desc( + inVal_->getMemoryDesc(), wgt->getMemoryDesc(), out->getMemoryDesc()); fc_bwdData::primitive_desc bwdDataPD = fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD); CHECK(wgtVal_) << "Should have weight memory"; - bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_)); + bwdData_.reset(new fc_bwdData(bwdDataPD, *out, *wgtVal_, *in)); printGradFormatFlow(); - pipelineBwd_.push_back(*bwdData_); + pipeline.push_back(*bwdData_); } -void MKLDNNFcLayer::forward(PassType passType) { - Layer::forward(passType); - reshape(); - - { - REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); - syncInputValue(); - - // just submit forward pipeline - stream_->submit(pipelineFwd_); - } - - /* activation */ { - REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); - forwardActivation(); - } +void MKLDNNFcLayer::updateInputData() { + inVal_->setData(getInputValue(0, CPU_DEVICE)->getData()); } -void MKLDNNFcLayer::backward(const UpdateCallback& callback) { - /* Do derivation */ { - REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); - backwardActivation(); - } - - { - REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); - resetBwd(); - - syncOutputGrad(); - // just sumbmit backward pipeline - stream_->submit(pipelineBwd_); - } - - { - REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); - weight_->getParameterPtr()->incUpdate(callback); - if (biases_ && biases_->getWGrad()) { - biases_->getParameterPtr()->incUpdate(callback); - } +void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) { + weight_->getParameterPtr()->incUpdate(callback); + if (biases_ && biases_->getWGrad()) { + biases_->getParameterPtr()->incUpdate(callback); } } } // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h index e138a6faf181c412949218458e7ecf800a0d6a07..3119f863496df092da13c08bf733f13c42e53780 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.h +++ b/paddle/gserver/layers/MKLDNNFcLayer.h @@ -45,35 +45,28 @@ public: bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) override; - void convertWeightsFromPaddle() override; + void reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) override; - void convertWeightsToPaddle() override; + void resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; - void forward(PassType passType) override; + void resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) override; - void backward(const UpdateCallback& callback) override; + void updateInputData() override; -protected: - /** - * reshape the input image sizes - * and reset output buffer size - * and reset mkldnn forward - */ - void reshape(); - - /** - * reset the forward primitve and memory - * only would be called when input size changes - */ - void resetFwd(); - - /** - * reset the backward primitve and memory for mkldnn fc - * only would be called when needed - */ - void resetBwd(); - - void convertOutputToOtherDevice() override; + void updateWeights(const UpdateCallback& callback) override; + + void convertWeightsFromPaddle() override; + + void convertWeightsToPaddle() override; }; } // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index b983b833d510b823c5d4cff0b9390173e4cefc89..169679c8297542cac4a43f5a8e1af311ad9282df 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -19,6 +19,7 @@ limitations under the License. */ #include "MKLDNNBase.h" #include "mkldnn.hpp" #include "paddle/math/MKLDNNMatrix.h" +#include "paddle/utils/Stat.h" DECLARE_bool(use_mkldnn); @@ -33,6 +34,8 @@ typedef std::shared_ptr MKLDNNLayerPtr; */ class MKLDNNLayer : public Layer { protected: + // input value element count + size_t inputElemenCnt_; // batch size int bs_; // input image channel, height and width @@ -52,7 +55,7 @@ protected: std::vector pipelineFwd_; std::vector pipelineBwd_; - // MKLDNNMatrixPtr + // MKLDNNMatrixPtr with internal format MKLDNNMatrixPtr inVal_; MKLDNNMatrixPtr inGrad_; MKLDNNMatrixPtr outVal_; @@ -65,6 +68,7 @@ protected: public: explicit MKLDNNLayer(const LayerConfig& config) : Layer(config), + inputElemenCnt_(0), bs_(0), ic_(0), ih_(0), @@ -95,12 +99,104 @@ public: if (!Layer::init(layerMap, parameterMap)) { return false; } + checkCPUOutputsNumber(); stream_.reset(new MKLDNNStream()); engine_ = CPUEngine::Instance().getEngine(); return true; } + void forward(PassType passType) override { + passType_ = passType; + + { + REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); + CHECK(!inputLayers_.empty()); + copySeqInfoToOutputs(); + size_t elemenCnt = inputLayers_[0]->getOutput().value->getElementCnt(); + if (inputElemenCnt_ != elemenCnt) { + // reset when input total sizes changed, not only the batchsize + inputElemenCnt_ = elemenCnt; + reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_); + resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_); + convertWeightsFromPaddle(); + needResetBwd_ = true; + } + + if (inputLayers_[0]->getType() == "data") { + updateInputData(); + } + + stream_->submit(pipelineFwd_); + } + + /* activation */ { + REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); + forwardActivation(); + } + } + + void backward(const UpdateCallback& callback) override { + /* Do derivation */ { + REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); + backwardActivation(); + } + + { + REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); + if (needResetBwd_) { + resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_); + needResetBwd_ = false; + } + + stream_->submit(pipelineBwd_); + } + + { + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + updateWeights(callback); + } + } + + /** + * reshape the input image sizes + * and reset output image and buffer size + * output channel can not be changed + */ + virtual void reshape( + int& bs, int& ic, int& ih, int& iw, int oc, int& oh, int& ow) = 0; + + /** + * reset the mkldnn forward primitve and memory + * only would be called when input size changes + */ + virtual void resetFwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) = 0; + + /** + * reset the mkldnn backward primitve and memory for mkldnn fc + * only would be called when needed + */ + virtual void resetBwd(std::vector& pipeline, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& wgt, + MKLDNNMatrixPtr& bias, + MKLDNNMatrixPtr& out) = 0; + + /** + * Update input value data when input layer is "data" type. + * Since the input value data address might be changed. + */ + virtual void updateInputData() {} + + /** + * Update weights and biases if necessary. + */ + virtual void updateWeights(const UpdateCallback& callback) {} + /** * convert weight from paddle format to mkldnn format * weight_ will be override @@ -114,10 +210,38 @@ public: virtual void convertWeightsToPaddle() {} /** - * convert MKLDNN output to other device. - * only support CPU device yet + * add this interface as public for unit test + */ + void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); } + +protected: + /** + * reshape the input image sizes and input batchsize */ - virtual void convertOutputToOtherDevice() {} + virtual void reshapeInput(int& batchsize, int& height, int& width) { + const Argument& input = inputLayers_[0]->getOutput(); + batchsize = input.getBatchSize(); + int h = input.getFrameHeight(); + int w = input.getFrameWidth(); + if (h != 0) { + height = h; + } + if (w != 0) { + width = w; + } + } + + /** + * reshape output image sizes + */ + virtual void reshapeOutput(size_t height, size_t width) { + output_.setFrameHeight(height); + output_.setFrameWidth(width); + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].setFrameHeight(height); + outputOtherDevice_[i].setFrameWidth(width); + } + } /** * print info about sizes @@ -133,8 +257,8 @@ public: */ virtual void printValueFormatFlow() { if (inVal_ && outVal_) { - VLOG(MKLDNN_FMTS) << "value format flow --- " << inVal_->getFormat() - << " >>> " << outVal_->getFormat(); + VLOG(MKLDNN_FMTS) << inVal_->getFormat() << " >>> " + << outVal_->getFormat(); } } @@ -143,29 +267,12 @@ public: */ virtual void printGradFormatFlow() { if (inGrad_ && outGrad_) { - VLOG(MKLDNN_FMTS) << "grad format flow --- " << inGrad_->getFormat() - << " <<< " << outGrad_->getFormat(); + VLOG(MKLDNN_FMTS) << inGrad_->getFormat() << " <<< " + << outGrad_->getFormat(); } } protected: - /** - * copy image size and sequence info to other device - * @note: can not directly use Layer::copyOutputToOtherDevice since here only - * copy base info and do not copy data value - */ - void copyOutputInfoToOtherDevice() { - for (size_t i = 0; i < outputOtherDevice_.size(); i++) { - outputOtherDevice_[i].setFrameHeight(output_.getFrameHeight()); - outputOtherDevice_[i].setFrameWidth(output_.getFrameWidth()); - outputOtherDevice_[i].sequenceStartPositions = - output_.sequenceStartPositions; - outputOtherDevice_[i].subSequenceStartPositions = - output_.subSequenceStartPositions; - outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims; - } - } - /** * If input only has MKLDNN device. * Otherwise, only support the previous layer using CPU device. @@ -193,37 +300,12 @@ protected: return outputOtherDevice_.size() == 0; } - /** - * Sync input value data - */ - void syncInputValue() { - if (inputIsOnlyMKLDNN()) { - return; - } - real* iData = getInputValue(0, CPU_DEVICE)->getData(); - // update input data - // since it might be changed if this is after data layer - inVal_->updateData(iData); - } - - /** - * Sync output grad data - */ - void syncOutputGrad() { - if (outputIsOnlyMKLDNN()) { - return; - } - - // update diff - real* oDiff = getOutput(CPU_DEVICE).grad->getData(); - outGrad_->updateData(oDiff); - } - /** * Set deviceId of this layer. */ void setDevice(int id) { deviceId_ = id; } +private: /** * Set deviceId of the params used in this layer. */ @@ -247,6 +329,42 @@ protected: parameter->setDevice(id); } } + + /** + * Check the cpu device number of outputOtherDevice_. + * should have only one at most. + */ + void checkCPUOutputsNumber(int max = 1) { + int cnt = 0; + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + if (outputOtherDevice_[i].deviceId == CPU_DEVICE) { + ++cnt; + } + } + CHECK_LE(cnt, max) << "too much CPU devies"; + } + + /** + * copy SeqInfo from input layer to this output and other output devices. + * @note: do not use getInput(0) since it used this deviceId_, + * use "inputLayers_[0]->getOutput()" instead. + */ + void copySeqInfoToOutputs() { + if (inputLayers_.empty() || !needSequenceInfo_) { + return; + } + const Argument& input = inputLayers_[0]->getOutput(); + output_.sequenceStartPositions = input.sequenceStartPositions; + output_.subSequenceStartPositions = input.subSequenceStartPositions; + output_.cpuSequenceDims = input.cpuSequenceDims; + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].sequenceStartPositions = + output_.sequenceStartPositions; + outputOtherDevice_[i].subSequenceStartPositions = + output_.subSequenceStartPositions; + outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims; + } + } }; } // namespace paddle diff --git a/paddle/gserver/layers/SwitchOrderLayer.cpp b/paddle/gserver/layers/SwitchOrderLayer.cpp index 6a91042f628920a9986763531fb4c633307b43b8..e97809141a93106f9e6ebaf40c7e8aa9c6010557 100644 --- a/paddle/gserver/layers/SwitchOrderLayer.cpp +++ b/paddle/gserver/layers/SwitchOrderLayer.cpp @@ -24,19 +24,21 @@ bool SwitchOrderLayer::init(const LayerMap& layerMap, /* Initialize the basic parent class */ Layer::init(layerMap, parameterMap); auto& img_conf = config_.inputs(0).image_conf(); + size_t inD = img_conf.img_size_z(); size_t inH = img_conf.has_img_size_y() ? img_conf.img_size_y() : img_conf.img_size(); size_t inW = img_conf.img_size(); size_t inC = img_conf.channels(); + inH = inH * inD; inDims_ = TensorShape({0, inC, inH, inW}); outDims_ = TensorShape(4); auto& reshape_conf = config_.reshape_conf(); - for (size_t i = 0; i < reshape_conf.heightaxis_size(); i++) { - heightAxis_.push_back(reshape_conf.heightaxis(i)); + for (int i = 0; i < reshape_conf.height_axis_size(); i++) { + heightAxis_.push_back(reshape_conf.height_axis(i)); } - for (size_t i = 0; i < reshape_conf.widthaxis_size(); i++) { - widthAxis_.push_back(reshape_conf.widthaxis(i)); + for (int i = 0; i < reshape_conf.width_axis_size(); i++) { + widthAxis_.push_back(reshape_conf.width_axis(i)); } createFunction(nchw2nhwc_, "NCHW2NHWC", FuncConfig()); createFunction(nhwc2nchw_, "NHWC2NCHW", FuncConfig()); @@ -64,9 +66,10 @@ void SwitchOrderLayer::setInDims() { MatrixPtr input = inputLayers_[0]->getOutputValue(); size_t batchSize = input->getHeight(); inDims_.setDim(0, batchSize); - + int d = inputLayers_[0]->getOutput().getFrameDepth(); + d = (d == 0 ? 1 : d); int h = inputLayers_[0]->getOutput().getFrameHeight(); - if (h != 0) inDims_.setDim(2, h); + if (h != 0) inDims_.setDim(2, h * d); int w = inputLayers_[0]->getOutput().getFrameWidth(); if (w != 0) inDims_.setDim(3, w); int totalCount = input->getElementCnt(); @@ -80,8 +83,7 @@ void SwitchOrderLayer::forward(PassType passType) { setOutDims(); resetOutput(outDims_[0], outDims_[1] * outDims_[2] * outDims_[3]); if (heightAxis_.size() > 0) { - getOutputValue()->reshape(reshapeHeight_, reshapeWidth_); - getOutputGrad()->reshape(reshapeHeight_, reshapeWidth_); + resetOutput(reshapeHeight_, reshapeWidth_); } // switch NCHW to NHWC diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp index de1635be2af37cd0ba49010199a417090865b0e4..2f48e5b2d3ffc9337ed1314f6db6549e56263fdd 100644 --- a/paddle/gserver/tests/MKLDNNTester.cpp +++ b/paddle/gserver/tests/MKLDNNTester.cpp @@ -63,8 +63,12 @@ void MKLDNNTester::reset(const TestConfig& dnn, initTestLayer( configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i])); } - dnnLayer_ = testLayers_[DNN]; refLayer_ = testLayers_[REF]; + dnnLayer_ = std::dynamic_pointer_cast(testLayers_[DNN]); + CHECK(dnnLayer_); + // for comparison with Paddle reference results, + // need manually add cpu device output for test + dnnLayer_->addOutputArgument(CPU_DEVICE); EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size()); EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size()); @@ -109,20 +113,22 @@ void MKLDNNTester::randomBotDatas() { void MKLDNNTester::randomTopDiffs() { refLayer_->getOutputGrad()->randomizeUniform(); - dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad())); - VLOG(lvl_) << "Random dom Backward Input, TopDiff: "; + dnnLayer_->getOutput(CPU_DEVICE) + .grad->copyFrom(*(refLayer_->getOutputGrad())); + VLOG(lvl_) << "Random Backward Input, TopDiff: "; printMatrix(refLayer_->getOutputGrad()); } void MKLDNNTester::checkForward() { - printTopDatas(); - double delta = compareMatrix(testLayers_[DNN]->getOutputValue(), - testLayers_[REF]->getOutputValue()); VLOG(MKLDNN_ALL) << "Check Forward"; + printTopDatas(); + double delta = compareMatrix(dnnLayer_->getOutput(-1).value, + refLayer_->getOutputValue()); EXPECT_LE(fabs(delta), eps_); } void MKLDNNTester::checkBackwardData() { + VLOG(MKLDNN_ALL) << "Check Backward Data"; // TODO(TJ): uncomment me when batch norm ready // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm"; for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) { @@ -144,14 +150,12 @@ void MKLDNNTester::checkBackwardData() { } void MKLDNNTester::checkBackwardWgts() { + VLOG(MKLDNN_ALL) << "Check Backward Weight"; CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size()); vector dnnWgts; // used to temply save mkldnn weights saveWgt(parameters_[DNN], dnnWgts); - const MKLDNNLayerPtr dnnlayer = - std::dynamic_pointer_cast(dnnLayer_); - CHECK(dnnlayer); - dnnlayer->convertWeightsToPaddle(); + dnnLayer_->convertWeightsToPaddle(); for (size_t i = 0; i < parameters_[DNN].size(); ++i) { const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE); const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE); @@ -189,38 +193,38 @@ void MKLDNNTester::restoreWgt(const vector& from, } // clear parameters grad -void MKLDNNTester::clearWgtDiffs() { +void MKLDNNTester::clearWgtDiffs(size_t id) { + CHECK_LE(id, parameters_.size()); for (size_t n = 0; n < parameters_.size(); ++n) { - for (size_t i = 0; i < parameters_[n].size(); ++i) { - const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT); - if (grad) { - grad->zeroMem(); + if (id == n || id == parameters_.size()) { + for (size_t i = 0; i < parameters_[n].size(); ++i) { + const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT); + if (grad) { + grad->zeroMem(); + } } } } } -void MKLDNNTester::clearBotDiffs() { - // dnn and ref +void MKLDNNTester::clearBotDiffs(size_t id) { + CHECK_LE(id, dataLayers_.size()); for (size_t n = 0; n < dataLayers_.size(); ++n) { - // all inputs layers - for (size_t i = 0; i < dataLayers_[n].size(); ++i) { - dataLayers_[n][i]->getOutputGrad()->zeroMem(); + if (id == n || id == dataLayers_.size()) { + // clear inputs layers of this specific layer + for (size_t i = 0; i < dataLayers_[n].size(); ++i) { + dataLayers_[n][i]->getOutputGrad()->zeroMem(); + } } } } -void MKLDNNTester::clearBotDiffs(int n) { - CHECK_LT(n, NUM); - // all inputs layers - for (size_t i = 0; i < dataLayers_[n].size(); ++i) { - dataLayers_[n][i]->getOutputGrad()->zeroMem(); - } -} - -void MKLDNNTester::clearTopDatas() { +void MKLDNNTester::clearTopDatas(size_t id) { + CHECK_LE(id, testLayers_.size()); for (size_t i = 0; i < testLayers_.size(); ++i) { - testLayers_[i]->getOutputValue()->zeroMem(); + if (id == i || id == testLayers_.size()) { + testLayers_[i]->getOutputValue()->zeroMem(); + } } } @@ -300,16 +304,24 @@ void MKLDNNTester::runOnce() { checkForward(); // test backward + // simple updater + UpdateCallback updateCallback = [](Parameter* para) { + auto& grad = para->getBuf(PARAMETER_GRADIENT); + auto& value = para->getBuf(PARAMETER_VALUE); + real lr = 1e-3; + value->add(*grad, lr); + }; randomTopDiffs(); - dnnLayer_->backward(nullptr); - refLayer_->backward(nullptr); + dnnLayer_->backward(updateCallback); + refLayer_->backward(updateCallback); checkBackwardData(); checkBackwardWgts(); // clear buffers // ref code will addto the diff, dnn code will writeto it - // and clearTopDatas() and clearWgtDiffs() should be coverd by test layers + // and clearTopDatas(REF) should be coverd by ref layers clearBotDiffs(REF); + clearWgtDiffs(REF); } void MKLDNNTester::run(const TestConfig& dnn, diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index e55e4493ffdfe45b8cfdee423febd1878b8b3d8a..5ac885638cde7693a0c847733e7a6149c1b7e6c2 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -18,6 +18,7 @@ limitations under the License. */ #include #include "LayerGradUtil.h" #include "paddle/gserver/layers/MKLDNNBase.h" +#include "paddle/gserver/layers/MKLDNNLayer.h" namespace paddle { @@ -40,7 +41,8 @@ protected: vector layerMaps_; vector> parameters_; vector testLayers_; - LayerPtr dnnLayer_, refLayer_; + LayerPtr refLayer_; + MKLDNNLayerPtr dnnLayer_; /// run some iterations, all the result should pass size_t iter_; @@ -88,10 +90,10 @@ private: void checkBackwardData(); void checkBackwardWgts(); - void clearWgtDiffs(); - void clearBotDiffs(); - void clearBotDiffs(int n); // clear specific layer - void clearTopDatas(); + // clear specific layer, clear all when id equals NUM + void clearWgtDiffs(size_t id = NUM); + void clearBotDiffs(size_t id = NUM); + void clearTopDatas(size_t id = NUM); void printTopDatas(); void printMatrix(const MatrixPtr& m); diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index e0c14ad5b512c7329062a5426ef34844ec268020..090bde7b203652e3ffb1662b8f5b8937885d2608 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -1703,6 +1703,55 @@ TEST(Layer, BatchNormalizationLayer) { #endif } +void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) { + TestConfig config; + const int CHANNELS = 10; + const int IMG_SIZE = 16; + const int IMG_SIZE_Y = 8; + const int IMG_SIZE_Z = 8; + size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y * IMG_SIZE_Z; + config.layerConfig.set_type(type); + config.layerConfig.set_size(size); + config.layerConfig.set_active_type("sigmoid"); + config.biasSize = CHANNELS; + config.inputDefs.push_back({INPUT_DATA, + "layer_0", + /* dim= */ size, + /* paraSize= */ CHANNELS}); + + config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS}); + config.inputDefs.back().isStatic = true; + config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS}); + config.inputDefs.back().isStatic = true; + + LayerInputConfig* input = config.layerConfig.add_inputs(); + config.layerConfig.add_inputs(); + config.layerConfig.add_inputs(); + + ImageConfig* img_conf = input->mutable_image_conf(); + img_conf->set_channels(CHANNELS); + img_conf->set_img_size(IMG_SIZE); + img_conf->set_img_size_y(IMG_SIZE_Y); + img_conf->set_img_size_z(IMG_SIZE_Z); + + testLayerGrad(config, + "batch_norm", + 64, + /* trans= */ trans, + useGpu, + /* useWeight */ true); +} + +TEST(Layer, testBatchNorm3DLayer) { + testBatchNorm3DLayer("batch_norm", false, false); +#ifndef PADDLE_ONLY_CPU + testBatchNorm3DLayer("batch_norm", false, true); + if (hl_get_cudnn_lib_version() >= int(4000)) { + testBatchNorm3DLayer("cudnn_batch_norm", false, true); + } +#endif +} + void testConvOperator(bool isDeconv) { TestConfig config; const int NUM_FILTERS = 16; @@ -2019,10 +2068,10 @@ TEST(Layer, SwitchOrderLayer) { img->set_img_size_y(16); ReshapeConfig* reshape = config.layerConfig.mutable_reshape_conf(); - reshape->add_heightaxis(0); - reshape->add_heightaxis(1); - reshape->add_heightaxis(2); - reshape->add_widthaxis(3); + reshape->add_height_axis(0); + reshape->add_height_axis(1); + reshape->add_height_axis(2); + reshape->add_width_axis(3); // config softmax layer config.layerConfig.set_type("switch_order"); @@ -2253,26 +2302,27 @@ void test3DDeConvLayer(const string& type, bool trans, bool useGpu) { conv->set_stride(2); conv->set_stride_y(2); conv->set_stride_z(2); - conv->set_img_size(IMAGE_SIZE); - conv->set_img_size_y(IMAGE_SIZE_Y); - conv->set_img_size_z(IMAGE_SIZE_Z); - conv->set_output_x(imageSize(conv->img_size(), + conv->set_output_x(IMAGE_SIZE); + conv->set_output_y(IMAGE_SIZE_Y); + conv->set_output_z(IMAGE_SIZE_Z); + + conv->set_img_size(imageSize(conv->output_x(), conv->filter_size(), conv->padding(), conv->stride(), true)); - conv->set_output_y(imageSize(conv->img_size_y(), - conv->filter_size_y(), - conv->padding_y(), - conv->stride_y(), - true)); - conv->set_output_z(imageSize(conv->img_size_z(), - conv->filter_size_z(), - conv->padding_z(), - conv->stride_z(), - true)); - config.layerConfig.set_size(conv->output_x() * conv->output_y() * - conv->output_z() * NUM_FILTERS); + conv->set_img_size_y(imageSize(conv->output_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y(), + true)); + conv->set_img_size_z(imageSize(conv->output_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z(), + true)); + config.layerConfig.set_size(conv->img_size() * conv->img_size_y() * + conv->img_size_z() * NUM_FILTERS); conv->set_groups(1); conv->set_filter_channels(conv->channels() / conv->groups()); config.inputDefs.push_back( diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp index 0a355e2644cce572ce90ecf5c9d2a5b7b395bc61..c4063e5069854242d9f93886b66580385557ca73 100644 --- a/paddle/math/MKLDNNMatrix.cpp +++ b/paddle/math/MKLDNNMatrix.cpp @@ -33,14 +33,12 @@ MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::primitive_desc pd) { size_t width = cnts / dims[0]; m = Matrix::create(height, width, false, false); } - CHECK(m) << " Matrix should not be empty"; + CpuMatrixPtr cpuMatrix = std::dynamic_pointer_cast(m); CHECK(cpuMatrix) << "Only support create from CPU matrix yet"; - - CHECK_EQ(cnts, m->getElementCnt()) << "Count size does not match"; - return std::make_shared( - m->getData(), m->getHeight(), m->getWidth(), pd); + CHECK_EQ(cpuMatrix->getElementCnt(), cnts) << "Count size does not match"; + return std::make_shared(cpuMatrix, pd); } MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, @@ -138,7 +136,7 @@ void MKLDNNMatrix::downSpatial() { mkldnn_primitive_create(&result, pd.get(), nullptr, nullptr), "could not create a memory primitive"); reset(result); - set_data_handle(getData()); + set_data_handle(data_); } } // namespace paddle diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h index e50f698b495713e6f15ab7a12a7ee7487662040f..eef3b429e6fa0087aeac3f5aed9dff983b06e826 100644 --- a/paddle/math/MKLDNNMatrix.h +++ b/paddle/math/MKLDNNMatrix.h @@ -30,11 +30,10 @@ typedef std::shared_ptr MKLDNNMatrixPtr; */ class MKLDNNMatrix : public CpuMatrix, public mkldnn::memory { public: - MKLDNNMatrix(real* data, - size_t height, - size_t width, - mkldnn::memory::primitive_desc pd) - : CpuMatrix(data, height, width, false), mkldnn::memory(pd, data) {} + MKLDNNMatrix(CpuMatrixPtr m, mkldnn::memory::primitive_desc pd) + : CpuMatrix(m->getData(), m->getHeight(), m->getWidth(), false), + mkldnn::memory(pd, m->getData()), + m_(m) {} ~MKLDNNMatrix() {} @@ -81,11 +80,29 @@ public: void downSpatial(); /** - * Update the memory data handle. + * set the memory data handle. * Caution: This will not check the buffer size of the data, * it should be coverd by user. */ - void updateData(void* data) { set_data_handle(data); } + void setData(real* data) { + set_data_handle(data); + CpuMatrix::setData(data); + m_.reset(); + } + + /** + * override Matrix::getData + * check data before return + */ + real* getData() override { + CHECK_EQ((void*)data_, get_data_handle()); + return data_; + } + + const real* getData() const override { + CHECK_EQ((void*)data_, get_data_handle()); + return data_; + } /** * Get primitive descriptor. @@ -143,6 +160,10 @@ protected: memory::format srcFmt, memory::format dstFmt, memory::dims dm); + +private: + // save the CpuMatrixPtr in case the buffer released outside + CpuMatrixPtr m_; }; } // namespace paddle diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..0ebefbab26ec8fdf316f852fbb7f6d9f3bbc48eb --- /dev/null +++ b/paddle/operators/concat_op.cc @@ -0,0 +1,79 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/concat_op.h" +#include + +namespace paddle { +namespace operators { +using framework::Tensor; + +class ConcatOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto ins = ctx.MultiInput("X"); + auto *out = ctx.Output("Out"); + size_t axis = static_cast(ctx.Attr("axis")); + size_t n = ins.size(); + + PADDLE_ENFORCE_GT(n, 1, "Input tensors count should > 1."); + + auto out_dims = ins[0]->dims(); + size_t in_zero_dims_size = out_dims.size(); + for (size_t i = 1; i < n; i++) { + for (size_t j = 0; j < in_zero_dims_size; j++) { + if (j == axis) { + out_dims[axis] += ins[i]->dims()[j]; + continue; + } + PADDLE_ENFORCE_EQ(out_dims[j], ins[i]->dims()[j], + "Input tensors should have the same " + "elements except the specify axis.") + } + } + out->Resize(out_dims); + } +}; + +class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ConcatOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "the input tensors of concat operator.").AsDuplicable(); + AddOutput("Out", "the output tensor of concat operator."); + AddComment(R"DOC( + Join the input tensors along with the axis. + Examples: + Input[0] = [[1,2],[3,4]] + Input[1] = [[5,6]] + axis = 0 + Output = [[1,2], + [3,4], + [5,6]] + )DOC"); + AddAttr("axis", "The axis which the inputs will be joined with.") + .SetDefault(0); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(concat, ops::ConcatOp, ops::ConcatOpMaker) +REGISTER_OP_CPU_KERNEL(concat, + ops::ConcatKernel) diff --git a/paddle/operators/concat_op.cu b/paddle/operators/concat_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..38fee7473dbb2ba97fe95b6632db7a1749cf3bbe --- /dev/null +++ b/paddle/operators/concat_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/concat_op.h" + +namespace ops = paddle::operators; +// TODO(Yancey1989) Add GPU kernel diff --git a/paddle/operators/concat_op.h b/paddle/operators/concat_op.h new file mode 100644 index 0000000000000000000000000000000000000000..f977054fdf8aa0164db726b94a21c57f770dd674 --- /dev/null +++ b/paddle/operators/concat_op.h @@ -0,0 +1,64 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + +http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class ConcatKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto ins = ctx.MultiInput("X"); + auto* out = ctx.Output("Out"); + int64_t axis = static_cast(ctx.Attr("axis")); + size_t n = ins.size(); + size_t output_axis_dim = 0; + size_t before = 1, after = 1; + for (size_t i = 0; i < n; i++) { + output_axis_dim += ins[i]->dims()[axis]; + } + auto& input_zero = ins[0]; + for (int64_t i = 0; i < input_zero->dims().size(); i++) { + if (i == axis) { + continue; + } + if (i < axis) { + before *= input_zero->dims()[i]; + } else { + after *= input_zero->dims()[i]; + } + } + size_t output_offset = 0; + for (size_t i = 0; i < n; i++) { + auto& in = ins[i]; + auto axis_dim = in->dims()[axis]; + for (size_t j = 0; j < before; j++) { + size_t len = axis_dim * after * sizeof(T); + const T* src = in->data() + axis_dim * after * j; + T* out_data = out->mutable_data(platform::CPUPlace()); + T* dest = out_data + output_offset + output_axis_dim * after * j; + memcpy(dest, src, len); + } + output_offset += axis_dim * after; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/cos_sim_op.h b/paddle/operators/cos_sim_op.h index 9e2bcebe3b5432c157fac895a9bbab5164193dbb..0dc509952578497671a128374f77ce616a520909 100644 --- a/paddle/operators/cos_sim_op.h +++ b/paddle/operators/cos_sim_op.h @@ -42,7 +42,7 @@ class CosSimKernel : public framework::OpKernel { output_y_norm->mutable_data(context.GetPlace()); auto dims = input_x->dims(); - int size = static_cast(framework::product(dims)); + int64_t size = input_x->numel(); auto new_dims = framework::make_ddim({dims[0], size / dims[0]}); auto x = EigenMatrix::From(*input_x, new_dims); auto y = EigenMatrix::From(*input_y, new_dims); @@ -72,7 +72,7 @@ class CosSimGradKernel : public framework::OpKernel { auto* input_grad_z = context.Input(framework::GradVarName("Out")); auto dims = input_x->dims(); - int size = static_cast(framework::product(dims)); + int64_t size = input_x->numel(); auto new_dims = framework::make_ddim({dims[0], size / dims[0]}); auto x = EigenMatrix::From(*input_x, new_dims); auto y = EigenMatrix::From(*input_y, new_dims); diff --git a/paddle/operators/elementwise_mul_op.cc b/paddle/operators/elementwise_mul_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..1742925545d29df5d7df719faaea3b754680ab61 --- /dev/null +++ b/paddle/operators/elementwise_mul_op.cc @@ -0,0 +1,109 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/elementwise_mul_op.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +class ElementWiseMulOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); + auto x_dim = ctx.Input("X")->dims(); + auto y_dim = ctx.Input("Y")->dims(); + PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(), + "Rank of first input must >= rank of second input.") + ctx.Output("Out")->Resize(x_dim); + } +}; + +class ElementWiseMulOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ElementWiseMulOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The first input of elementwise mul op"); + AddInput("Y", "The second input of elementwise mul op"); + AddAttr("axis", + R"DOC( +When shape(Y) does not equal shape(X),Y will be broadcasted +to match the shape of X and axis should be dimension index Y in X + )DOC") + .SetDefault(-1) + .EqualGreaterThan(-1); + + AddOutput("Out", "The output of elementwise mul op"); + AddComment(R"DOC( +Limited elementwise multiple operator.The equation is: Out = X ⊙ Y. +1. The shape of Y should be same with X or +2. Y's shape is a subset of X. + Y will be broadcasted to match the shape of X and axis should be dimension index Y in X. + example: + shape(X) = (2, 3, 4, 5), shape(Y) = (,) + shape(X) = (2, 3, 4, 5), shape(Y) = (5,) + shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5) + shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 + shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0 +)DOC"); + } +}; + +class ElementWiseMulOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null"); + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), + "Input(Out@GRAD) should not be null"); + + auto x_dims = ctx.Input("X")->dims(); + auto y_dims = ctx.Input("Y")->dims(); + auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims(); + auto *x_grad = ctx.Output(framework::GradVarName("X")); + auto *y_grad = ctx.Output(framework::GradVarName("Y")); + + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Rank of first input must >= rank of second input.") + + if (x_grad) { + x_grad->Resize(x_dims); + } + + if (y_grad) { + y_grad->Resize(y_dims); + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(elementwise_mul, ops::ElementWiseMulOp, ops::ElementWiseMulOpMaker, + elementwise_mul_grad, ops::ElementWiseMulOpGrad); +REGISTER_OP_CPU_KERNEL( + elementwise_mul, + ops::ElementWiseMulKernel); +REGISTER_OP_CPU_KERNEL( + elementwise_mul_grad, + ops::ElementWiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.cu b/paddle/operators/elementwise_mul_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..56f2087c22c6c599a3c5aef36eb0fe3eac295bef --- /dev/null +++ b/paddle/operators/elementwise_mul_op.cu @@ -0,0 +1,25 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/elementwise_mul_op.h" + +namespace ops = paddle::operators; + +REGISTER_OP_GPU_KERNEL( + elementwise_mul, + ops::ElementWiseMulKernel); +REGISTER_OP_GPU_KERNEL( + elementwise_mul_grad, + ops::ElementWiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.h b/paddle/operators/elementwise_mul_op.h new file mode 100644 index 0000000000000000000000000000000000000000..e9ed6791799240039f9af42c1a4339be7126ee65 --- /dev/null +++ b/paddle/operators/elementwise_mul_op.h @@ -0,0 +1,185 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" + +namespace paddle { +namespace operators { +/* + * Out = X ⊙ Y + * 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1 + * pre=2, n=3*4, post=5 + * 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5) + * pre=2*3, n=4*5, post=1 + */ + +inline void get_mid_dims(const framework::DDim& x_dims, + const framework::DDim& y_dims, const int axis, + int& pre, int& n, int& post) { + pre = 1; + n = 1; + post = 1; + for (int i = 0; i < axis; ++i) { + pre *= x_dims[i]; + } + + for (int i = 0; i < y_dims.size(); ++i) { + PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i], + "Broadcast dimension mismatch."); + n *= y_dims[i]; + } + + for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) { + post *= x_dims[i]; + } +} + +template +class ElementWiseMulKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto z_e = framework::EigenVector::Flatten(*z); + + auto x_dims = x->dims(); + auto y_dims = y->dims(); + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Rank of first input must >= rank of second input.") + + if (x_dims == y_dims || product(y_dims) == 1) { + z_e.device(ctx.GetEigenDevice()) = x_e * y_e; + return; + } + + int axis = ctx.Attr("axis"); + axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); + PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), + "Axis should be in range [0, x_dims)"); + + int pre, n, post; + get_mid_dims(x_dims, y_dims, axis, pre, n, post); + if (post == 1) { + auto y_bcast = y_e.reshape(Eigen::DSizes(1, n)) + .broadcast(Eigen::DSizes(pre, 1)) + .reshape(Eigen::DSizes(x_e.size())); + z_e.device(ctx.GetEigenDevice()) = x_e * y_bcast; + return; + } else { + auto y_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) + .broadcast(Eigen::DSizes(pre, 1, post)) + .reshape(Eigen::DSizes(x_e.size())); + z_e.device(ctx.GetEigenDevice()) = x_e * y_bcast; + return; + } + } +}; + +template +class ElementWiseMulGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* dout = ctx.Input(framework::GradVarName("Out")); + + auto x_e = framework::EigenVector::Flatten(*x); + auto y_e = framework::EigenVector::Flatten(*y); + auto dout_e = framework::EigenVector::Flatten(*dout); + + auto x_dims = x->dims(); + auto y_dims = y->dims(); + + auto* dx = ctx.Output(framework::GradVarName("X")); + auto* dy = ctx.Output(framework::GradVarName("Y")); + if (dx) { + dx->mutable_data(ctx.GetPlace()); + } + if (dy) { + dy->mutable_data(ctx.GetPlace()); + } + + if (x_dims == y_dims || product(y_dims) == 1) { + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(ctx.GetEigenDevice()) = dout_e * y_e; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(ctx.GetEigenDevice()) = x_e * dout_e; + } + return; + } + + int axis = ctx.Attr("axis"); + axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); + + int pre, n, post; + get_mid_dims(x_dims, y_dims, axis, pre, n, post); + + // TODO(gongweibao): wrap reshape to a function. + if (post == 1) { + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) + .broadcast(Eigen::DSizes(pre, 1)) + .reshape(Eigen::DSizes(x_e.size())); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(ctx.GetEigenDevice()) = dout_e * y_e_bcast; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(ctx.GetEigenDevice()) = + (x_e * dout_e) + .reshape(Eigen::DSizes(pre, n)) + .sum(Eigen::array{{0}}); + } + return; + } else { + auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) + .broadcast(Eigen::DSizes(pre, 1, post)) + .reshape(Eigen::DSizes(x_e.size())); + if (dx) { + auto dx_e = framework::EigenVector::Flatten(*dx); + dx_e.device(ctx.GetEigenDevice()) = dout_e * y_e_bcast; + } + + if (dy) { + auto dy_e = framework::EigenVector::Flatten(*dy); + dy_e.device(ctx.GetEigenDevice()) = + (x_e * dout_e) + .reshape(Eigen::DSizes(pre, n, post)) + .sum(Eigen::array{{0, 2}}); + } + return; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 6574880c0eb6324b2dd175e39a364d2ef46e735e..3d76516405960c502a46997108049b2db5cab6bf 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -31,7 +31,7 @@ class CPUGaussianRandomKernel : public framework::OpKernel { } engine.seed(seed); std::normal_distribution dist(mean, std); - int64_t size = framework::product(tensor->dims()); + int64_t size = tensor->numel(); for (int64_t i = 0; i < size; ++i) { data[i] = dist(engine); } diff --git a/paddle/operators/gaussian_random_op.cu b/paddle/operators/gaussian_random_op.cu index d9dbc1dcfe6a6676938d64be93c879ea69148018..2d63b3049988cfc3135a87a57dad56b970df3eab 100644 --- a/paddle/operators/gaussian_random_op.cu +++ b/paddle/operators/gaussian_random_op.cu @@ -50,8 +50,8 @@ class GPUGaussianRandomKernel : public framework::OpKernel { T mean = static_cast(context.Attr("mean")); T std = static_cast(context.Attr("std")); thrust::counting_iterator index_sequence_begin(0); - ssize_t N = framework::product(tensor->dims()); - thrust::transform(index_sequence_begin, index_sequence_begin + N, + int64_t size = tensor->numel(); + thrust::transform(index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(data), GaussianGenerator(mean, std, seed)); } diff --git a/paddle/operators/lookup_table_op.cu b/paddle/operators/lookup_table_op.cu index 27eee3436af8107cef2aa3577ea238be49edf1af..708344046760691aa2da562eb1ee3d8b130c5f18 100644 --- a/paddle/operators/lookup_table_op.cu +++ b/paddle/operators/lookup_table_op.cu @@ -70,7 +70,7 @@ class LookupTableCUDAKernel : public framework::OpKernel { size_t N = table_t->dims()[0]; size_t D = table_t->dims()[1]; - size_t K = product(ids_t->dims()); + size_t K = ids_t->numel(); auto ids = ids_t->data(); auto table = table_t->data(); auto output = output_t->mutable_data(context.GetPlace()); @@ -91,7 +91,7 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { int N = d_table_t->dims()[0]; int D = d_table_t->dims()[1]; - int K = product(ids_t->dims()); + int K = ids_t->numel(); const int32_t* ids = ids_t->data(); const T* d_output = d_output_t->data(); T* d_table = d_table_t->mutable_data(context.GetPlace()); diff --git a/paddle/operators/lookup_table_op.h b/paddle/operators/lookup_table_op.h index 877b36cef4ea9cdaaaf37c97d5e5bfce55b91436..a1298906dd4b4209644fe06584f70169519de01c 100644 --- a/paddle/operators/lookup_table_op.h +++ b/paddle/operators/lookup_table_op.h @@ -35,7 +35,7 @@ class LookupTableKernel : public framework::OpKernel { auto ids = ids_t->data(); auto table = table_t->data(); auto output = output_t->mutable_data(context.GetPlace()); - for (ssize_t i = 0; i < product(ids_t->dims()); ++i) { + for (int64_t i = 0; i < ids_t->numel(); ++i) { PADDLE_ENFORCE_LT(ids[i], N); PADDLE_ENFORCE_GE(ids[i], 0); memcpy(output + i * D, table + ids[i] * D, D * sizeof(T)); @@ -61,7 +61,7 @@ class LookupTableGradKernel : public framework::OpKernel { t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); - for (ssize_t i = 0; i < product(ids_t->dims()); ++i) { + for (int64_t i = 0; i < ids_t->numel(); ++i) { PADDLE_ENFORCE_LT(ids[i], N); PADDLE_ENFORCE_GE(ids[i], 0); for (int j = 0; j < D; ++j) { diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index 186a33edcec88bd5e51091a524a778eeb27ad526..4f380388b108dc173d847f027ba5c9db387a87f8 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -119,4 +119,4 @@ TEST(math, im2col) { #ifndef PADDLE_ONLY_CPU testIm2col(); #endif -} \ No newline at end of file +} diff --git a/paddle/operators/mean_op.h b/paddle/operators/mean_op.h index 9848af280b62729bef9243052ceae0b7d8f4c6f5..ce31e178d8e375dc59be80a6c05133201308da70 100644 --- a/paddle/operators/mean_op.h +++ b/paddle/operators/mean_op.h @@ -49,12 +49,11 @@ class MeanGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto OG = context.Input(framework::GradVarName("Out")); - PADDLE_ENFORCE(framework::product(OG->dims()) == 1, - "Mean Gradient should be scalar"); + PADDLE_ENFORCE(OG->numel() == 1, "Mean Gradient should be scalar"); auto IG = context.Output(framework::GradVarName("X")); IG->mutable_data(context.GetPlace()); - T ig_size = (T)framework::product(IG->dims()); + T ig_size = static_cast(IG->numel()); Eigen::DSizes bcast(ig_size); EigenVector::Flatten(*IG).device(context.GetEigenDevice()) = diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc index 069fb5e1abc657aa02a50fde352ce88d078c36e1..a4876feb2edf77bd422fa2a7687b0fa7d55dae47 100644 --- a/paddle/operators/minus_op.cc +++ b/paddle/operators/minus_op.cc @@ -31,8 +31,7 @@ class MinusOp : public framework::OperatorWithKernel { auto *right_tensor = ctx.Input("Y"); PADDLE_ENFORCE_EQ( - framework::product(left_tensor->dims()), - framework::product(right_tensor->dims()), + left_tensor->numel(), right_tensor->numel(), "Minus operator must take two tensor with same num of elements"); ctx.Output("Out")->Resize(left_tensor->dims()); } diff --git a/paddle/operators/modified_huber_loss_op.cc b/paddle/operators/modified_huber_loss_op.cc index 631d406fd45e35e8a1e5b9bd237c7fe733af6b5b..235bfe47b372d5b9d41196f72a05635b0e2c94b2 100644 --- a/paddle/operators/modified_huber_loss_op.cc +++ b/paddle/operators/modified_huber_loss_op.cc @@ -31,11 +31,10 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(x->dims(), y->dims(), "Dimensions of X and Y must be the same."); - PADDLE_ENFORCE_EQ(framework::arity(x->dims()), 2, - "Tensor rank of X must be 2."); - PADDLE_ENFORCE_EQ(x->dims()[1], 1, "Second dimension of X must be 1."); + PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Tensor rank of X must be 2."); + PADDLE_ENFORCE_EQ(x->dims()[1], 1, "2nd dimension of X must be 1."); - context.Output("intermediate_val")->Resize(x->dims()); + context.Output("IntermediateVal")->Resize(x->dims()); context.Output("Out")->Resize({x->dims()[0], 1}); } }; @@ -47,7 +46,7 @@ class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker { : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input value of ModifiedHuberLossOp."); AddInput("Y", "Target labels of ModifiedHuberLossOp."); - AddOutput("intermediate_val", + AddOutput("IntermediateVal", "Variable to save intermediate result which will be reused in " "backward processing.") .AsIntermediate(); @@ -75,7 +74,7 @@ class ModifiedHuberLossGradOp : public framework::OperatorWithKernel { void InferShape(const framework::InferShapeContext& context) const override { auto* x = context.Input("X"); auto* y = context.Input("Y"); - auto* intermediate_val = context.Input("intermediate_val"); + auto* intermediate_val = context.Input("IntermediateVal"); auto* out_grad = context.Input(framework::GradVarName("Out")); auto* x_grad = context.Output(framework::GradVarName("X")); diff --git a/paddle/operators/modified_huber_loss_op.cu b/paddle/operators/modified_huber_loss_op.cu index f8aa5043dd8e8a95c4b36ff14022b8a0a57c74cf..bce760f95e72cfec05b07591e0fa1250168b112f 100644 --- a/paddle/operators/modified_huber_loss_op.cu +++ b/paddle/operators/modified_huber_loss_op.cu @@ -43,7 +43,7 @@ class ModifiedHuberLossGradGPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("Y"); - auto* in1 = context.Input("intermediate_val"); + auto* in1 = context.Input("IntermediateVal"); auto* in2 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); diff --git a/paddle/operators/modified_huber_loss_op.h b/paddle/operators/modified_huber_loss_op.h index ffb89e806f0e5b546c1c4c386e0e3a2e9cfc7a04..e78be06ebd2a89e9086908c9c07c63c990f578f5 100644 --- a/paddle/operators/modified_huber_loss_op.h +++ b/paddle/operators/modified_huber_loss_op.h @@ -52,7 +52,7 @@ class ModifiedHuberLossKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("X"); auto* in1 = context.Input("Y"); - auto* out0 = context.Output("intermediate_val"); + auto* out0 = context.Output("IntermediateVal"); auto* out1 = context.Output("Out"); out0->mutable_data(context.GetPlace()); @@ -77,7 +77,7 @@ class ModifiedHuberLossGradCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in0 = context.Input("Y"); - auto* in1 = context.Input("intermediate_val"); + auto* in1 = context.Input("IntermediateVal"); auto* in2 = context.Input(framework::GradVarName("Out")); auto* out0 = context.Output(framework::GradVarName("X")); diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 28a47cdff2e9b7a965ff9f99e787bb8315010823..710a56a0e8e2d17162d7d000df226f1537104eb9 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -25,18 +25,27 @@ class MulOp : public framework::OperatorWithKernel { protected: void InferShape(const framework::InferShapeContext &ctx) const override { - auto dim0 = ctx.Input("X")->dims(); - auto dim1 = ctx.Input("Y")->dims(); - PADDLE_ENFORCE_EQ(dim0.size(), 2, - "input X(%s) should be a tensor with 2 dims, a matrix", - ctx.op().Input("X")); - PADDLE_ENFORCE_EQ(dim1.size(), 2, - "input Y(%s) should be a tensor with 2 dims, a matrix", - ctx.op().Input("Y")); + auto x_dims = ctx.Input("X")->dims(); + auto y_dims = ctx.Input("Y")->dims(); + int x_num_col_dims = Attr("x_num_col_dims"); + int y_num_col_dims = Attr("y_num_col_dims"); + + PADDLE_ENFORCE(x_dims.size() > x_num_col_dims, + "The rank of input tensor X(%s) should be larger than " + "`mul_op`'s `x_num_col_dims`.", + ctx.op().Input("X")); + PADDLE_ENFORCE(y_dims.size() > y_num_col_dims, + "The rank of input tensor Y(%s) should be larger than " + "`mul_op`'s `y_num_col_dims`.", + ctx.op().Input("Y")); + + auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims); + auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims); + PADDLE_ENFORCE_EQ( - dim0[1], dim1[0], + x_mat_dims[1], y_mat_dims[0], "First matrix's width must be equal with second matrix's height."); - ctx.Output("Out")->Resize({dim0[0], dim1[1]}); + ctx.Output("Out")->Resize({x_mat_dims[0], y_mat_dims[1]}); } }; @@ -47,6 +56,23 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("X", "The first input of mul op"); AddInput("Y", "The second input of mul op"); AddOutput("Out", "The output of mul op"); + AddAttr( + "x_num_col_dims", + R"DOC(mul_op can take tensors with more than two dimensions as input `X`, + in that case, tensors will be reshaped to a matrix. The matrix's first + dimension(column length) will be the product of tensor's last + `num_col_dims` dimensions, and the matrix's second dimension(row length) + will be the product of tensor's first `rank - num_col_dims` dimensions. + )DOC") + .SetDefault(1) + .EqualGreaterThan(1); + AddAttr( + "y_num_col_dims", + R"DOC(mul_op can take tensors with more than two dimensions as input `Y`, + in that case, tensors will be reshaped to a matrix. Just like input `X`. + )DOC") + .SetDefault(1) + .EqualGreaterThan(1); AddComment(R"DOC( Two Element Mul Operator. @@ -70,10 +96,20 @@ class MulOpGrad : public framework::OperatorWithKernel { auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims(); auto *x_grad = ctx.Output(framework::GradVarName("X")); auto *y_grad = ctx.Output(framework::GradVarName("Y")); - PADDLE_ENFORCE(x_dims[0] == out_dims[0], - "Out@GRAD M X N must equal to X dims 0, M "); - PADDLE_ENFORCE(y_dims[1] == out_dims[1], - "Out@GRAD M X N must equal to Y dims 1, N "); + + auto x_mat_dims = + framework::flatten_to_2d(x_dims, Attr("x_num_col_dims")); + auto y_mat_dims = + framework::flatten_to_2d(y_dims, Attr("y_num_col_dims")); + + PADDLE_ENFORCE_EQ( + x_mat_dims[0], out_dims[0], + "The first dimension of Out@GRAD must equal to the first dimension of " + "the first operand."); + PADDLE_ENFORCE_EQ( + y_mat_dims[1], out_dims[1], + "The second dimension of Out@GRAD must equal to the second " + "dimension of the second operand."); if (x_grad) x_grad->Resize(x_dims); if (y_grad) y_grad->Resize(y_dims); diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index 05a79e13b3470e39a5ebd0394ba05629553a5075..3c01f868bda8cba488b3403df456d63d6b082fa6 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -1,7 +1,7 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); - you may not use this file except in compliance with the License. + You may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 @@ -31,13 +31,25 @@ template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* x = context.Input("X"); - auto* y = context.Input("Y"); - auto* z = context.Output("Out"); + const Tensor* x = context.Input("X"); + const Tensor* y = context.Input("Y"); + Tensor* z = context.Output("Out"); + const Tensor x_matrix = + x->dims().size() > 2 + ? framework::ReshapeToMatrix( + *x, context.template Attr("x_num_col_dims")) + : *x; + const Tensor y_matrix = + y->dims().size() > 2 + ? framework::ReshapeToMatrix( + *y, context.template Attr("y_num_col_dims")) + : *y; + z->mutable_data(context.GetPlace()); auto* device_context = const_cast(context.device_context_); - math::matmul(*x, false, *y, false, 1, z, 0, device_context); + math::matmul(x_matrix, false, y_matrix, false, 1, z, 0, + device_context); } }; @@ -45,23 +57,39 @@ template class MulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - auto* x = ctx.Input("X"); - auto* y = ctx.Input("Y"); - auto* dout = ctx.Input(framework::GradVarName("Out")); + int x_num_col_dims = ctx.template Attr("x_num_col_dims"); + int y_num_col_dims = ctx.template Attr("y_num_col_dims"); + const Tensor* x = ctx.Input("X"); + const Tensor* y = ctx.Input("Y"); + const Tensor x_matrix = + x->dims().size() > 2 ? framework::ReshapeToMatrix(*x, x_num_col_dims) + : *x; + const Tensor y_matrix = + y->dims().size() > 2 ? framework::ReshapeToMatrix(*y, y_num_col_dims) + : *y; + const Tensor* dout = ctx.Input(framework::GradVarName("Out")); - auto* dx = ctx.Output(framework::GradVarName("X")); - auto* dy = ctx.Output(framework::GradVarName("Y")); + Tensor* dx = ctx.Output(framework::GradVarName("X")); + Tensor* dy = ctx.Output(framework::GradVarName("Y")); auto* device_context = const_cast(ctx.device_context_); if (dx) { dx->mutable_data(ctx.GetPlace()); + Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix( + *dx, x_num_col_dims) + : *dx; // dx = dout * y'. dx: M x K, dout : M x N, y : K x N - math::matmul(*dout, false, *y, true, 1, dx, 0, device_context); + math::matmul(*dout, false, y_matrix, true, 1, &dx_matrix, 0, + device_context); } if (dy) { dy->mutable_data(ctx.GetPlace()); + Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix( + *dy, y_num_col_dims) + : *dy; // dy = x' * dout. dy K x N, dout : M x N, x : M x K - math::matmul(*x, true, *dout, false, 1, dy, 0, device_context); + math::matmul(x_matrix, true, *dout, false, 1, &dy_matrix, 0, + device_context); } } }; diff --git a/paddle/operators/name_convention.md b/paddle/operators/name_convention.md new file mode 100644 index 0000000000000000000000000000000000000000..a090e0b5450509affdd739f63df618595f204f97 --- /dev/null +++ b/paddle/operators/name_convention.md @@ -0,0 +1,59 @@ +## Operator's Parameter Name Convention + +To make the operator document itself more clear, we recommend operator names obey the listing conventions. + +### OpProtoMaker names + +When defining an operator in Paddle, a corresponding [OpProtoMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L170) (TODO: OpProtoMaker Doc)need to be defined. All the Input/Output and Attributes will write into the [OpProto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L61) , and will be used in client language to create operator. + +- Input/Output. + - Input/Output names follow the **CamelCase**. e.g. `X`, `Y`, `Matrix`, `LastAxisInMatrix`. Input/Output much more like Variables, we prefer to meaningful English words. + - If an operator's Input/Output are tensors in math, not match to any meaningful words, input name should starts from `X`. e.g. `X`, `Y`, and output name should starts from `Out`. e.g. `Out`. This rule intends making operators which have few inputs/outputs unified. + +- Attribute. + - Attribute name follows the **camelCase**. e.g. `x`, `y`, `axis`, `rowwiseMatrix`. Also, attribute name prefers to meaningful English words. + +- Comments. + - Input/Output/Attr comment follow the format of **(type,default value) usage**, corresponding to which type it can be and how it will be used in the operator. e.g. Attribute in Accumulator`"gamma" `,`(float, default 1.0) Accumulation multiplier`. + - Operator comment format of` R"DOC(your comment here)DOC"`. You should explain the input/output of the operator first. If there is math calculation in this operator, you should write the equation in the comment. e.g. `Out = X + Y`. + +- Order. + - Follow the order of Input/Output, then Attribute, then Comments. See the example in best practice. + +### Best Practice + +Here we give some examples to show how these rules will be used. + +- The operator has one input, one output. e.g.`relu`, inputs: `X`, outputs: `Out`. + +- The operator has two input, one output. e.g. `rowwise_add`, inputs : `X`, `Y`, outputs : `Out`. + +- The operator contains attribute. e.g. `cosine`, inputs : `X`, `axis`, outputs : `Out`. + + We give a full example of Accumulator Operator. + +```c++ +class AccumulateOpMaker : public framework::OpProtoAndCheckerMaker { +public: + AccumulateOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. If the output size is not the same as input size, the output tensor is first reshaped and initialized to zero, and only then, accumulation is done."); + AddOutput("Out", "(Tensor) Accumulated output tensor"); + AddAttr("gamma", "(float, default 1.0) Accumulation multiplier"); + AddComment(R"DOC( +Accumulate operator accumulates the input tensor to the output tensor. If the +output tensor already has the right size, we add to it; otherwise, we first +initialize the output tensor to all zeros, and then do accumulation. Any +further calls to the operator, given that no one else fiddles with the output +in the interim, will do simple accumulations. +Accumulation is done as shown: + +Out = 1*X + gamma*Out + +where X is the input tensor, Y is the output tensor and gamma is the multiplier +argument. +)DOC"); + } +}; +``` diff --git a/paddle/operators/reshape_op.cc b/paddle/operators/reshape_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..b7061153d2bf13982f14f233e87a87daeeebf5fd --- /dev/null +++ b/paddle/operators/reshape_op.cc @@ -0,0 +1,107 @@ + +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/reshape_op.h" + +namespace paddle { +namespace operators { + +class ReshapeOp : public framework::OperatorWithKernel { + public: + ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + // input check + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null"); + auto shape = ctx.Attr>("shape"); + PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); + for (auto dim : shape) { + PADDLE_ENFORCE(dim > 0, "Each dimension of shape must be positive."); + } + // capacity check + int64_t capacity = + std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); + auto *in = ctx.Input("X"); + int64_t in_size = framework::product(in->dims()); + PADDLE_ENFORCE_EQ(capacity, in_size, + "The size of Input(X) mismatches with Attr(shape)."); + // resize output + std::vector shape_int64(shape.size(), 0); + std::transform(shape.begin(), shape.end(), shape_int64.begin(), + [](int a) { return static_cast(a); }); + auto out_dims = framework::make_ddim(shape_int64); + ctx.Output("Out")->Resize(out_dims); + } +}; + +class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ReshapeOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of reshape operator."); + AddOutput("Out", "The output tensor of reshape operator."); + AddAttr>("shape", "Target shape of reshape operator."); + AddComment(R"DOC(Reshape operator + +Reshape Input(X) into the shape specified by Attr(shape). + +An example: +Given a 2-D tensor X with 2 rows and 2 columns + + [[1, 2], [3, 4]] + +with target shape = [1, 4], the reshape operator will transform +the tensor X into a 1-D tensor: + + [1, 2, 3, 4] + +)DOC"); + } +}; + +class ReshapeGradOp : public framework::OperatorWithKernel { + public: + ReshapeGradOp(const std::string &type, + const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) shouldn't be null."); + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), + "Input(Out@GRAD) shouldn't be null."); + auto dims = ctx.Input("X")->dims(); + auto *d_in = ctx.Output(framework::GradVarName("X")); + d_in->Resize(dims); + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; + +REGISTER_OP(reshape, ops::ReshapeOp, ops::ReshapeOpMaker, reshape_grad, + ops::ReshapeGradOp); +REGISTER_OP_CPU_KERNEL(reshape, + ops::ReshapeKernel); +REGISTER_OP_CPU_KERNEL( + reshape_grad, ops::ReshapeGradKernel); diff --git a/paddle/operators/reshape_op.cu b/paddle/operators/reshape_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..23dbe089d3b37aabedf9ef166f7bbfbf67da7e0a --- /dev/null +++ b/paddle/operators/reshape_op.cu @@ -0,0 +1,22 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/reshape_op.h" + +REGISTER_OP_GPU_KERNEL( + reshape, + paddle::operators::ReshapeKernel); +REGISTER_OP_GPU_KERNEL( + reshape_grad, + paddle::operators::ReshapeGradKernel); diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h new file mode 100644 index 0000000000000000000000000000000000000000..873acf30782d390cdca5e7e864c76e1f743f9a7c --- /dev/null +++ b/paddle/operators/reshape_op.h @@ -0,0 +1,55 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class ReshapeKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* out = ctx.Output("Out"); + auto* in = ctx.Input("X"); + out->mutable_data(ctx.GetPlace()); + + auto shape = ctx.Attr>("shape"); + std::vector shape_int64(shape.size(), 0); + std::transform(shape.begin(), shape.end(), shape_int64.begin(), + [](int a) { return static_cast(a); }); + auto out_dims = framework::make_ddim(shape_int64); + out->CopyFrom(*in, ctx.GetPlace()); + out->Resize(out_dims); + } +}; + +template +class ReshapeGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const { + auto* d_out = ctx.Input(framework::GradVarName("Out")); + auto* d_x = ctx.Output(framework::GradVarName("X")); + d_x->mutable_data(ctx.GetPlace()); + + auto in_dims = d_x->dims(); + d_x->CopyFrom(*d_out, ctx.GetPlace()); + d_x->Resize(in_dims); + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/rowwise_add_op.cc b/paddle/operators/rowwise_add_op.cc index 30b4b404315a9f041e21d79b75fd06307e33f7f9..fa8f0ff1a858143af427b51025279c726f1628e0 100644 --- a/paddle/operators/rowwise_add_op.cc +++ b/paddle/operators/rowwise_add_op.cc @@ -25,14 +25,19 @@ class RowwiseAddOp : public framework::OperatorWithKernel { protected: void InferShape(const framework::InferShapeContext &ctx) const override { - auto dim0 = ctx.Input("X")->dims(); - auto dim1 = ctx.Input("b")->dims(); - - PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix"); - PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector"); - PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same"); - PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1"); - ctx.Output("Out")->Resize(ctx.Input("X")->dims()); + auto x_dims = ctx.Input("X")->dims(); + auto b_dims = ctx.Input("b")->dims(); + PADDLE_ENFORCE_GT( + x_dims.size(), b_dims.size(), + "The rank of input `X` must be larger than the one of input `b`."); + + int num_col_dims = x_dims.size() - b_dims.size(); + + PADDLE_ENFORCE_EQ( + framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims, + "The width of two operands must be same"); + PADDLE_ENFORCE_EQ(ctx.OutputSize("Out"), 1, "The output size must be 1"); + ctx.Output("Out")->Resize(x_dims); } }; @@ -61,13 +66,20 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); - auto dims0 = ctx.Input("X")->dims(); - auto dims1 = ctx.Input("b")->dims(); - PADDLE_ENFORCE_EQ(1, dims1.size(), "b dims should be 1") + auto x_dims = ctx.Input("X")->dims(); + auto b_dims = ctx.Input("b")->dims(); + PADDLE_ENFORCE_GT( + x_dims.size(), b_dims.size(), + "The rank of input `X` must be larger than the one of input `b`."); + + int num_col_dims = x_dims.size() - b_dims.size(); + PADDLE_ENFORCE_EQ( + framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims, + "The width of two operands must be same"); auto *dx = ctx.Output(framework::GradVarName("X")); auto *db = ctx.Output(framework::GradVarName("b")); - if (dx) dx->Resize(dims0); - if (db) db->Resize(dims1); + if (dx) dx->Resize(x_dims); + if (db) db->Resize(b_dims); } }; diff --git a/paddle/operators/rowwise_add_op.h b/paddle/operators/rowwise_add_op.h index 4e926d9f2947f37b71e81c0fa592b0c66b19c640..35774b940926f77167b8f19597027e74d3477e5b 100644 --- a/paddle/operators/rowwise_add_op.h +++ b/paddle/operators/rowwise_add_op.h @@ -33,10 +33,12 @@ class RowwiseAddKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& context) const override { auto out = context.Output("Out"); out->mutable_data(context.GetPlace()); - - auto input = EigenMatrix::From(*context.Input("X")); - auto bias = EigenVector::From(*context.Input("b")); - auto output = EigenMatrix::From(*out); + int num_col_dims = context.Input("X")->dims().size() - + context.Input("b")->dims().size(); + auto input = + EigenMatrix::Reshape(*context.Input("X"), num_col_dims); + auto bias = EigenVector::Flatten(*context.Input("b")); + auto output = EigenMatrix::Reshape(*out, num_col_dims); const int bias_size = bias.dimension(0); const int rest_size = input.size() / bias_size; @@ -54,12 +56,15 @@ class RowwiseAddGradKernel : public framework::OpKernel { auto* dout = context.Input(framework::GradVarName("Out")); auto* dx = context.Output(framework::GradVarName("X")); auto* db = context.Output(framework::GradVarName("b")); + int num_col_dims = context.Input("X")->dims().size() - + context.Input("b")->dims().size(); - auto out_grad = EigenMatrix::From(*dout); + auto out_grad = EigenMatrix::Reshape(*dout, num_col_dims); auto place = context.GetEigenDevice(); + if (dx) { dx->mutable_data(context.GetPlace()); - EigenMatrix::From(*dx).device(place) = out_grad; + EigenMatrix::Reshape(*dx, num_col_dims).device(place) = out_grad; } if (db) { diff --git a/paddle/operators/squared_l2_distance_op.cc b/paddle/operators/squared_l2_distance_op.cc index dc30644a5e7e33d4289e48cac093aa5fde7e75e7..9f51d3efa8ecba894a1023b9de2df451ca85916c 100644 --- a/paddle/operators/squared_l2_distance_op.cc +++ b/paddle/operators/squared_l2_distance_op.cc @@ -41,8 +41,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { int rank = framework::arity(x_dims); PADDLE_ENFORCE_GE(rank, 2, "Tensor rank should be at least equal to 2."); - PADDLE_ENFORCE_EQ(framework::product(x_dims) / x_dims[0], - framework::product(y_dims) / y_dims[0], + PADDLE_ENFORCE_EQ(x->numel() / x_dims[0], y->numel() / y_dims[0], "Product of dimensions expcet the first dimension of " "input and target must be equal."); PADDLE_ENFORCE(y_dims[0] == 1 || y_dims[0] == x_dims[0], @@ -50,8 +49,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { "or to 1."); ctx.Output("sub_result") - ->Resize({static_cast(x_dims[0]), - static_cast(framework::product(x_dims) / x_dims[0])}); + ->Resize({x_dims[0], x->numel() / x_dims[0]}); ctx.Output("Out")->Resize({x_dims[0], 1}); } }; diff --git a/paddle/operators/squared_l2_distance_op.h b/paddle/operators/squared_l2_distance_op.h index ad3347a0b35f3385c5adbcd7ceaa94fe134105e3..097ac04fc09a10b3b624f491a847e281e41a802c 100644 --- a/paddle/operators/squared_l2_distance_op.h +++ b/paddle/operators/squared_l2_distance_op.h @@ -39,7 +39,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel { auto in0_dims = in0->dims(); auto in1_dims = in1->dims(); - int cols = framework::product(in0_dims) / in0_dims[0]; + int cols = in0->numel() / in0_dims[0]; // reduce dimensions except the first auto x = EigenMatrix::From(*in0, framework::make_ddim({in0_dims[0], cols})); @@ -82,7 +82,7 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel { auto x_dims = x_g->dims(); auto y_dims = y_g->dims(); - int cols = framework::product(x_dims) / x_dims[0]; + int cols = x_g->numel() / x_dims[0]; // calculate gradient auto grad_mat = 2 * (out_grad.broadcast(Eigen::array({{1, cols}}))) * diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..5805826ee8a555ca6dfc1ca81feaadffea9e1012 --- /dev/null +++ b/paddle/operators/sum_op.cc @@ -0,0 +1,73 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/sum_op.h" +#include + +namespace paddle { +namespace operators { +using framework::Tensor; + +class SumOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto ins = ctx.MultiInput("X"); + auto *out = ctx.Output("Out"); + int N = ins.size(); + + auto in_dim = ins[0]->dims(); + + PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1."); + for (int i = 1; i < N; i++) { + auto dim = ins[i]->dims(); + PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape"); + } + out->Resize(in_dim); + } +}; + +class SumOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "the input tensors of sum operator.").AsDuplicable(); + AddOutput("Out", "the output tensor of sum operator."); + AddComment(R"DOC( + Sum the input tensors. + )DOC"); + } +}; + +class SumGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto outputs = ctx.MultiOutput(framework::GradVarName("X")); + auto dims = ctx.Input(framework::GradVarName("Out"))->dims(); + for (auto output : outputs) { + output->Resize(dims); + } + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp); +REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel); +REGISTER_OP_CPU_KERNEL(sum_grad, + ops::SumGradKernel); diff --git a/paddle/operators/sum_op.cu b/paddle/operators/sum_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..a465cf3659ba7c51338abadfc62962fb6755a39d --- /dev/null +++ b/paddle/operators/sum_op.cu @@ -0,0 +1,18 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/sum_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel); +REGISTER_OP_GPU_KERNEL(sum_grad, + ops::SumGradKernel); diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h new file mode 100644 index 0000000000000000000000000000000000000000..0b1e9ebaa38d455fb5e3ce8c1a39cbbcdad9a940 --- /dev/null +++ b/paddle/operators/sum_op.h @@ -0,0 +1,65 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at +http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; + +template +class SumKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto ins = context.MultiInput("X"); + auto* out = context.Output("Out"); + out->mutable_data(context.GetPlace()); + + auto place = context.GetEigenDevice(); + auto result = EigenVector::Flatten(*out); + + int N = ins.size(); + auto in = EigenVector::Flatten(*(ins[0])); + result.device(place) = in; + for (int i = 1; i < N; i++) { + auto in = EigenVector::Flatten(*(ins[i])); + result.device(place) = result + in; + } + } +}; + +template +class SumGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* input = context.Input(framework::GradVarName("Out")); + auto outs = context.MultiOutput(framework::GradVarName("X")); + for (auto out : outs) { + out->mutable_data(context.GetPlace()); + } + + auto place = context.GetEigenDevice(); + auto in = EigenVector::Flatten(*input); + for (auto out : outs) { + auto result = EigenVector::Flatten(*out); + result.device(place) = in; + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..38d2f0a09aec751734864947a2f3cfa20107e22f --- /dev/null +++ b/paddle/operators/top_k_op.cc @@ -0,0 +1,67 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/top_k_op.h" + +namespace paddle { +namespace operators { + +class TopkOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), + "Input of TopkOP must be initialized."); + auto *input = ctx.Input("X"); + const int k = static_cast(ctx.Attr("k")); + + PADDLE_ENFORCE_GE(k, 1, "k must >= 1"); + PADDLE_ENFORCE_GE(input->dims().size(), 1, "input must have >= 1d shape"); + PADDLE_ENFORCE_GE(input->dims()[input->dims().size() - 1], k, + "input must have >= k columns"); + + framework::DDim dims = input->dims(); + dims[dims.size() - 1] = k; + ctx.Output("Out")->Resize(dims); + ctx.Output("Indices")->Resize(dims); + } +}; + +class TopkOpMaker : public framework::OpProtoAndCheckerMaker { + public: + TopkOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input of Topk op"); + AddOutput("Out", "The output tensor of Topk op"); + AddOutput("Indices", "The indices of Topk elements of input"); + AddComment( + R"DOC(If the input is a vector (1d tensor), finds the k largest entries in the vector and outputs their values and indices as vectors. Thus values[j] is the j-th largest entry in input, and its index is indices[j]. + + For matrices, computes the top k entries in each row. )DOC"); + AddAttr("k", + "Number of top elements to look for along the last " + "dimension (along each row for matrices).") + .SetDefault(1); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(top_k, ops::TopkOp, ops::TopkOpMaker); +REGISTER_OP_CPU_KERNEL(top_k, + ops::TopkKernel); diff --git a/paddle/operators/top_k_op.cu b/paddle/operators/top_k_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..afe4d149c53819c45e20353bc9d16393f3f61e0f --- /dev/null +++ b/paddle/operators/top_k_op.cu @@ -0,0 +1,318 @@ +/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/op_registry.h" +#include "paddle/platform/assert.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +struct Pair { + __device__ __forceinline__ Pair() {} + __device__ __forceinline__ Pair(T value, int id) : v(value), id(id) {} + + __device__ __forceinline__ void set(T value, int id) { + v = value; + id = id; + } + + __device__ __forceinline__ void operator=(const Pair& in) { + v = in.v; + id = in.id; + } + + __device__ __forceinline__ bool operator<(const T value) const { + return (v < value); + } + + __device__ __forceinline__ bool operator<(const Pair& in) const { + return (v < in.v) || ((v == in.v) && (id > in.id)); + } + + __device__ __forceinline__ bool operator>(const Pair& in) const { + return (v > in.v) || ((v == in.v) && (id < in.id)); + } + + T v; + int id; +}; + +template +__device__ __forceinline__ void AddTo(Pair topk[], const Pair& p, + int beam_size) { + for (int k = beam_size - 2; k >= 0; k--) { + if (topk[k] < p) { + topk[k + 1] = topk[k]; + } else { + topk[k + 1] = p; + return; + } + } + topk[0] = p; +} + +template +__device__ __forceinline__ void AddTo(Pair topk[], const Pair& p) { + for (int k = beam_size - 2; k >= 0; k--) { + if (topk[k] < p) { + topk[k + 1] = topk[k]; + } else { + topk[k + 1] = p; + return; + } + } + topk[0] = p; +} + +template +__device__ __forceinline__ void GetTopK(Pair topk[], const T* src, int idx, + int dim, int beam_size) { + while (idx < dim) { + if (topk[beam_size - 1] < src[idx]) { + Pair tmp(src[idx], idx); + AddTo(topk, tmp, beam_size); + } + idx += BlockSize; + } +} + +template +__device__ __forceinline__ void GetTopK(Pair topk[], const T* src, int idx, + int dim, const Pair& max, + int beam_size) { + while (idx < dim) { + if (topk[beam_size - 1] < src[idx]) { + Pair tmp(src[idx], idx); + if (tmp < max) { + AddTo(topk, tmp, beam_size); + } + } + idx += BlockSize; + } +} + +template +__device__ __forceinline__ void GetTopK(Pair topk[], const T* val, int* col, + int idx, int dim, int beam_size) { + while (idx < dim) { + if (topk[beam_size - 1] < val[idx]) { + Pair tmp(val[idx], col[idx]); + AddTo(topk, tmp, beam_size); + } + idx += BlockSize; + } +} + +template +__device__ __forceinline__ void GetTopK(Pair topk[], const T* val, int* col, + int idx, int dim, const Pair& max, + int beam_size) { + while (idx < dim) { + if (topk[beam_size - 1] < val[idx]) { + Pair tmp(val[idx], col[idx]); + if (tmp < max) { + AddTo(topk, tmp, beam_size); + } + } + idx += BlockSize; + } +} + +template +__device__ __forceinline__ void ThreadGetTopK(Pair topk[], int& beam, + int beam_size, const T* src, + bool& firstStep, bool& is_empty, + Pair& max, int dim, + const int tid) { + if (beam > 0) { + int length = beam < beam_size ? beam : beam_size; + if (firstStep) { + firstStep = false; + GetTopK(topk, src, tid, dim, length); + } else { + for (int k = 0; k < MaxLength; k++) { + if (k < MaxLength - beam) { + topk[k] = topk[k + beam]; + } else { + topk[k].set(-INFINITY, -1); + } + } + if (!is_empty) { + GetTopK(topk + MaxLength - beam, src, tid, dim, max, + length); + } + } + + max = topk[MaxLength - 1]; + if (max.v == -1) is_empty = true; + beam = 0; + } +} + +template +__device__ __forceinline__ void ThreadGetTopK(Pair topk[], int& beam, + int beam_size, const T* val, + int* col, bool& firstStep, + bool& is_empty, Pair& max, + int dim, const int tid) { + if (beam > 0) { + int length = beam < beam_size ? beam : beam_size; + if (firstStep) { + firstStep = false; + GetTopK(topk, val, col, tid, dim, length); + } else { + for (int k = 0; k < MaxLength; k++) { + if (k < MaxLength - beam) { + topk[k] = topk[k + beam]; + } else { + topk[k].set(-INFINITY, -1); + } + } + if (!is_empty) { + GetTopK(topk + MaxLength - beam, val, col, tid, dim, max, + length); + } + } + + max = topk[MaxLength - 1]; + if (max.v == -1) is_empty = true; + beam = 0; + } +} + +template +__device__ __forceinline__ void BlockReduce(Pair* sh_topk, int* maxid, + Pair topk[], T** topVal, + int** topIds, int& beam, int& k, + const int tid, const int warp) { + while (true) { + __syncthreads(); + if (tid < BlockSize / 2) { + if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) { + maxid[tid] = tid + BlockSize / 2; + } else { + maxid[tid] = tid; + } + } + __syncthreads(); + for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) { + if (tid < stride) { + if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) { + maxid[tid] = maxid[tid + stride]; + } + } + __syncthreads(); + } + __syncthreads(); + + if (tid == 0) { + **topVal = sh_topk[maxid[0]].v; + **topIds = sh_topk[maxid[0]].id; + (*topVal)++; + (*topIds)++; + } + if (tid == maxid[0]) beam++; + if (--k == 0) break; + __syncthreads(); + + if (tid == maxid[0]) { + if (beam < MaxLength) { + sh_topk[tid] = topk[beam]; + } + } + if (maxid[0] / 32 == warp) { + if (__shfl(beam, (maxid[0]) % 32, 32) == MaxLength) break; + } + } +} + +/** + * Each block compute one sample. + * In a block: + * 1. every thread get top MaxLength value; + * 2. merge to sh_topk, block reduce and get max value; + * 3. go to the second setp, until one thread's topk value is null; + * 4. go to the first setp, until get the topk value. + */ +template +__global__ void KeMatrixTopK(T* output, int output_stride, int* indices, + const T* src, int lds, int dim, int k) { + __shared__ Pair sh_topk[BlockSize]; + __shared__ int maxid[BlockSize / 2]; + const int tid = threadIdx.x; + const int warp = threadIdx.x / 32; + output += blockIdx.x * output_stride; + indices += blockIdx.x * k; + + Pair topk[MaxLength]; + int beam = MaxLength; + Pair max; + bool is_empty = false; + bool firststep = true; + + for (int k = 0; k < MaxLength; k++) { + topk[k].set(-INFINITY, -1); + } + while (k) { + ThreadGetTopK(topk, beam, k, + src + blockIdx.x * lds, firststep, + is_empty, max, dim, tid); + + sh_topk[tid] = topk[0]; + BlockReduce(sh_topk, maxid, topk, &output, + &indices, beam, k, tid, warp); + } +} + +template +class TopkOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), + "It must use GPUPlace."); + auto* input = ctx.Input("X"); + auto* output = ctx.Output("Out"); + auto* indices = ctx.Output("Indices"); + size_t k = static_cast(ctx.Attr("k")); + + const T* input_data = input->data(); + + T* output_data = output->mutable_data(ctx.GetPlace()); + // FIXME(typhoonzero): data is always converted to type T? + int* indices_data = indices->mutable_data(ctx.GetPlace()); + + size_t input_height = input->dims()[0]; + size_t input_width = input->dims()[1]; + if (k > input_width) k = input_width; + + // NOTE: pass lds and dim same to input width. + // NOTE: old matrix implementation of stride is different to eigen. + // TODO(typhoonzero): launch kernel on specified stream. + // TODO(typhoonzero): refine this kernel. + dim3 threads(256, 1); + dim3 grid(input_height, 1); + + KeMatrixTopK<<>>( + output_data, output->dims()[1], indices_data, input_data, input_width, + input_width, int(k)); + } +}; + +} // namespace operators +} // namespace paddle + +REGISTER_OP_GPU_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel); diff --git a/paddle/operators/top_k_op.h b/paddle/operators/top_k_op.h new file mode 100644 index 0000000000000000000000000000000000000000..ef66acc1d569282a42be64b7a5e90f3fbdb20690 --- /dev/null +++ b/paddle/operators/top_k_op.h @@ -0,0 +1,76 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +using EigenMatrix = framework::EigenMatrix; + +template +class TopkKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + // Get the top k elements of each row of input tensor + // FIXME: only deal with matrix(2d tensor). + auto* input = ctx.Input("X"); + auto* output = ctx.Output("Out"); + auto* indices = ctx.Output("Indices"); + // k is determined by Attr + const size_t k = static_cast(ctx.Attr("k")); + + T* output_data = output->mutable_data(ctx.GetPlace()); + T* indices_data = indices->mutable_data(ctx.GetPlace()); + + auto eg_input = EigenMatrix::From(*input); + + // reshape input to a flattern matrix(like flat_inner_dims) + framework::DDim inputdims = input->dims(); + const size_t row = framework::product( + framework::slice_ddim(inputdims, 0, inputdims.size() - 1)); + const size_t col = inputdims[inputdims.size() - 1]; + Eigen::DSizes flat2dims(row, col); + // NOTE: eigen shape doesn't affect paddle tensor. + eg_input.reshape(flat2dims); + + for (size_t i = 0; i < row; i++) { + std::vector> vec; + for (size_t j = 0; j < col; j++) { + vec.push_back(std::pair(eg_input(i, j), j)); + } + + std::partial_sort( + vec.begin(), vec.begin() + k, vec.end(), + [](const std::pair& l, const std::pair& r) { + return l.first > r.first; + }); + for (size_t j = 0; j < k; j++) { + output_data[i * k + j] = vec[j].first; + indices_data[i * k + j] = vec[j].second; + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index f2aeef6c310df8535e67fa3906301a87f8ec4694..b8fbc9b52aecdb5c8d985b5de9bcd7cb85835b60 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -35,7 +35,7 @@ class CPUUniformRandomKernel : public framework::OpKernel { std::uniform_real_distribution dist( static_cast(context.Attr("min")), static_cast(context.Attr("max"))); - int64_t size = framework::product(tensor->dims()); + int64_t size = tensor->numel(); for (int64_t i = 0; i < size; ++i) { data[i] = dist(engine); } diff --git a/paddle/operators/uniform_random_op.cu b/paddle/operators/uniform_random_op.cu index c2c041b144b6ca1f019f972e1301b756ec1c9301..6614b53b3f990d10c82633f3c1f079acea0cd827 100644 --- a/paddle/operators/uniform_random_op.cu +++ b/paddle/operators/uniform_random_op.cu @@ -53,8 +53,8 @@ class GPUUniformRandomKernel : public framework::OpKernel { T min = static_cast(context.Attr("min")); T max = static_cast(context.Attr("max")); thrust::counting_iterator index_sequence_begin(0); - ssize_t N = framework::product(tensor->dims()); - thrust::transform(index_sequence_begin, index_sequence_begin + N, + int64_t size = tensor->numel(); + thrust::transform(index_sequence_begin, index_sequence_begin + size, thrust::device_ptr(data), UniformGenerator(min, max, seed)); } diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index 81448897e95eb05f4ce7de8683d98e05bade77cb..64fcbd93b6c4d5d9b36f2636c3ef4f7327f08d25 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -25,10 +25,6 @@ limitations under the License. */ #include "paddle/string/printf.h" #include "paddle/string/to_string.h" -#ifdef __GNUC__ -#include // for __cxa_demangle -#endif - #ifndef PADDLE_ONLY_CPU #include "paddle/platform/dynload/cublas.h" @@ -46,19 +42,6 @@ limitations under the License. */ namespace paddle { namespace platform { -namespace { -#ifdef __GNUC__ -inline std::string demangle(std::string name) { - int status = -4; // some arbitrary value to eliminate the compiler warning - std::unique_ptr res{ - abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free}; - return (status == 0) ? res.get() : name; -} -#else -inline std::string demangle(std::string name) { return name; } -#endif -} - struct EnforceNotMet : public std::exception { std::exception_ptr exp_; std::string err_str_; @@ -79,7 +62,7 @@ struct EnforceNotMet : public std::exception { Dl_info info; for (int i = 0; i < size; ++i) { if (dladdr(call_stack[i], &info)) { - auto demangled = demangle(info.dli_sname); + auto demangled = info.dli_sname; auto addr_offset = static_cast(call_stack[i]) - static_cast(info.dli_saddr); sout << string::Sprintf("%-3d %*0p %s + %zd\n", i, diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index 79e02c57b842847fc0a84fbff9f8f27460645e17..88fe764e64fb7e32d69843c998e323fbac1c7e14 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -17,6 +17,7 @@ limitations under the License. */ #include #include "paddle/framework/backward.h" +#include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" @@ -34,6 +35,7 @@ USE_OP(add); USE_OP(onehot_cross_entropy); USE_OP(sgd); USE_OP(mul); +USE_OP(elementwise_mul); USE_OP(mean); USE_OP(sigmoid); USE_OP(softmax); @@ -49,13 +51,19 @@ USE_OP(minus); USE_OP(cos_sim); USE_CPU_ONLY_OP(gather); USE_CPU_ONLY_OP(scatter); +USE_CPU_ONLY_OP(concat); +USE_OP(top_k); USE_OP(squared_l2_distance); +USE_OP(sum); +USE_OP(reshape); USE_OP(modified_huber_loss); namespace paddle { namespace framework { using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; +using LoD = framework::LoD; static size_t UniqueIntegerGenerator() { static std::atomic generator; @@ -115,6 +123,60 @@ PYBIND11_PLUGIN(core) { return self.data()[offset]; }); + py::class_(m, "LoDTensor", R"DOC(LoD(Leval of Ddetails) Tensor. + +The tensor and LoD info should be created before creating the LoDTensor, then +call the set_tensor and set_lod functions to set them. + +)DOC") + .def("__init__", + [](LoDTensor &instance, + const std::vector> &lod, + Tensor *t) { +#ifdef PADDLE_ONLY_CPU + new (&instance) LoDTensor(lod, t); +#else + paddle::framework::LoD new_lod; + new_lod.reserve(lod.size()); + std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); + new (&instance) LoDTensor(new_lod, t); +#endif + }) + .def("set_tensor", + [](LoDTensor &self, Tensor *tensor) { self.set_tensor(tensor); }) + .def("set_lod", + [](LoDTensor &self, const std::vector> &lod) { +#ifdef PADDLE_ONLY_CPU + self.set_lod(lod); +#else + paddle::framework::LoD new_lod; + new_lod.reserve(lod.size()); + std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); + self.set_lod(new_lod); +#endif + }) + .def("tensor", + [](LoDTensor &self) -> Tensor & { return self.tensor(); }, + py::return_value_policy::reference) + .def("lod", [](LoDTensor &self) -> std::vector> { +#ifdef PADDLE_ONLY_CPU + return self.lod(); +#else + auto lod = self.lod(); + std::vector> new_lod; + new_lod.reserve(lod.size()); + std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod), + [](paddle::framework::Vector item) -> + std::vector { + std::vector v; + v.reserve(item.size()); + std::copy(item.begin(), item.end(), std::back_inserter(v)); + return v; + }); + return new_lod; +#endif + }); + py::class_(m, "Variable", R"DOC(Variable Class. All parameter, weight, gradient are variables in Paddle. @@ -126,6 +188,11 @@ All parameter, weight, gradient are variables in Paddle. .def("get_tensor", [](Variable &self) -> Tensor * { return self.GetMutable(); }, py::return_value_policy::reference) + .def("get_lod_tensor", + [](Variable &self) -> LoDTensor * { + return self.GetMutable(); + }, + py::return_value_policy::reference) .def("get_net", [](Variable &self) -> operators::NetOp * { return self.GetMutable(); @@ -216,7 +283,10 @@ All parameter, weight, gradient are variables in Paddle. -> std::map> { return op.Outputs(); }) + .def("output_vars", + [](const OperatorBase &op) { return op.OutputVars(true); }) .def("inputs", [](const OperatorBase &op) { return op.Inputs(); }) + .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); }) .def("__str__", &OperatorBase::DebugString) .def("no_intermediate_outputs", [](const OperatorBase &op) { return op.OutputVars(false); }) diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 17986420220fec173bbf3ecff240d4c504f8adbd..2ac455d771bf78377ce4ee7d921393d3b3958e3c 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -30,6 +30,8 @@ Configuring cmake in /paddle/build ... -DCMAKE_BUILD_TYPE=Release -DWITH_DOC=OFF -DWITH_GPU=${WITH_GPU:-OFF} + -DWITH_MKLDNN=${WITH_MKLDNN:-ON} + -DWITH_MKLML=${WITH_MKLML:-ON} -DWITH_AVX=${WITH_AVX:-OFF} -DWITH_GOLANG=${WITH_GOLANG:-ON} -DWITH_SWIG_PY=ON @@ -37,7 +39,7 @@ Configuring cmake in /paddle/build ... -DWITH_PYTHON=${WITH_PYTHON:-ON} -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} -DCUDNN_ROOT=/usr/ - -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF} + -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-ON} -DWITH_TESTING=${WITH_TESTING:-ON} -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ======================================== @@ -50,6 +52,8 @@ cmake .. \ -DCMAKE_BUILD_TYPE=Release \ -DWITH_DOC=OFF \ -DWITH_GPU=${WITH_GPU:-OFF} \ + -DWITH_MKLDNN=${WITH_MKLDNN:-ON} \ + -DWITH_MKLML=${WITH_MKLML:-ON} \ -DWITH_AVX=${WITH_AVX:-OFF} \ -DWITH_GOLANG=${WITH_GOLANG:-ON} \ -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \ diff --git a/paddle/utils/Util.cpp b/paddle/utils/Util.cpp index b18b73e06a6c39c3bf9717280bc6323917c80efb..2755fdd9cd1c2509cad996557c6fb24363d42d8a 100644 --- a/paddle/utils/Util.cpp +++ b/paddle/utils/Util.cpp @@ -320,6 +320,9 @@ void loadFileList(const std::string& fileListFileName, } double getMemoryUsage() { +#if defined(__ANDROID__) + return 0.0; +#else FILE* fp = fopen("/proc/meminfo", "r"); CHECK(fp) << "failed to fopen /proc/meminfo"; size_t bufsize = 256 * sizeof(char); @@ -357,6 +360,7 @@ double getMemoryUsage() { delete[] buf; double usedMem = 1.0 - 1.0 * (freeMem + bufMem + cacheMem) / totalMem; return usedMem; +#endif } SyncThreadPool* getGlobalSyncThreadPool() { diff --git a/paddle/utils/Util.h b/paddle/utils/Util.h index 613844669d2495ada7b8f7a841f47b821b7fdeba..22ce2534d3468ded36221810aa61c15b37f13f3d 100644 --- a/paddle/utils/Util.h +++ b/paddle/utils/Util.h @@ -33,6 +33,13 @@ limitations under the License. */ #include "Flags.h" #include "hl_gpu.h" +#if defined(__ANDROID__) && (__ANDROID_API__ < 21) +inline int rand_r(unsigned int* seedp) { + (void)seedp; + return rand(); +} +#endif + /** * Loop over the elements in a container * TODO(yuyang18): It's this foreach useful? Why not use C++ 11 foreach, diff --git a/proto/ModelConfig.proto b/proto/ModelConfig.proto index 0f44d8cb8d78ed23cc1105ac7aff37de5faeffa1..ebf0911d6ea0b39d51447859ae2aef485b50b0e6 100644 --- a/proto/ModelConfig.proto +++ b/proto/ModelConfig.proto @@ -271,6 +271,7 @@ message ImageConfig { // The size of input feature map. required uint32 img_size = 8; optional uint32 img_size_y = 9; + optional uint32 img_size_z = 10 [ default = 1 ]; } message PriorBoxConfig { @@ -288,8 +289,8 @@ message PadConfig { } message ReshapeConfig { - repeated uint32 heightAxis = 1; - repeated uint32 widthAxis = 2; + repeated uint32 height_axis = 1; + repeated uint32 width_axis = 2; } message MultiBoxLossConfig { @@ -519,6 +520,7 @@ message LayerConfig { // for HuberRegressionLoss optional double delta = 57 [ default = 1.0 ]; + // for 3D data optional uint64 depth = 58 [ default = 1 ]; // for switch order layer diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 11dc84ae20679bb73735f9119739fca5ea7fa673..4f68a8953446ffa0510df65c5b214d09b913cff8 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -1332,6 +1332,12 @@ def parse_image(image, input_layer_name, image_conf): get_img_size(input_layer_name, image_conf.channels) +def parse_image3d(image, input_layer_name, image_conf): + image_conf.channels = image.channels + image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \ + get_img3d_size(input_layer_name, image_conf.channels) + + def parse_norm(norm, input_layer_name, norm_conf): norm_conf.norm_type = norm.norm_type config_assert( @@ -2028,6 +2034,7 @@ class ParameterReluLayer(LayerBase): config_assert(input_layer.size % partial_sum == 0, "a wrong setting for partial_sum") self.set_layer_size(input_layer.size) + self.config.partial_sum = partial_sum self.create_input_parameter(0, input_layer.size / partial_sum) @@ -2365,9 +2372,11 @@ class BatchNormLayer(LayerBase): name, inputs, bias=True, + img3D=False, use_global_stats=True, moving_average_fraction=0.9, batch_norm_type=None, + mean_var_names=None, **xargs): if inputs is None: inputs = [] @@ -2409,24 +2418,69 @@ class BatchNormLayer(LayerBase): input_layer = self.get_input_layer(0) image_conf = self.config.inputs[0].image_conf - parse_image(self.inputs[0].image, input_layer.name, image_conf) - - # Only pass the width and height of input to batch_norm layer - # when either of it is non-zero. - if input_layer.width != 0 or input_layer.height != 0: - self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size, - image_conf.channels, False) + if img3D: + parse_image3d(self.inputs[0].image, input_layer.name, image_conf) + # Only pass the width and height of input to batch_norm layer + # when either of it is non-zero. + if input_layer.width != 0 or input_layer.height != 0: + self.set_cnn_layer( + input_layer_name=name, + depth=image_conf.img_size_z, + height=image_conf.img_size_y, + width=image_conf.img_size, + channels=image_conf.channels, + is_print=True) + else: + self.set_layer_size(input_layer.size) else: - self.set_layer_size(input_layer.size) + parse_image(self.inputs[0].image, input_layer.name, image_conf) + # Only pass the width and height of input to batch_norm layer + # when either of it is non-zero. + if input_layer.width != 0 or input_layer.height != 0: + self.set_cnn_layer( + input_layer_name=name, + height=image_conf.img_size_y, + width=image_conf.img_size, + channels=image_conf.channels, + is_print=True) + else: + self.set_layer_size(input_layer.size) psize = self.calc_parameter_size(image_conf) dims = [1, psize] + if mean_var_names is not None: + assert len(mean_var_names) == 2 + self.inputs[1].parameter_name = mean_var_names[0] + self.inputs[2].parameter_name = mean_var_names[1] + self.create_input_parameter(0, psize) self.create_input_parameter(1, psize, dims) self.create_input_parameter(2, psize, dims) self.create_bias_parameter(bias, psize) + def set_cnn_layer(self, + input_layer_name, + depth=None, + height=None, + width=None, + channels=None, + is_print=True): + depthIsNone = False + if depth is None: + depth = 1 + depthIsNone = True + size = depth * height * width * channels + self.set_layer_size(size) + self.set_layer_height_width(height, width) + self.set_layer_depth(depth) + if is_print and depthIsNone: + print("output for %s: c = %d, h = %d, w = %d, size = %d" % + (input_layer_name, channels, height, width, size)) + elif is_print: + print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" % + (input_layer_name, channels, depth, height, width, size)) + def calc_parameter_size(self, image_conf): return image_conf.channels @@ -2688,9 +2742,20 @@ class AddToLayer(LayerBase): super(AddToLayer, self).__init__( name, 'addto', 0, inputs=inputs, **xargs) config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer') - for input_index in xrange(len(self.inputs)): - input_layer = self.get_input_layer(input_index) - self.set_layer_size(input_layer.size) + + if len(self.inputs) > 1: + for input_index in xrange(len(self.inputs)): + assert self.get_input_layer(0).height == self.get_input_layer( + input_index).height + assert self.get_input_layer(0).width == self.get_input_layer( + input_index).width + assert self.get_input_layer(0).depth == self.get_input_layer( + input_index).depth + + self.set_layer_size(self.get_input_layer(0).size) + self.set_layer_height_width(self.get_input_layer(0).height, \ + self.get_input_layer(0).width) + self.set_layer_depth(self.get_input_layer(0).depth) self.create_bias_parameter(bias, self.config.size) @@ -3370,11 +3435,20 @@ class ConcatenateLayer(LayerBase): name, 'concat', 0, inputs=inputs, **xargs) size = 0 for input_index in xrange(len(self.inputs)): + assert self.get_input_layer(0).height == self.get_input_layer( + input_index).height + assert self.get_input_layer(0).width == self.get_input_layer( + input_index).width + assert self.get_input_layer(0).depth == self.get_input_layer( + input_index).depth input_layer = self.get_input_layer(input_index) input = self.inputs[input_index] if self.config.size == 0: size += input_layer.size + self.set_layer_height_width(self.get_input_layer(0).height, \ + self.get_input_layer(0).width) + self.set_layer_depth(self.get_input_layer(0).depth) self.set_layer_size(size) @@ -3675,8 +3749,8 @@ class SwitchOrderLayer(LayerBase): def __init__(self, name, inputs, reshape, **xargs): super(SwitchOrderLayer, self).__init__( name, 'switch_order', 0, inputs=inputs, **xargs) - self.config.reshape_conf.heightAxis.extend(reshape['height']) - self.config.reshape_conf.widthAxis.extend(reshape['width']) + self.config.reshape_conf.height_axis.extend(reshape['height']) + self.config.reshape_conf.width_axis.extend(reshape['width']) # Deprecated, use a new layer specific class instead diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index cba45bd3afa178ab4dd3a50f0947b144e7466e53..4b1d80d3db924bfa2ad0e081f785d8f5dd719fce 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -354,6 +354,10 @@ class LayerOutput(object): def height(self): return cp.g_layer_map[self.full_name].height + @property + def depth(self): + return cp.g_layer_map[self.full_name].depth + def set_input(self, input): """ Set the input for a memory layer. Can only be used for memory layer @@ -943,7 +947,7 @@ def data_layer(name, size, depth=None, height=None, width=None, if height is not None and width is not None: num_filters = size / (width * height * depth) assert num_filters * width * height * depth == size, \ - "size=%s width=%s height=%s depth=%s" % (size, width, height, depth) + "size=%s width=%s height=%s depth=%s" % (size, width, height, depth) return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters) @@ -1219,7 +1223,8 @@ def detection_output_layer(input_loc, name=None): """ Apply the NMS to the output of network and compute the predict bounding - box location. + box location. The output of this layer could be None if there is no valid + bounding box. :param name: The Layer Name. :type name: basestring @@ -2953,13 +2958,15 @@ def img_cmrnorm_layer(input, def batch_norm_layer(input, act=None, name=None, + img3D=False, num_channels=None, bias_attr=None, param_attr=None, layer_attr=None, batch_norm_type=None, moving_average_fraction=0.9, - use_global_stats=None): + use_global_stats=None, + mean_var_names=None): """ Batch Normalization Layer. The notation of this layer as follow. @@ -3026,6 +3033,8 @@ def batch_norm_layer(input, :math:`runningMean = newMean*(1-factor) + runningMean*factor` :type moving_average_fraction: float. + :param mean_var_names: [mean name, variance name] + :type mean_var_names: string list :return: LayerOutput object. :rtype: LayerOutput """ @@ -3039,6 +3048,7 @@ def batch_norm_layer(input, (batch_norm_type == "cudnn_batch_norm") l = Layer( name=name, + img3D=img3D, inputs=Input( input.name, image=Image(channels=num_channels), **param_attr.attr), active_type=act.name, @@ -3047,6 +3057,7 @@ def batch_norm_layer(input, bias=ParamAttr.to_bias(bias_attr), moving_average_fraction=moving_average_fraction, use_global_stats=use_global_stats, + mean_var_names=mean_var_names, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( @@ -6410,7 +6421,7 @@ def gated_unit_layer(input, @wrap_name_default('switch_order') def switch_order_layer(input, name=None, - reshape=None, + reshape_axis=None, act=None, layer_attr=None): """ @@ -6421,8 +6432,9 @@ def switch_order_layer(input, The example usage is: .. code-block:: python + reshape_axis = 3 + switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis) reshape = {'height':[ 0, 1, 2], 'width':[3]} - switch = switch_order(input=layer, name='switch', reshape=reshape) :param input: The input layer. :type input: LayerOutput @@ -6434,6 +6446,11 @@ def switch_order_layer(input, :rtype: LayerOutput """ assert isinstance(input, LayerOutput) + assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4) + height = [ele for ele in xrange(reshape_axis)] + width = [ele for ele in range(reshape_axis, 4)] + reshape = {'height': height, 'width': width} + l = Layer( name=name, inputs=input.name, @@ -6444,6 +6461,7 @@ def switch_order_layer(input, return LayerOutput( name=name, layer_type=LayerType.SWITCH_ORDER_LAYER, + activation=act, parents=input, size=l.config.size) diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh index df872a90ff388f0d96cef44763dbd076bc768ab9..8a204a96f3ef57673cef65306d0bf8e8c3409751 100755 --- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh +++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh @@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer -test_conv3d_layer test_deconv3d_layer) +test_conv3d_layer test_deconv3d_layer test_BatchNorm3D) export whole_configs=(test_split_datasource) diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr index 1a577b8d9b1e1915236ba6afcfa97040d70c707a..5ddf6052df021b055390a42c25ce6c0d650e4aee 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr @@ -62,6 +62,7 @@ layers { moving_average_fraction: 0.9 height: 227 width: 227 + depth: 1 } layers { name: "__crmnorm_0__" diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr index 2818389b16cca75f5030b75fc4de8c89c06c5e02..c0252b945b4c7fd6b4dad8770e3e1dccb88df28a 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr @@ -62,6 +62,7 @@ layers { moving_average_fraction: 0.9 height: 256 width: 256 + depth: 1 } layers { name: "__crmnorm_0__" diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_BatchNorm3D.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_BatchNorm3D.protostr new file mode 100644 index 0000000000000000000000000000000000000000..832ed24a31dd2bedba9a4fce77d7a088d1796fdb --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_BatchNorm3D.protostr @@ -0,0 +1,92 @@ +type: "nn" +layers { + name: "data3D" + type: "data" + size: 360 + active_type: "" + height: 6 + width: 20 + depth: 3 +} +layers { + name: "__batch_norm_0__" + type: "batch_norm" + size: 360 + active_type: "relu" + inputs { + input_layer_name: "data3D" + input_parameter_name: "___batch_norm_0__.w0" + image_conf { + channels: 1 + img_size: 20 + img_size_y: 6 + img_size_z: 3 + } + } + inputs { + input_layer_name: "data3D" + input_parameter_name: "___batch_norm_0__.w1" + } + inputs { + input_layer_name: "data3D" + input_parameter_name: "___batch_norm_0__.w2" + } + bias_parameter_name: "___batch_norm_0__.wbias" + moving_average_fraction: 0.9 + height: 6 + width: 20 + depth: 3 +} +parameters { + name: "___batch_norm_0__.w0" + size: 1 + initial_mean: 1.0 + initial_std: 0.0 + initial_strategy: 0 + initial_smart: false +} +parameters { + name: "___batch_norm_0__.w1" + size: 1 + initial_mean: 0.0 + initial_std: 0.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: false + is_static: true + is_shared: true +} +parameters { + name: "___batch_norm_0__.w2" + size: 1 + initial_mean: 0.0 + initial_std: 0.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: false + is_static: true + is_shared: true +} +parameters { + name: "___batch_norm_0__.wbias" + size: 1 + initial_mean: 0.0 + initial_std: 0.0 + dims: 1 + dims: 1 + initial_strategy: 0 + initial_smart: false +} +input_layer_names: "data3D" +output_layer_names: "__batch_norm_0__" +sub_models { + name: "root" + layer_names: "data3D" + layer_names: "__batch_norm_0__" + input_layer_names: "data3D" + output_layer_names: "__batch_norm_0__" + is_recurrent_layer_group: false +} + diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr index b110e91498ce7d112987714bd769868179141c54..8a1399efad0ff339e35f69400ac654a4787a6018 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr @@ -74,6 +74,9 @@ layers { inputs { input_layer_name: "__bidirectional_gru_0___bw" } + height: 0 + width: 0 + depth: 1 } parameters { name: "___bidirectional_gru_0___fw_transform.w0" diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr index 64d227565f2b21ff43d4391c682ca90c0f47908e..94ad56cab063df9e6a11bb1c293727fb9dec810f 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_prelu_layer.protostr @@ -14,6 +14,29 @@ layers { input_layer_name: "input" input_parameter_name: "___prelu_layer_0__.w0" } + partial_sum: 1 +} +layers { + name: "__prelu_layer_1__" + type: "prelu" + size: 300 + active_type: "" + inputs { + input_layer_name: "input" + input_parameter_name: "___prelu_layer_1__.w0" + } + partial_sum: 1 +} +layers { + name: "__prelu_layer_2__" + type: "prelu" + size: 300 + active_type: "" + inputs { + input_layer_name: "input" + input_parameter_name: "___prelu_layer_2__.w0" + } + partial_sum: 5 } parameters { name: "___prelu_layer_0__.w0" @@ -23,14 +46,32 @@ parameters { initial_strategy: 0 initial_smart: true } +parameters { + name: "___prelu_layer_1__.w0" + size: 300 + initial_mean: 0.0 + initial_std: 0.057735026919 + initial_strategy: 0 + initial_smart: true +} +parameters { + name: "___prelu_layer_2__.w0" + size: 60 + initial_mean: 0.0 + initial_std: 0.129099444874 + initial_strategy: 0 + initial_smart: true +} input_layer_names: "input" -output_layer_names: "__prelu_layer_0__" +output_layer_names: "__prelu_layer_2__" sub_models { name: "root" layer_names: "input" layer_names: "__prelu_layer_0__" + layer_names: "__prelu_layer_1__" + layer_names: "__prelu_layer_2__" input_layer_names: "input" - output_layer_names: "__prelu_layer_0__" + output_layer_names: "__prelu_layer_2__" is_recurrent_layer_group: false } diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr index 8133aa9c8d3e7c6843d1b27b70e87d394a1e0e47..046037936a6d85f54095c65f206e468aa69065d7 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr @@ -16,6 +16,9 @@ layers { inputs { input_layer_name: "data" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_1__" @@ -28,6 +31,9 @@ layers { inputs { input_layer_name: "__addto_0__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_2__" @@ -40,6 +46,9 @@ layers { inputs { input_layer_name: "__addto_1__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_3__" @@ -52,6 +61,9 @@ layers { inputs { input_layer_name: "__addto_2__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_4__" @@ -64,6 +76,9 @@ layers { inputs { input_layer_name: "__addto_3__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_5__" @@ -76,6 +91,9 @@ layers { inputs { input_layer_name: "__addto_4__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_6__" @@ -88,6 +106,9 @@ layers { inputs { input_layer_name: "__addto_5__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_7__" @@ -100,6 +121,9 @@ layers { inputs { input_layer_name: "__addto_6__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_8__" @@ -112,6 +136,9 @@ layers { inputs { input_layer_name: "__addto_7__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_9__" @@ -124,6 +151,9 @@ layers { inputs { input_layer_name: "__addto_8__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_10__" @@ -136,6 +166,9 @@ layers { inputs { input_layer_name: "__addto_9__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_11__" @@ -148,6 +181,9 @@ layers { inputs { input_layer_name: "__addto_10__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_12__" @@ -160,6 +196,9 @@ layers { inputs { input_layer_name: "__addto_11__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_13__" @@ -172,6 +211,9 @@ layers { inputs { input_layer_name: "__addto_12__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_14__" @@ -184,6 +226,9 @@ layers { inputs { input_layer_name: "__addto_13__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_15__" @@ -196,6 +241,9 @@ layers { inputs { input_layer_name: "__addto_14__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_16__" @@ -208,6 +256,9 @@ layers { inputs { input_layer_name: "__addto_15__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_17__" @@ -220,6 +271,9 @@ layers { inputs { input_layer_name: "__addto_16__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_18__" @@ -232,6 +286,9 @@ layers { inputs { input_layer_name: "__addto_17__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_19__" @@ -244,6 +301,9 @@ layers { inputs { input_layer_name: "__addto_18__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_20__" @@ -256,6 +316,9 @@ layers { inputs { input_layer_name: "__addto_19__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_21__" @@ -268,6 +331,9 @@ layers { inputs { input_layer_name: "__addto_20__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_22__" @@ -280,6 +346,9 @@ layers { inputs { input_layer_name: "__addto_21__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_23__" @@ -292,6 +361,9 @@ layers { inputs { input_layer_name: "__addto_22__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_24__" @@ -304,6 +376,9 @@ layers { inputs { input_layer_name: "__addto_23__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_25__" @@ -316,6 +391,9 @@ layers { inputs { input_layer_name: "__addto_24__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_26__" @@ -328,6 +406,9 @@ layers { inputs { input_layer_name: "__addto_25__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_27__" @@ -340,6 +421,9 @@ layers { inputs { input_layer_name: "__addto_26__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_28__" @@ -352,6 +436,9 @@ layers { inputs { input_layer_name: "__addto_27__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_29__" @@ -364,6 +451,9 @@ layers { inputs { input_layer_name: "__addto_28__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_30__" @@ -376,6 +466,9 @@ layers { inputs { input_layer_name: "__addto_29__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__addto_31__" @@ -388,6 +481,9 @@ layers { inputs { input_layer_name: "__addto_30__" } + height: 0 + width: 0 + depth: 1 } layers { name: "__fc_layer_0__" diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr index d0ad388165007b8f96f059e5b003c52f756383e5..7a2f3eab38808a031c27cf7ab9d6273952e389eb 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr +++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr @@ -22,6 +22,9 @@ layers { inputs { input_layer_name: "b" } + height: 0 + width: 0 + depth: 1 } layers { name: "__concat_0__" @@ -34,6 +37,9 @@ layers { inputs { input_layer_name: "b" } + height: 0 + width: 0 + depth: 1 } layers { name: "__concat_1__" diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py b/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py new file mode 100644 index 0000000000000000000000000000000000000000..a991b22252ba10eed895efd931108c2d8b0e52f1 --- /dev/null +++ b/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py @@ -0,0 +1,11 @@ +from paddle.trainer_config_helpers import * + +settings(batch_size=1000, learning_rate=1e-4) + +#data = data_layer(name='data', size=180, width=30, height=6) +#batchNorm = batch_norm_layer(data, num_channels=1) +#outputs(batchNorm) + +data3D = data_layer(name='data3D', size=120 * 3, width=20, height=6, depth=3) +batchNorm3D = batch_norm_layer(data3D, num_channels=1, img3D=True) +outputs(batchNorm3D) diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py index 2e3057f323db22ffc3911cce30ec2e8bb95e3dbe..aae90fab32db78a70c2169ed8fafb930433f4136 100644 --- a/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py +++ b/python/paddle/trainer_config_helpers/tests/configs/test_prelu_layer.py @@ -2,5 +2,7 @@ from paddle.trainer_config_helpers import * data = data_layer(name='input', size=300) prelu = prelu_layer(input=data) +prelu = prelu_layer(input=data, partial_sum=1) +prelu = prelu_layer(input=data, partial_sum=5) outputs(prelu) diff --git a/python/paddle/v2/event.py b/python/paddle/v2/event.py index 7589cc9917f26375d595e200245d5ba099bc38d7..e66bf67d7949057486eb54c46f39128fad5dae55 100644 --- a/python/paddle/v2/event.py +++ b/python/paddle/v2/event.py @@ -53,10 +53,13 @@ class BeginPass(object): class EndPass(WithMetric): """ Event On One Pass Training Complete. + To get the output of a specific layer, add "event.gm.getLayerOutputs('predict_layer')" + in your event_handler call back """ - def __init__(self, pass_id, evaluator): + def __init__(self, pass_id, evaluator, gm): self.pass_id = pass_id + self.gm = gm WithMetric.__init__(self, evaluator) @@ -73,10 +76,13 @@ class BeginIteration(object): class EndIteration(WithMetric): """ Event On One Batch Training Complete. + To get the output of a specific layer, add "event.gm.getLayerOutputs('predict_layer')" + in your event_handler call back """ - def __init__(self, pass_id, batch_id, cost, evaluator): + def __init__(self, pass_id, batch_id, cost, evaluator, gm): self.pass_id = pass_id self.batch_id = batch_id self.cost = cost + self.gm = gm WithMetric.__init__(self, evaluator) diff --git a/python/paddle/v2/framework/op.py b/python/paddle/v2/framework/op.py index c1585bcffcceb75292853018179066c9f614261e..9e665adad2d3ad91d183c6815fbd7135ac4e8965 100644 --- a/python/paddle/v2/framework/op.py +++ b/python/paddle/v2/framework/op.py @@ -43,7 +43,6 @@ class OpDescCreationMethod(object): if len(args) != 0: raise ValueError("Only keyword arguments are supported.") op_desc = framework_pb2.OpDesc() - for input_parameter in self.__op_proto__.inputs: input_arguments = kwargs.get(input_parameter.name, []) if is_str(input_arguments): @@ -142,8 +141,8 @@ def create_op_creation_method(op_proto): return OpInfo( method=__impl__, name=op_proto.type, - inputs=[var.name for var in op_proto.inputs], - outputs=[var.name for var in op_proto.outputs], + inputs=[(var.name, var.duplicable) for var in op_proto.inputs], + outputs=[(var.name, var.duplicable) for var in op_proto.outputs], attrs=[attr.name for attr in op_proto.attrs]) @@ -180,9 +179,15 @@ class OperatorFactory(object): return self.op_methods.get(t) def get_op_input_names(self, type): + return map(lambda x: x[0], self.get_op_info(type).inputs) + + def get_op_inputs(self, type): return self.get_op_info(type).inputs def get_op_output_names(self, type): + return map(lambda x: x[0], self.get_op_info(type).outputs) + + def get_op_outputs(self, type): return self.get_op_info(type).outputs def get_op_attr_names(self, type): diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index 10e1c3396236685bbcbc7e3531b96387fe894fce..4d7664469e481344cf9eea84688f068b4fb99dee 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -1,37 +1,5 @@ -py_test(test_net SRCS test_net.py) - -py_test(test_scope SRCS test_scope.py) - -py_test(test_tensor SRCS test_tensor.py) -py_test(test_mul_op SRCS test_mul_op.py) -py_test(test_cos_sim_op SRCS test_cos_sim_op.py) - -py_test(test_mean_op SRCS test_mean_op.py) - -py_test(test_protobuf SRCS test_protobuf.py) - -py_test(test_add_two_op SRCS test_add_two_op.py) -py_test(test_sigmoid_op SRCS test_sigmoid_op.py) -py_test(test_softmax_op SRCS test_softmax_op.py) -py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py) -py_test(test_gather_op SRCS test_gather_op.py) -py_test(test_scatter_op SRCS test_scatter_op.py) -py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py) - -py_test(gradient_checker SRCS gradient_checker.py) - -py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py) - -py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py) - -py_test(test_operator SRCS test_operator.py) -py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py) -py_test(test_uniform_random_op SRCS test_uniform_random_op.py) -py_test(test_recurrent_op SRCS test_recurrent_op.py) -py_test(test_sgd_op SRCS test_sgd_op.py) -py_test(test_gradient_checker SRCS test_gradient_checker.py) -py_test(test_lookup_table SRCS test_lookup_table.py) -py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py) -py_test(mnist SRCS mnist.py) -py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py) -py_test(test_modified_huber_loss_op SRCS test_modified_huber_loss_op.py) +file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py") +string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}") +foreach(src ${TEST_OPS}) + py_test(${src} SRCS ${src}.py) +endforeach() diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py deleted file mode 100644 index fdb06b7988935ebbe53f72f4eba89d75ac2502d4..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/gradient_checker.py +++ /dev/null @@ -1,311 +0,0 @@ -import unittest - -import numpy -import itertools -import paddle.v2.framework.core as core -from paddle.v2.framework.op import Operator - -__all__ = ['get_numeric_gradient'] - - -def create_op(op_type): - # TODO need to set attrs - kwargs = dict() - for in_name in Operator.get_op_input_names(op_type): - kwargs[in_name] = in_name - for out_name in Operator.get_op_output_names(op_type): - kwargs[out_name] = out_name - - return Operator(op_type, **kwargs) - - -def grad_var_name(var_name): - return var_name + "@GRAD" - - -def empty_var_name(): - return "@EMPTY@" - - -def get_numeric_gradient(op, - input_values, - output_name, - input_to_check, - delta=0.005, - local_scope=None, - in_place=False): - """ - Get Numeric Gradient for an operator's input. - - :param op: C++ operator instance, could be an network - :param input_values: The input variables. Should be an dictionary, key is - variable name. Value is numpy array. - :param output_name: The final output variable name. - :param input_to_check: The input variable need to get gradient. - :param delta: The perturbation value for numeric gradient method. The - smaller delta is, the more accurate result will get. But if that delta is - too small, it could occur numerical stability problem. - :param local_scope: The local scope used for get_numeric_gradient. - :return: The gradient array in numpy format. - """ - if local_scope is None: - local_scope = core.Scope() - - # Create all input variable in local_scope - for var_name in input_values: - var = local_scope.new_var(var_name) - tensor = var.get_tensor() - tensor.set_dims(input_values[var_name].shape) - tensor.alloc_float(core.CPUPlace()) - tensor.set(input_values[var_name], core.CPUPlace()) - - # Create all output variable in local_scope - opts = op.outputs() - for key in opts: - for output in opts[key]: - if local_scope.find_var(output) is None: - local_scope.new_var(output).get_tensor() - op.infer_shape(local_scope) - - # allocate output memory - for key in opts: - for output in opts[key]: - local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace( - )) - - cpu_ctx = core.DeviceContext.create(core.CPUPlace()) - - def get_output(): - op.run(local_scope, cpu_ctx) - return numpy.array(local_scope.find_var(output_name).get_tensor()).sum() - - def product(dim): - return reduce(lambda a, b: a * b, dim, 1) - - def restore_inputs(): - for var_name in input_values: - tensor_ = local_scope.find_var(var_name).get_tensor() - tensor_.set(numpy.copy(input_values[var_name]), core.CPUPlace()) - - # get the input tensor that we want to get it's numeric gradient. - tensor_to_check = local_scope.find_var(input_to_check).get_tensor() - tensor_size = product(tensor_to_check.get_dims()) - # prepare a numpy array to store the gradient. - gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32') - - # we only compute gradient of one element each time. - # we use a for loop to compute the gradient of every element. - for i in xrange(tensor_size): - if in_place: - restore_inputs() - # get one input element throw it's index i. - origin = tensor_to_check.get_float_element(i) - - # add delta to it, run op and then get the sum of the result tensor. - x_pos = origin + delta - tensor_to_check.set_float_element(i, x_pos) - y_pos = get_output() - - # plus delta to this element, run op and get the sum of the result tensor. - if in_place: - restore_inputs() - x_neg = origin - delta - tensor_to_check.set_float_element(i, x_neg) - y_neg = get_output() - - # restore old value - tensor_to_check.set_float_element(i, origin) - - # compute the gradient of this element and store it into a numpy array. - gradient_flat[i] = (y_pos - y_neg) / delta / 2 - - # reshape the gradient result to the shape of the source tensor. - return gradient_flat.reshape(tensor_to_check.get_dims()) - - -class GradientChecker(unittest.TestCase): - def __get_gradient(self, forward_op, backward_op, input_value, grad_names, - place): - """Get the input gradients after running forward and backward operators - on the given places. - - :param forward_op: forward operator - :type forward_op: Operator - :param backward_op: backward operator - :type backward_op: Operator - :param input_value: input values. - :type input_value: dict{string:numpy.array} - :param grad_names: the names of returned input gradients. - :type input_value: a list of string - :param place: the device type. - :type place: CPUPlace or GPUPlace - :return: the input grdients of given grad_names. - :rtype: a list of numpy.array - """ - scope = core.Scope() - ctx = core.DeviceContext.create(place) - - inputs = forward_op.inputs() - in_names = [item for k in inputs for item in inputs[k]] - outputs = forward_op.outputs() - out_names = [item for k in outputs for item in outputs[k]] - - # create input var and set value - for name, value in input_value.iteritems(): - if name not in in_names: - raise ValueError(name + "does not exist in Op's inputs.") - var = scope.new_var(name).get_tensor() - var.set_dims(value.shape) - var.set(value, place) - - # run forward op - for out_name in out_names: - scope.new_var(out_name) - forward_op.infer_shape(scope) - forward_op.run(scope, ctx) - - # set output var's shape - # set output grad to ones - for name in out_names: - out_tensor = scope.find_var(name).get_tensor() - grad_tensor = scope.new_var(grad_var_name(name)).get_tensor() - grad_tensor.set_dims(out_tensor.shape()) - data = numpy.ones(out_tensor.shape(), dtype=numpy.float32) - grad_tensor.set(data, place) - - # run backward op - backward_outs = backward_op.outputs() - backward_names = [ - item for key in backward_outs for item in backward_outs[key] - ] - for name in backward_names: - scope.new_var(name) - - backward_op.infer_shape(scope) - backward_op.run(scope, ctx) - - outs = [ - numpy.array(scope.find_var(name).get_tensor()) - for name in grad_names - ] - return outs - - def compare_grad(self, forward_op, input_value, no_grad_set=None): - """ Compare the input gradients between CPU and GPU for the given forward - operator. - - :param forward_op: forward operator - :type forward_op: Operator - :param input_value: input values. - :type input_value: dict{string:numpy.array} - :param no_grad_set: the set of variables names without gradients. - :type no_grad_set: a set of string - :raises: AssertionError, there is different gradient value. - """ - if no_grad_set is None: - no_grad_set = set() - backward_op = core.Operator.backward(forward_op, no_grad_set) - # return if not compile with GPU or not implementing GPU kernel - if not (core.is_compile_gpu() and backward_op.support_gpu()): - return - - outputs = backward_op.outputs() - out_names = [item for k in outputs for item in outputs[k]] - out_names = filter(lambda x: x != empty_var_name(), out_names) - cpu_grads = self.__get_gradient(forward_op, backward_op, input_value, - out_names, core.CPUPlace()) - gpu_grads = self.__get_gradient(forward_op, backward_op, input_value, - out_names, core.GPUPlace(0)) - - for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads, - out_names): - self.assertTrue( - numpy.allclose( - c_grad, g_grad, atol=1e-4), - "output name: " + name + " has diff") - - def __assert_is_close(self, numeric_grads, analytic_grads, names, - max_relative_error, msg_prefix): - """Use relative error for the comparison. - - :param numeric_grads: the numerical graidents. - :type numeric_grads: a list of numpy.array - :param analytic_grads: the analytical graidents. - :type analytic_grads: a list of numpy.array - :param name: the names of gradients, used to print for debug. - :type names: a list of string - :param msg_prefix: string info, used to print for debug. - :type msf_prefix: string - """ - for a, b, name in itertools.izip(numeric_grads, analytic_grads, names): - abs_a = numpy.abs(a) - # if abs_a is nearly zero, then use abs error for a, not relative - # error. - abs_a[abs_a < 1e-3] = 1 - - diff_mat = numpy.abs(a - b) / abs_a - max_diff = numpy.max(diff_mat) - - def err_msg(): - offset = numpy.argmax(diff_mat > max_relative_error) - return "%s Variable %s max gradient diff %f over limit %f, the first " \ - "error element is %d" % ( - msg_prefix, name, max_diff, max_relative_error, offset) - - self.assertLessEqual(max_diff, max_relative_error, err_msg()) - - def check_grad(self, - forward_op, - input_vars, - inputs_to_check, - output_name, - no_grad_set=None, - only_cpu=False, - in_place=False, - max_relative_error=0.005): - """ - :param forward_op: used to create backward_op - :param input_vars: numpy value of input variable. The following - computation will use these variables. - :param inputs_to_check: inputs var names that should check gradient. - :param output_name: the output variable name of forward network. - :param max_relative_error: The relative tolerance parameter. - :param no_grad_set: used when create backward ops - :param only_cpu: only compute and check gradient on cpu kernel. - :return: - """ - if no_grad_set is None: - no_grad_set = set() - - no_tmp_out = forward_op.no_intermediate_outputs() - if len(no_tmp_out) != 1: - raise ValueError("non temp out_names should be 1") - - inputs = forward_op.inputs() - in_names = [item for k in inputs for item in inputs[k]] - for no_grad in no_grad_set: - if no_grad not in in_names: - raise ValueError("no_grad should be in in_names") - if no_grad in inputs_to_check: - raise ValueError("no_grad should not be in inputs_to_check") - - backward_op = core.Operator.backward(forward_op, no_grad_set) - - places = [core.CPUPlace()] - if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu(): - places.append(core.GPUPlace(0)) - - # get numerical gradients - numeric_grads = [ - get_numeric_gradient( - forward_op, input_vars, output_name, name, in_place=in_place) - for name in inputs_to_check - ] - - check_names = [grad_var_name(name) for name in inputs_to_check] - for place in places: - analytic_grads = self.__get_gradient(forward_op, backward_op, - input_vars, check_names, place) - self.__assert_is_close(numeric_grads, analytic_grads, check_names, - max_relative_error, - "Gradient Check On %s" % str(place)) diff --git a/python/paddle/v2/framework/tests/op_test.py b/python/paddle/v2/framework/tests/op_test.py new file mode 100644 index 0000000000000000000000000000000000000000..4fec4c9109bf247abb2068177583acb47a8ebd97 --- /dev/null +++ b/python/paddle/v2/framework/tests/op_test.py @@ -0,0 +1,281 @@ +import unittest +import numpy as np +import itertools +import paddle.v2.framework.core as core +from paddle.v2.framework.op import Operator + + +def grad_var_name(var_name): + return var_name + "@GRAD" + + +def create_op(scope, op_type, inputs, outputs, attrs): + kwargs = dict() + + for in_name, in_dup in Operator.get_op_inputs(op_type): + if in_name in inputs: + kwargs[in_name] = [] + if in_dup: + sub_in = inputs[in_name] + for sub_in_name, _ in sub_in: + var = scope.new_var(sub_in_name) + kwargs[in_name].append(sub_in_name) + else: + var = scope.new_var(in_name) + kwargs[in_name].append(in_name) + + for out_name, out_dup in Operator.get_op_outputs(op_type): + if out_name in outputs: + kwargs[out_name] = [] + if out_dup: + sub_in = outputs[out_name] + for sub_in_name, _ in sub_in: + var = scope.new_var(sub_in_name) + kwargs[out_name].append(sub_in_name) + else: + var = scope.new_var(out_name) + kwargs[out_name].append(out_name) + + for attr_name in Operator.get_op_attr_names(op_type): + if attr_name in attrs: + kwargs[attr_name] = attrs[attr_name] + return Operator(op_type, **kwargs) + + +def set_input(scope, op, inputs, place): + for in_name, in_dup in Operator.get_op_inputs(op.type()): + if in_name in inputs: + if in_dup: + sub_in = inputs[in_name] + for sub_in_name, sub_in_array in sub_in: + var = scope.find_var(sub_in_name) + tensor = var.get_tensor() + tensor.set_dims(sub_in_array.shape) + tensor.set(sub_in_array, place) + else: + var = scope.find_var(in_name) + tensor = var.get_tensor() + arr = inputs[in_name] + tensor.set_dims(arr.shape) + tensor.set(arr, place) + + +def set_output_grad(scope, op, outputs, place): + for out_name, out_dup in Operator.get_op_outputs(op.type()): + if out_name in outputs: + if out_dup: + sub_out = outputs[out_name] + for sub_out_name, _ in sub_out: + out_tensor = scope.find_var(sub_out_name).get_tensor() + grad_tensor = scope.new_var(grad_var_name( + sub_out_name)).get_tensor() + grad_tensor.set_dims(out_tensor.shape()) + data = np.ones(out_tensor.shape(), dtype=np.float32) + grad_tensor.set(data, place) + else: + out_tensor = scope.find_var(out_name).get_tensor() + grad_tensor = scope.new_var(grad_var_name(out_name)).get_tensor( + ) + grad_tensor.set_dims(out_tensor.shape()) + data = np.ones(out_tensor.shape(), dtype=np.float32) + grad_tensor.set(data, place) + + +def get_numeric_gradient(scope, + op, + inputs, + input_to_check, + output_name, + delta=0.005, + in_place=False): + + set_input(scope, op, inputs, core.CPUPlace()) + op.infer_shape(scope) + + tensor_to_check = scope.find_var(input_to_check).get_tensor() + + def product(dim): + return reduce(lambda a, b: a * b, dim, 1) + + ctx = core.DeviceContext.create(core.CPUPlace()) + + def get_output(): + op.run(scope, ctx) + return np.array(scope.find_var(output_name).get_tensor()).sum() + + tensor_to_check = scope.find_var(input_to_check).get_tensor() + tensor_size = product(tensor_to_check.get_dims()) + gradient_flat = np.zeros(shape=(tensor_size, ), dtype='float32') + # we only compute gradient of one element each time. + # we use a for loop to compute the gradient of every element. + for i in xrange(tensor_size): + if in_place: + set_input(scope, op, inputs, core.CPUPlace()) + + # get one input element throw it's index i. + origin = tensor_to_check.get_float_element(i) + # add delta to it, run op and then get the sum of the result tensor. + x_pos = origin + delta + tensor_to_check.set_float_element(i, x_pos) + y_pos = get_output() + + if in_place: + set_input(scope, op, inputs, core.CPUPlace()) + + x_neg = origin - delta + tensor_to_check.set_float_element(i, x_neg) + y_neg = get_output() + + tensor_to_check.set_float_element(i, origin) + gradient_flat[i] = (y_pos - y_neg) / delta / 2 + + return gradient_flat.reshape(tensor_to_check.get_dims()) + + +def get_backward_op(scope, op, no_grad_set): + backward_op = core.Operator.backward(op, no_grad_set) + for input in backward_op.input_vars(): + var = scope.new_var(input) + var.get_tensor() + for output in backward_op.output_vars(): + var = scope.new_var(output) + var.get_tensor() + return backward_op + + +def get_gradient(scope, op, inputs, outputs, grad_name, place, + no_grad_set=None): + ctx = core.DeviceContext.create(place) + + set_input(scope, op, inputs, place) + + op.infer_shape(scope) + op.run(scope, ctx) + + if no_grad_set is None: + no_grad_set = set() + + backward_op = get_backward_op(scope, op, no_grad_set) + set_output_grad(scope, op, outputs, place) + + backward_op.infer_shape(scope) + backward_op.run(scope, ctx) + + out = np.array(scope.find_var(grad_name).get_tensor()) + return out + + +class OpTest(unittest.TestCase): + def check_output_with_place(self, place): + self.scope = core.Scope() + op_inputs = self.inputs if hasattr(self, "inputs") else dict() + op_attrs = self.attrs if hasattr(self, "attrs") else dict() + self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs, + op_attrs) + if isinstance(place, core.GPUPlace) and not self.op.support_gpu(): + return + set_input(self.scope, self.op, self.inputs, place) + self.op.infer_shape(self.scope) + ctx = core.DeviceContext.create(place) + self.op.run(self.scope, ctx) + + for out_name, out_dup in Operator.get_op_outputs(self.op.type()): + if out_dup: + sub_out = self.outputs[out_name] + for sub_out_name in sub_out: + actual = np.array( + self.scope.find_var(sub_out_name).get_tensor()) + expect = sub_out[sub_out_name] + self.assertTrue( + np.allclose( + actual, expect, atol=1e-05), + "output name: " + out_name + "has diff") + else: + actual = np.array(self.scope.find_var(out_name).get_tensor()) + expect = self.outputs[out_name] + self.assertTrue( + np.allclose( + actual, expect, atol=1e-05), + "output name: " + out_name + "has diff") + + def check_output(self): + places = [core.CPUPlace()] + if core.is_compile_gpu(): + places.append(core.GPUPlace(0)) + for place in places: + self.check_output_with_place(place) + + def __assert_is_close(self, numeric_grads, analytic_grads, names, + max_relative_error, msg_prefix): + + for a, b, name in itertools.izip(numeric_grads, analytic_grads, names): + abs_a = np.abs(a) + abs_a[abs_a < 1e-3] = 1 + + diff_mat = np.abs(a - b) / abs_a + max_diff = np.max(diff_mat) + + def err_msg(): + offset = np.argmax(diff_mat > max_relative_error) + return "%s Variable %s max gradient diff %f over limit %f, the first " \ + "error element is %d" % ( + msg_prefix, name, max_diff, max_relative_error, offset) + + self.assertLessEqual(max_diff, max_relative_error, err_msg()) + + def check_grad(self, + inputs_to_check, + output_name, + no_grad_set=None, + in_place=False, + max_relative_error=0.005): + self.scope = core.Scope() + op_inputs = self.inputs if hasattr(self, "inputs") else dict() + op_attrs = self.attrs if hasattr(self, "attrs") else dict() + self.op = create_op(self.scope, self.op_type, op_inputs, self.outputs, + op_attrs) + if no_grad_set is None: + no_grad_set = set() + + numeric_grads = [ + get_numeric_gradient( + self.scope, + self.op, + self.inputs, + input_to_check, + output_name, + in_place=in_place) for input_to_check in inputs_to_check + ] + grad_names = [ + grad_var_name(input_to_check) for input_to_check in inputs_to_check + ] + + cpu_place = core.CPUPlace() + cpu_analytic_grads = [ + get_gradient(self.scope, self.op, self.inputs, self.outputs, + grad_name, cpu_place, no_grad_set) + for grad_name in grad_names + ] + + self.__assert_is_close(numeric_grads, cpu_analytic_grads, grad_names, + max_relative_error, + "Gradient Check On %s" % str(cpu_place)) + + if core.is_compile_gpu() and self.op.support_gpu(): + gpu_place = core.GPUPlace(0) + gpu_analytic_grads = [ + get_gradient(self.scope, self.op, self.inputs, self.outputs, + grad_name, gpu_place, no_grad_set) + for grad_name in grad_names + ] + + self.__assert_is_close(numeric_grads, gpu_analytic_grads, + grad_names, max_relative_error, + "Gradient Check On %s" % str(gpu_place)) + + for c_grad, g_grad, name in itertools.izip( + cpu_analytic_grads, gpu_analytic_grads, grad_names): + self.assertTrue( + np.allclose( + c_grad, g_grad, atol=1e-4), + "output name: " + name + " has diff") diff --git a/python/paddle/v2/framework/tests/op_test_util.py b/python/paddle/v2/framework/tests/op_test_util.py deleted file mode 100644 index 370f27eaf658dadbf7e82262c118140a10d15c41..0000000000000000000000000000000000000000 --- a/python/paddle/v2/framework/tests/op_test_util.py +++ /dev/null @@ -1,72 +0,0 @@ -import numpy -import paddle.v2.framework.core as core -from paddle.v2.framework.op import Operator - - -class OpTestMeta(type): - """ - Operator Test ClassMeta. - - It injects `test_all` method into user's OperatorTest class, to make Python - unittest module run that method. - - The `test_all` read what value is stored in `self`. It use self's values to - create and run a operator, and check whether that op is OK or not. - - See `test_add_two_op` for example usage. - """ - - def __new__(cls, name, bases, attrs): - obj = super(OpTestMeta, cls).__new__(cls, name, bases, attrs) - - def test_all(self): - scope = core.Scope() - kwargs = dict() - places = [core.CPUPlace()] - if core.is_compile_gpu(): - places.append(core.GPUPlace(0)) - - for place in places: - for in_name in Operator.get_op_input_names(self.type): - if hasattr(self, "inputs") and in_name in self.inputs: - kwargs[in_name] = in_name - var = scope.new_var(in_name).get_tensor() - arr = self.inputs[in_name] - var.set_dims(arr.shape) - var.set(arr, place) - else: - kwargs[in_name] = "@EMPTY@" - - for out_name in Operator.get_op_output_names(self.type): - if not hasattr(self, "outputs"): - raise ValueError( - "The test op must set self.outputs dict.") - if out_name not in self.outputs: - raise ValueError("The %s is not in self.outputs dict." % - (out_name)) - kwargs[out_name] = out_name - scope.new_var(out_name).get_tensor() - - for attr_name in Operator.get_op_attr_names(self.type): - if hasattr(self, "attrs") and attr_name in self.attrs: - kwargs[attr_name] = self.attrs[attr_name] - - op = Operator(self.type, **kwargs) - if isinstance(place, core.GPUPlace) and not op.support_gpu(): - return - - op.infer_shape(scope) - - ctx = core.DeviceContext.create(place) - op.run(scope, ctx) - - for out_name in Operator.get_op_output_names(self.type): - actual = numpy.array(scope.find_var(out_name).get_tensor()) - expect = self.outputs[out_name] - self.assertTrue( - numpy.allclose( - actual, expect, atol=1e-05), - "output name: " + out_name + " has diff") - - obj.test_all = test_all - return obj diff --git a/python/paddle/v2/framework/tests/test_add_two_op.py b/python/paddle/v2/framework/tests/test_add_two_op.py index a578e74eca9a3c4327a4881f853028e2347c98ad..3ca34d9b9fc2b7b54cc25ca0e0d1a08a71e37c52 100644 --- a/python/paddle/v2/framework/tests/test_add_two_op.py +++ b/python/paddle/v2/framework/tests/test_add_two_op.py @@ -1,23 +1,20 @@ import unittest +import numpy as np +from op_test import OpTest -import numpy -import paddle.v2.framework.core as core -from paddle.v2.framework.op import Operator - -from op_test_util import OpTestMeta - - -class TestAddOp(unittest.TestCase): - __metaclass__ = OpTestMeta +class TestAddOp(OpTest): def setUp(self): - self.type = "add" + self.op_type = "add" self.inputs = { - 'X': numpy.random.random((102, 105)).astype("float32"), - 'Y': numpy.random.random((102, 105)).astype("float32") + 'X': np.random.random((102, 105)).astype("float32"), + 'Y': np.random.random((102, 105)).astype("float32") } self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']} + def test_check_output(self): + self.check_output() + -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_concat_op.py b/python/paddle/v2/framework/tests/test_concat_op.py new file mode 100644 index 0000000000000000000000000000000000000000..656563f96e52df30951ec0ec7042ad9c530e90b2 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_concat_op.py @@ -0,0 +1,22 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestConcatOp(OpTest): + def setUp(self): + self.op_type = "concat" + x0 = np.random.random((2, 3, 2, 5)).astype('float32') + x1 = np.random.random((2, 3, 3, 5)).astype('float32') + x2 = np.random.random((2, 3, 4, 5)).astype('float32') + axis = 2 + self.inputs = {'X': [('x0', x0), ('x1', x1), ('x2', x2)]} + self.attrs = {'axis': axis} + self.outputs = {'Out': np.concatenate((x0, x1, x2), axis=axis)} + + def test_check_output(self): + self.check_output() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_cos_sim_op.py b/python/paddle/v2/framework/tests/test_cos_sim_op.py index 32013a7999a4be42e5974b9ac751d5d911730994..797cbd8cc5cf7f73d58ca713d02667731d5c8a0e 100644 --- a/python/paddle/v2/framework/tests/test_cos_sim_op.py +++ b/python/paddle/v2/framework/tests/test_cos_sim_op.py @@ -1,17 +1,14 @@ import unittest import numpy as np -from gradient_checker import GradientChecker, create_op -from op_test_util import OpTestMeta +from op_test import OpTest -class TestCosSimOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestCosSimOp(OpTest): def setUp(self): - self.type = "cos_sim" + self.op_type = "cos_sim" self.inputs = { - 'X': np.random.random((32, 64)).astype("float32"), - 'Y': np.random.random((32, 64)).astype("float32") + 'X': np.random.random((10, 5)).astype("float32"), + 'Y': np.random.random((10, 5)).astype("float32") } expect_x_norm = np.linalg.norm(self.inputs['X'], axis=1) expect_y_norm = np.linalg.norm(self.inputs['Y'], axis=1) @@ -23,38 +20,20 @@ class TestCosSimOp(unittest.TestCase): 'Out': np.expand_dims(expect_out, 1) } + def test_check_output(self): + self.check_output() -class TestCosSimGradOp(GradientChecker): - def setUp(self): - self.op = create_op("cos_sim") - self.inputs = { - 'X': np.random.random((10, 5)).astype("float32"), - 'Y': np.random.random((10, 5)).astype("float32") - } - - def test_cpu_gpu_compare(self): - self.compare_grad(self.op, self.inputs) - - def test_normal(self): - self.check_grad( - self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.05) + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05) - def test_ignore_x(self): + def test_check_grad_ingore_x(self): self.check_grad( - self.op, - self.inputs, ["Y"], - "Out", - max_relative_error=0.05, - no_grad_set={"X"}) + ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set('X')) - def test_ignore_y(self): + def test_check_grad_ignore_y(self): self.check_grad( - self.op, - self.inputs, ["X"], - "Out", - max_relative_error=0.05, - no_grad_set={"Y"}) + ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y')) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_cross_entropy_op.py b/python/paddle/v2/framework/tests/test_cross_entropy_op.py index d4277f2a42ce2e66e37405ccd3b2ee444d403d1a..c2fc102a8b8de82da5c3fc5fee273790325908f8 100644 --- a/python/paddle/v2/framework/tests/test_cross_entropy_op.py +++ b/python/paddle/v2/framework/tests/test_cross_entropy_op.py @@ -1,36 +1,27 @@ import unittest import numpy -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op +from op_test import OpTest -class TestCrossEntropy(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestCrossEntropy(OpTest): def setUp(self): - self.type = "onehot_cross_entropy" + self.op_type = "onehot_cross_entropy" batch_size = 30 class_num = 10 - X = numpy.random.random((batch_size, class_num)).astype("float32") - label = 5 * numpy.ones(batch_size).astype("int32") + X = numpy.random.uniform(0.1, 1.0, + [batch_size, class_num]).astype("float32") + label = (class_num / 2) * numpy.ones(batch_size).astype("int32") self.inputs = {'X': X, 'label': label} Y = [] for i in range(0, batch_size): Y.append(-numpy.log(X[i][label[i]])) self.outputs = {'Y': numpy.array(Y).astype("float32")} + def test_check_output(self): + self.check_output() -class CrossEntropyGradOpTest(GradientChecker): def test_check_grad(self): - op = create_op("onehot_cross_entropy") - batch_size = 30 - class_num = 10 - inputs = { - "X": numpy.random.uniform( - 0.1, 1.0, [batch_size, class_num]).astype("float32"), - "label": (class_num / 2) * numpy.ones(batch_size).astype("int32") - } - self.check_grad(op, inputs, set("X"), "Y") + self.check_grad(['X'], 'Y') if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_elementwise_mul_op.py b/python/paddle/v2/framework/tests/test_elementwise_mul_op.py new file mode 100644 index 0000000000000000000000000000000000000000..e268cfddb26721a35ddd2d2cc18f526ff7b2f6d9 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_elementwise_mul_op.py @@ -0,0 +1,157 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestElementwiseMulOp_Matrix(OpTest): + def setUp(self): + self.op_type = "elementwise_mul" + """ Warning + CPU gradient check error! + 'X': np.random.random((32,84)).astype("float32"), + 'Y': np.random.random((32,84)).astype("float32") + """ + self.inputs = { + 'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"), + 'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32") + } + self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y')) + + +class TestElementwiseMulOp_Vector(OpTest): + def setUp(self): + self.op_type = "elementwise_mul" + self.inputs = { + 'X': np.random.random((32, )).astype("float32"), + 'Y': np.random.random((32, )).astype("float32") + } + self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y')) + + +class TestElementwiseMulOp_broadcast_0(OpTest): + def setUp(self): + self.op_type = "elementwise_mul" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(2).astype(np.float32) + } + + self.attrs = {'axis': 0} + self.outputs = { + 'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1) + } + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y')) + + +class TestElementwiseMulOp_broadcast_1(OpTest): + def setUp(self): + self.op_type = "elementwise_mul" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(3).astype(np.float32) + } + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1) + } + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y')) + + +class TestElementwiseMulOp_broadcast_2(OpTest): + def setUp(self): + self.op_type = "elementwise_mul" + self.inputs = { + 'X': np.random.rand(2, 3, 4).astype(np.float32), + 'Y': np.random.rand(4).astype(np.float32) + } + + self.outputs = { + 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4) + } + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y')) + + +class TestElementwiseMulOp_broadcast_3(OpTest): + def setUp(self): + self.op_type = "elementwise_mul" + self.inputs = { + 'X': np.random.rand(2, 3, 4, 5).astype(np.float32), + 'Y': np.random.rand(3, 4).astype(np.float32) + } + + self.attrs = {'axis': 1} + self.outputs = { + 'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1) + } + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_fill_zeros_like_op.py b/python/paddle/v2/framework/tests/test_fill_zeros_like_op.py index e5c862605fb11a5ea1426cf8f9054589dc377ff1..2473daaba24438819f3f55ccc40fe1c64ee59960 100644 --- a/python/paddle/v2/framework/tests/test_fill_zeros_like_op.py +++ b/python/paddle/v2/framework/tests/test_fill_zeros_like_op.py @@ -1,16 +1,17 @@ import unittest -from op_test_util import OpTestMeta -import numpy +import numpy as np +from op_test import OpTest -class TestFillZerosLikeOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestFillZerosLikeOp(OpTest): def setUp(self): - self.type = "fill_zeros_like" - self.inputs = {'Src': numpy.random.random((219, 232)).astype("float32")} - self.outputs = {'Dst': numpy.zeros_like(self.inputs['Src'])} + self.op_type = "fill_zeros_like" + self.inputs = {'Src': np.random.random((219, 232)).astype("float32")} + self.outputs = {'Dst': np.zeros_like(self.inputs["Src"])} + + def test_check_output(self): + self.check_output() -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_gather_op.py b/python/paddle/v2/framework/tests/test_gather_op.py index e3de3fd0a1dddb3edb0de5987bd71d8a176d97ef..b0ab429ef1b53640dfb696f6ea2f7b745564b874 100644 --- a/python/paddle/v2/framework/tests/test_gather_op.py +++ b/python/paddle/v2/framework/tests/test_gather_op.py @@ -1,30 +1,20 @@ import unittest -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op -import numpy -import paddle.v2.framework.core as core -from paddle.v2.framework.op import Operator +import numpy as np +from op_test import OpTest -class TestGatherOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestGatherOp(OpTest): def setUp(self): - self.type = "gather" - xnp = numpy.random.random((10, 20)).astype("float32") - self.inputs = { - 'X': xnp, - 'Index': numpy.array([1, 3, 5]).astype("int32") - } - self.outputs = {'Out': self.inputs['X'][self.inputs['Index']]} + self.op_type = "gather" + xnp = np.random.random((10, 20)).astype("float32") + self.inputs = {'X': xnp, 'Index': np.array([1, 3, 5]).astype("int32")} + self.outputs = {'Out': self.inputs["X"][self.inputs["Index"]]} + def test_check_output(self): + self.check_output() -class TestGatherGradOp(GradientChecker): - def test_gather_grad(self): - op = create_op("gather") - xnp = numpy.random.random((10, 20)).astype("float32") - inputs = {'X': xnp, 'Index': numpy.array([1, 3, 5]).astype("int32")} - self.check_grad(op, inputs, set("X"), "Out") + def test_check_grad(self): + self.check_grad(['X'], 'Out') if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_gaussian_random_op.py b/python/paddle/v2/framework/tests/test_gaussian_random_op.py index f95ed70b58d611b3233a21d3f2a34c864ae4d1b3..1f9e4db783c9907a22db72c8a6ff06c7ca0735da 100644 --- a/python/paddle/v2/framework/tests/test_gaussian_random_op.py +++ b/python/paddle/v2/framework/tests/test_gaussian_random_op.py @@ -14,11 +14,11 @@ class GaussianRandomTest(unittest.TestCase): def gaussian_random_test(self, place): scope = core.Scope() - scope.new_var("Out").get_tensor() + scope.new_var('Out').get_tensor() op = Operator( "gaussian_random", - Out="Out", + Out='Out', dims=[1000, 784], mean=.0, std=1., @@ -27,10 +27,10 @@ class GaussianRandomTest(unittest.TestCase): op.infer_shape(scope) context = core.DeviceContext.create(place) op.run(scope, context) - tensor = numpy.array(scope.find_var("Out").get_tensor()) + tensor = numpy.array(scope.find_var('Out').get_tensor()) self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1) self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_gradient_checker.py b/python/paddle/v2/framework/tests/test_gradient_checker.py index e8a7f848dffa0529c8cb0d6599286ce0e228d180..abeb01cb34158a43b5dcce5e39efc0e21e9fe638 100644 --- a/python/paddle/v2/framework/tests/test_gradient_checker.py +++ b/python/paddle/v2/framework/tests/test_gradient_checker.py @@ -1,42 +1,44 @@ import unittest -import numpy -from paddle.v2.framework.op import Operator -from gradient_checker import GradientChecker -from gradient_checker import get_numeric_gradient +import numpy as np +import paddle.v2.framework.core as core +from op_test import get_numeric_gradient +from op_test import create_op class GetNumericGradientTest(unittest.TestCase): def test_add_op(self): - add_op = Operator("add", X="X", Y="Y", Out="Z") - x = numpy.random.random((10, 1)).astype("float32") - y = numpy.random.random((10, 1)).astype("float32") - - arr = get_numeric_gradient(add_op, {"X": x, "Y": y}, "Z", "X") + x = np.random.random((10, 1)).astype("float32") + y = np.random.random((10, 1)).astype("float32") + z = x + y + scope = core.Scope() + add_op = create_op(scope, "add", {'X': x, 'Y': y}, {'Out': z}, dict()) + arr = get_numeric_gradient(scope, add_op, {'X': x, 'Y': y}, 'X', 'Out') self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4) def test_softmax_op(self): def stable_softmax(x): """Compute the softmax of vector x in a numerically stable way.""" - shiftx = x - numpy.max(x) - exps = numpy.exp(shiftx) - return exps / numpy.sum(exps) + shiftx = x - np.max(x) + exps = np.exp(shiftx) + return exps / np.sum(exps) def label_softmax_grad(Y, dY): dX = Y * 0.0 for i in range(Y.shape[0]): - d = numpy.dot(Y[i, :], dY[i, :]) + d = np.dot(Y[i, :], dY[i, :]) dX[i, :] = Y[i, :] * (dY[i, :] - d) return dX - softmax_op = Operator("softmax", X="X", Y="Y") - - X = numpy.random.random((2, 2)).astype("float32") - Y = numpy.apply_along_axis(stable_softmax, 1, X) - dY = numpy.ones(Y.shape) + X = np.random.random((2, 2)).astype("float32") + Y = np.apply_along_axis(stable_softmax, 1, X) + dY = np.ones(Y.shape) dX = label_softmax_grad(Y, dY) - arr = get_numeric_gradient(softmax_op, {"X": X}, "Y", "X") - numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2) + scope = core.Scope() + softmax_op = create_op(scope, "softmax", {"X": X}, {"Y": Y}, dict()) + + arr = get_numeric_gradient(scope, softmax_op, {"X": X}, "X", "Y") + np.testing.assert_almost_equal(arr, dX, decimal=1e-2) if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_lookup_table.py b/python/paddle/v2/framework/tests/test_lookup_table.py index 19eb464baa555fb67a994f3cfb4d3ed628367c73..b259bb67e832adcb31b0ab4e992738be2b85f884 100644 --- a/python/paddle/v2/framework/tests/test_lookup_table.py +++ b/python/paddle/v2/framework/tests/test_lookup_table.py @@ -1,31 +1,22 @@ import unittest import numpy as np -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op +from op_test import OpTest -class TestSigmoidOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestLookupTableOp(OpTest): def setUp(self): - self.type = 'lookup_table' - table = np.random.random((17, 31)).astype('float32') - ids = np.random.randint(0, 17, 4).astype('int32') + self.op_type = "lookup_table" + table = np.random.random((17, 31)).astype("float32") + ids = np.random.randint(0, 17, 4).astype("int32") self.inputs = {'W': table, 'Ids': ids} self.outputs = {'Out': table[ids]} + def test_check_output(self): + self.check_output() -class TestSigmoidGradOp(GradientChecker): - def test_grad(self): - op = create_op('lookup_table') - table = np.random.random((17, 31)).astype('float32') - ids = np.random.randint(0, 17, 4).astype('int32') - inputs = {'W': table, 'Ids': ids} - # comapre gradients - self.compare_grad(op, inputs, set(['Ids'])) - # check gradients - self.check_grad(op, inputs, set('W'), 'Out') + def test_check_grad(self): + self.check_grad(['W'], 'Out', no_grad_set=set('Ids')) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_mean_op.py b/python/paddle/v2/framework/tests/test_mean_op.py index f32b3160d651a290823223c46c45bb3b6950a505..7823abd8f813aad6462c98a9ace9a13dc286a157 100644 --- a/python/paddle/v2/framework/tests/test_mean_op.py +++ b/python/paddle/v2/framework/tests/test_mean_op.py @@ -1,24 +1,20 @@ import unittest -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op import numpy as np +from op_test import OpTest -class TestMeanOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestMeanOp(OpTest): def setUp(self): - self.type = "mean" - self.inputs = {'X': np.random.random((32, 784)).astype("float32")} - self.outputs = {'Out': np.mean(self.inputs['X'])} + self.op_type = "mean" + self.inputs = {'X': np.random.random((10, 10)).astype("float32")} + self.outputs = {'Out': np.mean(self.inputs["X"])} + def test_check_output(self): + self.check_output() -class MeanGradOpTest(GradientChecker): - def test_normal(self): - op = create_op("mean") - inputs = {"X": np.random.random((10, 10)).astype("float32")} - self.check_grad(op, inputs, set("X"), "Out") + def test_checkout_grad(self): + self.check_grad(['X'], 'Out') -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_minus_op.py b/python/paddle/v2/framework/tests/test_minus_op.py index 5abdd4a69bf3faa2f3341f338e195815389a7cef..dea797a1fea34265d0a32e097f413f421abf2521 100644 --- a/python/paddle/v2/framework/tests/test_minus_op.py +++ b/python/paddle/v2/framework/tests/test_minus_op.py @@ -1,30 +1,23 @@ import unittest import numpy as np -from gradient_checker import GradientChecker, create_op -from op_test_util import OpTestMeta +from op_test import OpTest -class MinusOpTest(unittest.TestCase): - __metaclass__ = OpTestMeta - +class MinusOpTest(OpTest): def setUp(self): - self.type = "minus" + self.op_type = "minus" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((32, 84)).astype("float32") } self.outputs = {'Out': (self.inputs['X'] - self.inputs['Y'])} + def test_check_output(self): + self.check_output() -class MinusGradTest(GradientChecker): - def test_left(self): - op = create_op("minus") - inputs = { - "X": np.random.random((10, 10)).astype("float32"), - "Y": np.random.random((10, 10)).astype("float32") - } - self.check_grad(op, inputs, ["X", 'Y'], "Out") + def test_check_grad(self): + self.check_grad(['X', 'Y'], 'Out') -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/mnist.py b/python/paddle/v2/framework/tests/test_mnist.py similarity index 100% rename from python/paddle/v2/framework/tests/mnist.py rename to python/paddle/v2/framework/tests/test_mnist.py diff --git a/python/paddle/v2/framework/tests/test_modified_huber_loss_op.py b/python/paddle/v2/framework/tests/test_modified_huber_loss_op.py index 2b76c53b6e23f7d4db55f40ba2c97a352125eaa5..64ac363ce0d91c296ce7b27e653f0b50b3a3bd58 100644 --- a/python/paddle/v2/framework/tests/test_modified_huber_loss_op.py +++ b/python/paddle/v2/framework/tests/test_modified_huber_loss_op.py @@ -7,7 +7,7 @@ import numpy as np def modified_huber_loss_forward(val): if val < -1: - return -4 * a + return -4 * val elif val < 1: return (1 - val) * (1 - val) else: @@ -28,7 +28,7 @@ class TestModifiedHuberLossOp_f0(unittest.TestCase): loss = np.vectorize(modified_huber_loss_forward)(product_res) self.outputs = { - 'intermediate_val': product_res, + 'IntermediateVal': product_res, 'Out': loss.reshape((samples_num, 1)) } @@ -44,10 +44,9 @@ class TestModifiedHuberLossGradOp(GradientChecker): "modified_huber_loss", X='X', Y='Y', - intermediate_val='intermediate_val', + IntermediateVal='IntermediateVal', Out='Out') - self.compare_grad( - op, inputs, no_grad_set=set(['intermediate_val', 'Y'])) + self.compare_grad(op, inputs, no_grad_set=set(['IntermediateVal', 'Y'])) self.check_grad(op, inputs, set(["X"]), "Out") diff --git a/python/paddle/v2/framework/tests/test_mul_op.py b/python/paddle/v2/framework/tests/test_mul_op.py index b58e4266d1588a4b6151f5f896537ded6ddd3896..b3d95a56b88e510734da54f36ff21ccd7e1baabb 100644 --- a/python/paddle/v2/framework/tests/test_mul_op.py +++ b/python/paddle/v2/framework/tests/test_mul_op.py @@ -1,55 +1,59 @@ import unittest import numpy as np -from gradient_checker import GradientChecker, create_op -from op_test_util import OpTestMeta +from op_test import OpTest -class TestMulOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestMulOp(OpTest): def setUp(self): - self.type = "mul" + self.op_type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) + -class TestMulGradOp(GradientChecker): +class TestMulOp2(OpTest): def setUp(self): - self.op = create_op("mul") + self.op_type = "mul" self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'Y': np.random.random((84, 100)).astype("float32") + 'X': np.random.random((15, 4, 12, 10)).astype("float32"), + 'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32") + } + self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2} + self.outputs = { + 'Out': np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10), + self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9)) } - def test_cpu_gpu_compare(self): - self.compare_grad(self.op, self.inputs) + def test_check_output(self): + self.check_output() - def test_normal(self): - # mul op will enlarge the relative error - self.check_grad( - self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5) + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) - def test_ignore_x(self): + def test_check_grad_ingore_x(self): self.check_grad( - self.op, - self.inputs, ["Y"], - "Out", - max_relative_error=0.5, - no_grad_set={"X"}) + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set('X')) - def test_ignore_y(self): + def test_check_grad_ignore_y(self): self.check_grad( - self.op, - self.inputs, ["X"], - "Out", - max_relative_error=0.5, - no_grad_set={"Y"}) - + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) -# TODO(dzh,qijun) : mulgrad test case need transpose feature of blas library -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_net.py b/python/paddle/v2/framework/tests/test_net.py index e4b7cd480cb36249bb64ba3cab9a4b220d812346..50cfb855f2b01d8fd32342855d46716da7e07856 100644 --- a/python/paddle/v2/framework/tests/test_net.py +++ b/python/paddle/v2/framework/tests/test_net.py @@ -35,5 +35,5 @@ Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]} self.assertEqual(expected, "\n" + str(net)) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_reshape_op.py b/python/paddle/v2/framework/tests/test_reshape_op.py new file mode 100644 index 0000000000000000000000000000000000000000..16bb6bb2af67f7d32a2fafc1cb37412084ec0829 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_reshape_op.py @@ -0,0 +1,21 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestReshapeOp(OpTest): + def setUp(self): + self.op_type = "reshape" + self.inputs = {'X': np.random.random((10, 20)).astype("float32")} + self.attrs = {'shape': [10 * 20]} + self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_rowwise_add_op.py b/python/paddle/v2/framework/tests/test_rowwise_add_op.py index 2ddb85e2e7a98a08bd1d6e24e6f812f6021142e8..336645bd993ff743cbe20bb5cae5cd278db57ce7 100644 --- a/python/paddle/v2/framework/tests/test_rowwise_add_op.py +++ b/python/paddle/v2/framework/tests/test_rowwise_add_op.py @@ -1,38 +1,51 @@ import unittest import numpy as np -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op +from op_test import OpTest -class TestRowwiseAddOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestRowwiseAddOp(OpTest): def setUp(self): - self.type = "rowwise_add" + self.op_type = "rowwise_add" self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'b': np.random.random(84).astype("float32") + 'X': np.random.uniform(0.1, 1, [5, 10]).astype("float32"), + 'b': np.random.uniform(0.1, 1, [10]).astype("float32") } self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])} + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'b'], 'Out') + + def test_check_grad_ingore_b(self): + self.check_grad(['X'], 'Out', no_grad_set=set('b')) + + def test_check_grad_ingore_x(self): + self.check_grad(['b'], 'Out', no_grad_set=set('X')) -class TestRowwiseAddGradOp(GradientChecker): + +class TestRowwiseAddOp2(OpTest): def setUp(self): - self.op = create_op("rowwise_add") + self.op_type = "rowwise_add" self.inputs = { - "X": np.random.uniform(0.1, 1, [5, 10]).astype("float32"), - "b": np.random.uniform(0.1, 1, [10]).astype("float32") + 'X': np.random.uniform(0.1, 1, [2, 3, 2, 5]).astype("float32"), + 'b': np.random.uniform(0.1, 1, [2, 5]).astype("float32") } + self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])} + + def test_check_output(self): + self.check_output() - def test_normal(self): - self.check_grad(self.op, self.inputs, ["X", "b"], "Out") + def test_check_grad_normal(self): + self.check_grad(['X', 'b'], 'Out') - def test_ignore_b(self): - self.check_grad(self.op, self.inputs, ["X"], "Out", no_grad_set={"b"}) + def test_check_grad_ignore_b(self): + self.check_grad(['X'], 'Out', no_grad_set=set('b')) - def test_ignore_x(self): - self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"}) + def test_check_grad_ignore_x(self): + self.check_grad(['b'], 'Out', no_grad_set=set('X')) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_scale_and_identity_op.py b/python/paddle/v2/framework/tests/test_scale_and_identity_op.py index 69b301c376ee7a4ebb2e2dadc645c7d10f823a08..05d76d428299c8176d1a6adf6da15a203fa7502a 100644 --- a/python/paddle/v2/framework/tests/test_scale_and_identity_op.py +++ b/python/paddle/v2/framework/tests/test_scale_and_identity_op.py @@ -1,43 +1,34 @@ import unittest -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op import numpy as np -from paddle.v2.framework.op import Operator +from op_test import OpTest -class IdentityTest(unittest.TestCase): - __metaclass__ = OpTestMeta - +class IdentityTest(OpTest): def setUp(self): - self.type = "identity" - self.inputs = {'X': np.random.random((32, 784)).astype("float32")} + self.op_type = "identity" + self.inputs = {'X': np.random.random((10, 10)).astype("float32")} self.outputs = {'Out': self.inputs['X']} + def test_check_output(self): + self.check_output() -class IdentityGradOpTest(GradientChecker): - def test_normal(self): - op = create_op("identity") - inputs = {"X": np.random.random((10, 10)).astype("float32")} - self.check_grad(op, inputs, set("X"), "Out") - + def test_check_grad(self): + self.check_grad(['X'], 'Out') -class ScaleTest(unittest.TestCase): - __metaclass__ = OpTestMeta +class ScaleTest(OpTest): def setUp(self): - self.type = "scale" - self.inputs = {'X': np.random.random((32, 784)).astype("float32")} + self.op_type = "scale" + self.inputs = {'X': np.random.random((10, 10)).astype("float32")} self.attrs = {'scale': -2.3} self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']} + def test_check_output(self): + self.check_output() -class ScaleGradTest(GradientChecker): - def test_normal(self): - op = Operator("scale", X="X", Out="Out", scale=3.2) - self.check_grad(op, - {"X": np.random.random((10, 10)).astype("float32")}, - set("X"), "Out") + def test_check_grad(self): + self.check_grad(['X'], 'Out') -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_scatter_op.py b/python/paddle/v2/framework/tests/test_scatter_op.py index c1f9444889372104e39ded78fc7207a59b80a293..33c73c52631a09ea0fefdeb9467991ae9c04321c 100644 --- a/python/paddle/v2/framework/tests/test_scatter_op.py +++ b/python/paddle/v2/framework/tests/test_scatter_op.py @@ -1,37 +1,24 @@ import unittest -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op -import numpy -import paddle.v2.framework.core as core -from paddle.v2.framework.op import Operator +import numpy as np +from op_test import OpTest -class TestScatterOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestScatterOp(OpTest): def setUp(self): - self.type = "scatter" - ref_np = numpy.ones((3, 3)).astype("float32") - index_np = numpy.array([1, 2]).astype("int32") - updates_np = numpy.random.random((2, 3)).astype("float32") - output_np = numpy.copy(ref_np) + self.op_type = "scatter" + ref_np = np.ones((3, 3)).astype("float32") + index_np = np.array([1, 2]).astype("int32") + updates_np = np.random.random((2, 3)).astype("float32") + output_np = np.copy(ref_np) output_np[index_np] += updates_np self.inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np} self.outputs = {'Out': output_np} + def test_check_output(self): + self.check_output() -class TestScatterGradOp(GradientChecker): - def test_scatter_grad(self): - op = create_op("scatter") - # test data setup - ref_np = numpy.ones((3, 10)).astype("float32") - index_np = numpy.array([1, 2]).astype("int32") - updates_np = numpy.random.random((2, 10)).astype("float32") - output_np = numpy.copy(ref_np) - output_np[index_np] += updates_np - inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np} - self.check_grad( - op, inputs, set(["Updates", "Ref"]), "Out", in_place=True) + def test_check_grad(self): + self.check_grad(['Updates', 'Ref'], 'Out', in_place=True) if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_sgd_op.py b/python/paddle/v2/framework/tests/test_sgd_op.py index e5f9ef865e84f1a78e28884ad7e2e758f9ca8054..557cf15ace63e336462c7dcdbbc10f30aeedc6f4 100644 --- a/python/paddle/v2/framework/tests/test_sgd_op.py +++ b/python/paddle/v2/framework/tests/test_sgd_op.py @@ -1,21 +1,22 @@ import unittest -import numpy -from op_test_util import OpTestMeta +import numpy as np +from op_test import OpTest -class TestSGD(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestSGD(OpTest): def setUp(self): - self.type = "sgd" - w = numpy.random.random((102, 105)).astype("float32") - g = numpy.random.random((102, 105)).astype("float32") + self.op_type = "sgd" + w = np.random.random((102, 105)).astype("float32") + g = np.random.random((102, 105)).astype("float32") lr = 0.1 self.inputs = {'param': w, 'grad': g} self.attrs = {'learning_rate': lr} self.outputs = {'param_out': w - lr * g} + def test_check_output(self): + self.check_output() + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_sigmoid_op.py b/python/paddle/v2/framework/tests/test_sigmoid_op.py index 273c2e5ab1a84d12621fe9568c4cf22073b6aed4..2316e49eff7bb1cdb53acb3889a6ef05060b59f3 100644 --- a/python/paddle/v2/framework/tests/test_sigmoid_op.py +++ b/python/paddle/v2/framework/tests/test_sigmoid_op.py @@ -1,27 +1,21 @@ import unittest import numpy as np -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op +from op_test import OpTest -class TestSigmoidOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestSigmoid(OpTest): def setUp(self): - self.type = "sigmoid" - self.inputs = {'X': np.random.random((15, 31)).astype("float32")} + self.op_type = "sigmoid" + self.inputs = { + 'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32") + } self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))} + def test_check_output(self): + self.check_output() -class TestSigmoidGradOp(GradientChecker): - def test_grad(self): - op = create_op("sigmoid") - inputs = {"X": np.random.uniform(0.1, 1, [11, 17]).astype("float32")} - # compare gpu and cpu results for backward op. - # this test will be skiped if only compiling CPU version. - self.compare_grad(op, inputs) - # check gradients - self.check_grad(op, inputs, set("X"), "Y", max_relative_error=0.007) + def test_check_grad(self): + self.check_grad(["X"], "Y", max_relative_error=0.007) if __name__ == '__main__': diff --git a/python/paddle/v2/framework/tests/test_softmax_op.py b/python/paddle/v2/framework/tests/test_softmax_op.py index 0d590fa7065bdd2df0e3f2aea5464f0524d70670..1b948f252fa631e9886840b377de2996e110dc91 100644 --- a/python/paddle/v2/framework/tests/test_softmax_op.py +++ b/python/paddle/v2/framework/tests/test_softmax_op.py @@ -1,9 +1,6 @@ import unittest - import numpy as np - -from gradient_checker import GradientChecker, create_op -from op_test_util import OpTestMeta +from op_test import OpTest def stable_softmax(x): @@ -13,26 +10,21 @@ def stable_softmax(x): return exps / np.sum(exps) -class TestSoftmaxOp(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestSoftmaxOp(OpTest): def setUp(self): - self.type = "softmax" - self.inputs = {"X": np.random.random((10, 10)).astype("float32")} + self.op_type = "softmax" + self.inputs = { + 'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32") + } self.outputs = { - "Y": np.apply_along_axis(stable_softmax, 1, self.inputs["X"]) + 'Y': np.apply_along_axis(stable_softmax, 1, self.inputs['X']) } + def test_check_output(self): + self.check_output() -class TestSoftmaxGradOp(GradientChecker): - def setUp(self): - self.op = create_op("softmax") - self.inputs = { - "X": np.random.uniform(0.1, 1, [10, 10]).astype("float32") - } - - def test_softmax_grad(self): - self.check_grad(self.op, self.inputs, ["X"], "Y") + def test_check_grad(self): + self.check_grad(['X'], 'Y') if __name__ == "__main__": diff --git a/python/paddle/v2/framework/tests/test_squared_l2_distance_op.py b/python/paddle/v2/framework/tests/test_squared_l2_distance_op.py index 2bcdf37df434c9a089d75438d876114156261a5c..dc6ebf5d30369231b4918a168bbdf25c7096c808 100644 --- a/python/paddle/v2/framework/tests/test_squared_l2_distance_op.py +++ b/python/paddle/v2/framework/tests/test_squared_l2_distance_op.py @@ -1,17 +1,14 @@ import unittest -from op_test_util import OpTestMeta -from gradient_checker import GradientChecker, create_op import numpy as np +from op_test import OpTest -class TestSquaredL2DistanceOp_f0(unittest.TestCase): - __metaclass__ = OpTestMeta - +class TestSquaredL2DistanceOp_f0(OpTest): def setUp(self): - self.type = 'squared_l2_distance' + self.op_type = "squared_l2_distance" self.inputs = { - 'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'), - 'Y': np.random.uniform(0.1, 1., (32, 64)).astype('float32') + 'X': np.random.uniform(0.1, 0.6, (2, 3)).astype("float32"), + 'Y': np.random.uniform(0.1, 0.6, (2, 3)).astype("float32") } sub_res = self.inputs['X'] - self.inputs['Y'] output = sub_res * sub_res @@ -20,15 +17,19 @@ class TestSquaredL2DistanceOp_f0(unittest.TestCase): 'Out': np.expand_dims(output.sum(1), 1) } + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X', 'Y'], 'Out') -class TestSquaredL2DistanceOp_f1(unittest.TestCase): - __metaclass__ = OpTestMeta +class TestSquaredL2DistanceOp_f1(OpTest): def setUp(self): - self.type = 'squared_l2_distance' + self.op_type = "squared_l2_distance" self.inputs = { - 'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'), - 'Y': np.random.uniform(0.1, 1., (1, 64)).astype('float32') + 'X': np.random.uniform(0.1, 0.6, (2, 3)).astype("float32"), + 'Y': np.random.uniform(0.1, 0.6, (1, 3)).astype("float32") } sub_res = self.inputs['X'] - self.inputs['Y'] output = sub_res * sub_res @@ -37,53 +38,34 @@ class TestSquaredL2DistanceOp_f1(unittest.TestCase): 'Out': np.expand_dims(output.sum(1), 1) } + def test_check_output(self): + self.check_output() -class TestSquaredL2DistanceOp_f2(unittest.TestCase): - __metaclass__ = OpTestMeta + def test_check_grad(self): + self.check_grad(['X', 'Y'], 'Out') + +class TestSquaredL2DistanceOp_f2(OpTest): def setUp(self): - self.type = 'squared_l2_distance' + self.op_type = "squared_l2_distance" self.inputs = { - 'X': np.random.uniform(0.1, 1., (32, 64, 128)).astype('float32'), - 'Y': np.random.uniform(0.1, 1., (1, 64, 128)).astype('float32') + 'X': np.random.uniform(0.1, 0.6, (2, 3, 4)).astype("float32"), + 'Y': np.random.uniform(0.1, 0.6, (1, 3, 4)).astype("float32") } sub_res = self.inputs['X'] - self.inputs['Y'] - sub_res = sub_res.reshape((32, 64 * 128)) + sub_res = sub_res.reshape((2, 3 * 4)) output = sub_res * sub_res self.outputs = { 'sub_result': sub_res, 'Out': np.expand_dims(output.sum(1), 1) } + def test_check_output(self): + self.check_output() -class TestSquaredL2DistanceGradOp(GradientChecker): - def test_squared_l2_distance_b0(self): - op = create_op("squared_l2_distance") - inputs = { - 'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'), - 'Y': np.random.uniform(0.1, .6, (2, 3)).astype('float32') - } - self.compare_grad(op, inputs) - self.check_grad(op, inputs, set(["X", "Y"]), "Out") - - def test_squared_l2_distance_b1(self): - op = create_op("squared_l2_distance") - inputs = { - 'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'), - 'Y': np.random.uniform(0.1, .6, (1, 3)).astype('float32') - } - self.compare_grad(op, inputs) - self.check_grad(op, inputs, set(["X", "Y"]), "Out") - - def test_squared_l2_distance_b2(self): - op = create_op("squared_l2_distance") - inputs = { - 'X': np.random.uniform(0.1, .6, (2, 3, 4)).astype('float32'), - 'Y': np.random.uniform(0.1, .6, (1, 3, 4)).astype('float32') - } - self.compare_grad(op, inputs) - self.check_grad(op, inputs, set(["X", "Y"]), "Out") + def test_check_grad(self): + self.check_grad(['X', 'Y'], 'Out') -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/framework/tests/test_sum_op.py b/python/paddle/v2/framework/tests/test_sum_op.py new file mode 100644 index 0000000000000000000000000000000000000000..60254291e2ab9215e2bc37c12d5e2e1ca6d33d5d --- /dev/null +++ b/python/paddle/v2/framework/tests/test_sum_op.py @@ -0,0 +1,24 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestSumOp(OpTest): + def setUp(self): + self.op_type = "sum" + x0 = np.random.random((3, 4)).astype('float32') + x1 = np.random.random((3, 4)).astype('float32') + x2 = np.random.random((3, 4)).astype('float32') + self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]} + y = x0 + x1 + x2 + self.outputs = {'Out': y} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['x0'], 'Out') + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_tensor.py b/python/paddle/v2/framework/tests/test_tensor.py index 1af39818a305215b45219b8c5f0a10630fd64279..f26ed4964c521be1cd839b39d7244f96c653cb1a 100644 --- a/python/paddle/v2/framework/tests/test_tensor.py +++ b/python/paddle/v2/framework/tests/test_tensor.py @@ -3,7 +3,7 @@ import unittest import numpy -class TestScope(unittest.TestCase): +class TestTensor(unittest.TestCase): def test_int_tensor(self): scope = core.Scope() var = scope.new_var("test_tensor") @@ -20,8 +20,8 @@ class TestScope(unittest.TestCase): tensor.set(tensor_array, place) tensor_array_2 = numpy.array(tensor) - self.assertEqual(1.0, tensor_array_2[3, 9]) - self.assertEqual(2.0, tensor_array_2[19, 11]) + self.assertEqual(1, tensor_array_2[3, 9]) + self.assertEqual(2, tensor_array_2[19, 11]) def test_float_tensor(self): scope = core.Scope() @@ -43,6 +43,84 @@ class TestScope(unittest.TestCase): self.assertAlmostEqual(1.0, tensor_array_2[3, 9]) self.assertAlmostEqual(2.0, tensor_array_2[19, 11]) + def test_int_lod_tensor(self): + places = [core.CPUPlace(), core.GPUPlace(0)] + for place in places: + scope = core.Scope() + var = scope.new_var("test_tensor") + var_lod = scope.new_var("test_lod_tensor") + + tensor = var.get_tensor() + lod_tensor = var_lod.get_lod_tensor() + + tensor.set_dims([4, 4, 6]) + tensor.alloc_int(place) + array = numpy.array(tensor) + array[0, 0, 0] = 3 + array[3, 3, 5] = 10 + tensor.set(array, place) + + lod_tensor.set_tensor(tensor) + lod_tensor.set_lod([[0, 2, 4]]) + + lod_v = numpy.array(lod_tensor.tensor()) + self.assertTrue(numpy.alltrue(array == lod_v)) + + lod = lod_tensor.lod() + self.assertEqual(0, lod[0][0]) + self.assertEqual(2, lod[0][1]) + self.assertEqual(4, lod[0][2]) + + def test_float_lod_tensor(self): + places = [core.CPUPlace(), core.GPUPlace(0)] + for place in places: + scope = core.Scope() + var = scope.new_var("test_tensor") + var_lod = scope.new_var("test_lod_tensor") + + tensor = var.get_tensor() + lod_tensor = var_lod.get_lod_tensor() + + tensor.set_dims([5, 2, 3, 4]) + tensor.alloc_float(place) + + tensor_array = numpy.array(tensor) + self.assertEqual((5, 2, 3, 4), tensor_array.shape) + tensor_array[0, 0, 0, 0] = 1.0 + tensor_array[0, 0, 0, 1] = 2.0 + tensor.set(tensor_array, place) + + lod_tensor.set_tensor(tensor) + + lod_v = numpy.array(lod_tensor.tensor()) + self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) + self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) + self.assertEqual(len(lod_tensor.lod()), 0) + + lod_py = [[0, 2, 5], [0, 2, 4, 5]] + lod_tensor.set_lod(lod_py) + lod = lod_tensor.lod() + self.assertListEqual(lod_py, lod) + + def test_lod_tensor_init(self): + scope = core.Scope() + var = scope.new_var("test_tensor") + place = core.CPUPlace() + tensor = var.get_tensor() + tensor.set_dims([5, 2, 3, 4]) + tensor.alloc_float(place) + tensor_array = numpy.array(tensor) + tensor_array[0, 0, 0, 0] = 1.0 + tensor_array[0, 0, 0, 1] = 2.0 + tensor.set(tensor_array, place) + lod_py = [[0, 2, 5], [0, 2, 4, 5]] + + lod_tensor = core.LoDTensor(lod_py, tensor) + lod_v = numpy.array(lod_tensor.tensor()) + self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0]) + self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1]) + self.assertListEqual(lod_py, lod_tensor.lod()) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_top_k_op.py b/python/paddle/v2/framework/tests/test_top_k_op.py new file mode 100644 index 0000000000000000000000000000000000000000..cab799256d791889c295aa7f9048080f5caaf2dc --- /dev/null +++ b/python/paddle/v2/framework/tests/test_top_k_op.py @@ -0,0 +1,47 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestTopkOp(OpTest): + def setUp(self): + self.op_type = "top_k" + k = 1 + input = np.random.random((32, 84)).astype("float32") + output = np.ndarray((32, k)) + indices = np.ndarray((32, k)) + + self.inputs = {'X': input} + self.attrs = {'k': k} + + for rowid in xrange(32): + row = input[rowid] + output[rowid] = np.sort(row)[-k:] + indices[rowid] = row.argsort()[-k:] + + self.outputs = {'Out': output, 'Indices': indices} + + +class TestTopkOp3d(OpTest): + def setUp(self): + self.op_type = "top_k" + k = 1 + input = np.random.random((32, 2, 84)).astype("float32") + input_flat_2d = input.reshape(64, 84) + output = np.ndarray((64, k)) + indices = np.ndarray((64, k)).astype("int") + + # FIXME: should use 'X': input for a 3d input + self.inputs = {'X': input_flat_2d} + self.attrs = {'k': k} + + for rowid in xrange(64): + row = input_flat_2d[rowid] + output[rowid] = np.sort(row)[-k:] + indices[rowid] = row.argsort()[-k:] + + self.outputs = {'Out': output, 'Indices': indices} + + +if __name__ == "__main__": + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_uniform_random_op.py b/python/paddle/v2/framework/tests/test_uniform_random_op.py index c3d2bb44da3977c0899b2609a8efe15b7e1789f2..76a5e36e56ab08230bdc2597d209fcf5d1d2acb0 100644 --- a/python/paddle/v2/framework/tests/test_uniform_random_op.py +++ b/python/paddle/v2/framework/tests/test_uniform_random_op.py @@ -14,11 +14,11 @@ class UniformRandomTest(unittest.TestCase): def uniform_random_test(self, place): scope = core.Scope() - scope.new_var("X").get_tensor() + scope.new_var('X').get_tensor() op = Operator( "uniform_random", - Out="X", + Out='X', dims=[1000, 784], min=-5.0, max=10.0, @@ -27,9 +27,9 @@ class UniformRandomTest(unittest.TestCase): op.infer_shape(scope) ctx = core.DeviceContext.create(place) op.run(scope, ctx) - tensor = numpy.array(scope.find_var("X").get_tensor()) + tensor = numpy.array(scope.find_var('X').get_tensor()) self.assertAlmostEqual(tensor.mean(), 2.5, delta=0.1) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/inference.py b/python/paddle/v2/inference.py index 8acea6155c588f2e8e5ad009cd8f0a0c09afb92b..e80456d9bbeb3c34ac9eab873a84dbf8f06e34df 100644 --- a/python/paddle/v2/inference.py +++ b/python/paddle/v2/inference.py @@ -2,6 +2,7 @@ import numpy import collections import topology import minibatch +import cPickle __all__ = ['infer', 'Inference'] @@ -25,11 +26,23 @@ class Inference(object): :type parameters: paddle.v2.parameters.Parameters """ - def __init__(self, output_layer, parameters): + def __init__(self, parameters, output_layer=None, fileobj=None): import py_paddle.swig_paddle as api - topo = topology.Topology(output_layer) - gm = api.GradientMachine.createFromConfigProto( - topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE]) + + if output_layer is not None: + topo = topology.Topology(output_layer) + gm = api.GradientMachine.createFromConfigProto( + topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE]) + self.__data_types__ = topo.data_type() + elif fileobj is not None: + tmp = cPickle.load(fileobj) + gm = api.GradientMachine.createByConfigProtoStr( + tmp['protobin'], api.CREATE_MODE_TESTING, + [api.PARAMETER_VALUE]) + self.__data_types__ = tmp['data_type'] + else: + raise ValueError("Either output_layer or fileobj must be set") + for param in gm.getParameters(): val = param.getBuf(api.PARAMETER_VALUE) name = param.getName() @@ -43,7 +56,6 @@ class Inference(object): # called here, but it's better to call this function in one place. param.setValueUpdated() self.__gradient_machine__ = gm - self.__data_types__ = topo.data_type() def iter_infer(self, input, feeding=None): from data_feeder import DataFeeder diff --git a/python/paddle/v2/topology.py b/python/paddle/v2/topology.py index a20e878d0817d0a75e9c47a44f8765deca99225c..2db66be2505dde38a501edf45984e1f36beb351d 100644 --- a/python/paddle/v2/topology.py +++ b/python/paddle/v2/topology.py @@ -18,6 +18,7 @@ from paddle.proto.ModelConfig_pb2 import ModelConfig import paddle.trainer_config_helpers as conf_helps import layer as v2_layer import config_base +import cPickle __all__ = ['Topology'] @@ -100,6 +101,14 @@ class Topology(object): return layer return None + def serialize_for_inference(self, stream): + protobin = self.proto().SerializeToString() + data_type = self.data_type() + cPickle.dump({ + 'protobin': protobin, + 'data_type': data_type + }, stream, cPickle.HIGHEST_PROTOCOL) + def __check_layer_type__(layer): if not isinstance(layer, config_base.Layer): diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index 0654a301049dcb347b79879076a869a0c14a07ae..ca95ef13bd440ac0ba3d46f6e4680d4d7aa94c42 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -174,13 +174,18 @@ class SGD(object): pass_id=pass_id, batch_id=batch_id, cost=cost, - evaluator=batch_evaluator)) + evaluator=batch_evaluator, + gm=self.__gradient_machine__)) self.__parameter_updater__.finishBatch(cost) batch_evaluator.finish() self.__parameter_updater__.finishPass() pass_evaluator.finish() - event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator)) + event_handler( + v2_event.EndPass( + pass_id, + evaluator=pass_evaluator, + gm=self.__gradient_machine__)) self.__gradient_machine__.finish() def test(self, reader, feeding=None):