Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e7a4cfc0
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e7a4cfc0
编写于
7月 11, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
complete the hsigmoid_op
上级
d6953816
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
63 addition
and
54 deletion
+63
-54
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+10
-10
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+10
-9
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+13
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+23
-22
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+7
-11
未找到文件。
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
e7a4cfc0
...
...
@@ -86,25 +86,25 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, required) The input Tensor, which the shape is"
"[N, D], which N is the size of mini-batch,"
"D is the embded size"
);
"(Tensor, required) The input tensor with shape [N, D], "
"where N is the size of mini-batch, and D is the feature size."
);
AddInput
(
"W"
,
"(Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is
s
a 2-D tensor, the shape is"
"[num_classes - 1, D]"
);
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[num_classes - 1, D]
.
"
);
AddInput
(
"Label"
,
"(Tensor, required), The labels of training data. It's a"
"
1-D tensor, which the shape is [N, 1]
"
);
"
tensor with shape [N, 1].
"
);
AddInput
(
"Bias"
,
"(Tensor, optional), The bias is a tensor with shape"
"[1, num_classes - 1]"
);
"[1, num_classes - 1]
.
"
);
AddOutput
(
"Out"
,
"(Tensor, required) The output of hierarchical sigmoid operator."
"
the shape is [N, 1]
"
);
"
The shape is [N, 1].
"
);
AddOutput
(
"PreOut"
,
"(Tensor, required) A intermedia 2-D Tensor, which the shape is "
"[batch_size, code_length]"
)
"(Tensor, required) A intermedia 2-D tensor with shape "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int, required), The number of classes"
)
.
SetDefault
(
2
);
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
e7a4cfc0
...
...
@@ -44,9 +44,11 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
framework
::
Tensor
sum
;
math
::
SetConstant
<
DeviceContext
,
T
>
zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
pre_out_data
=
pre_out
->
mutable_data
<
T
>
(
auto
*
pre_out_data
=
pre_out
->
mutable_data
<
T
>
(
framework
::
make_ddim
({
batch_size
,
code_length
}),
ctx
.
GetPlace
());
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
// Not all class(leaf) nodes' path lengths equal code_length, thus init as
// 0s can avoid out of path's loss.
zero
(
dev_ctx
,
pre_out
,
static_cast
<
T
>
(
0.0
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
...
...
@@ -61,16 +63,13 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
bit_code
.
Add
(
pre_out
,
*
bias
);
}
bit_code
.
Mul
(
pre_out
,
*
w
,
*
in
);
// clip t
he matrix with (-40, 40)
// clip t
o [-40, 40]
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
// softrelu with threshold is 40.0
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
// use softrelu to calculate cross entropy
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
dev_ctx
,
*
pre_out
,
&
sum
);
out_mat
.
device
(
place
)
=
sum_mat
+
out_mat
;
...
...
@@ -102,14 +101,16 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
auto
pre_out_grad_mat
=
EigenMatrix
<
T
>::
From
(
pre_out_grad
);
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
// softrelu derivative
Eigen
::
array
<
int
,
2
>
bcast
({
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])});
Eigen
::
array
<
int
,
2
>
bcast
({{
1
,
static_cast
<
int
>
(
pre_out_grad
.
dims
()[
1
])}});
auto
out_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
out_grad
);
pre_out_grad_mat
=
out_grad_mat
.
broadcast
(
bcast
);
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
*
(
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
());
(
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
());
// softrelu derivative
bit_code
.
Sub
(
&
pre_out_grad
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bit_code
.
AddGrad
(
pre_out_grad
,
bias_grad
);
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
e7a4cfc0
...
...
@@ -65,12 +65,24 @@ inline constexpr size_t FindLastSet(size_t x) {
struct
SimpleCode
{
SimpleCode
(
size_t
code
,
size_t
num_classes
)
:
c_
(
code
+
num_classes
)
{}
/**
* calc_index should make sure that all siblings have the same weight indice.
* As for which weight index it maps to, it doesn't matter. To satisfy this,
* the id of root should be 1, and the left child of a node i is 2*i, the
* right child of a node i is 2*i+1.
*/
inline
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
/**
* calc_bit uses the right most bits, while calc_index uses the left most
* bits. They are not the same, and that's why we say it doesn't matter which
* weight index calc_index maps to.
*/
inline
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
inline
int
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
private:
size_t
c_
;
size_t
c_
;
// Here the id of root is 1 rather than 0, thus the id of class c
// is `c + num_classes`.
};
struct
SimpleCodeTable
{
...
...
@@ -83,7 +95,6 @@ struct SimpleCodeTable {
private:
size_t
num_classes_
;
int
max_code_length_
;
};
template
<
typename
T
>
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
e7a4cfc0
...
...
@@ -3858,29 +3858,32 @@ def nce(input,
return
cost
/
(
num_neg_samples
+
1
)
def
hsigmoid
(
input
,
label
,
num_classes
=
2
,
param_attr
=
None
,
bias_attr
=
None
):
def
hsigmoid
(
input
,
label
,
num_classes
,
param_attr
=
None
,
bias_attr
=
None
):
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
complete binary tree, each leaf node represents a class(a word) and each internal
node acts likea binary classifier. For each word there's a unique path from root
to it's leaf node, hsigmoid calculate the cost for each internal node on the path
(include root), and sum them to get a total cost. hsigmoid can achive a acceleration
from N to logN, for which N represents the size of word dict. This idea is from "F.
Morin, Y. Bengio(AISTATS 05): Hierarchical Probabilistic Neural Network Language Model.
complete binary tree, each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
internal node on the path, and sum them to get a total cost. hsigmoid can
achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the size of word dict.
Refer to `Hierarchical Probabilistic Neural Network Language Model
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
Args:
input (Variable):
(Tensor) The input Tensor, which the shape is
[N * D], which N is the size of mini-batch,D is the embded size
label (Variable): (Tensor), The labels of training data. It's a
1-D tensor, which the shape is [1, N]
num_classes: (int, default 2), The number of classes, must be lager or
equal
than 2.
input (Variable):
The input tensor variable with shape
:math:`[N
\\
times D]`, where :math:`N` is the size of mini-batch,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less
than 2.
param_attr (ParamAttr|list of ParamAttr, default None): The parameter
attribute for learnable parameters/weights of this layer.
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter
attribute for the bias of this layer. If it is set to
None, no bias
will be added to the output units
.
attribute for the bias of this layer. If it is set to
False, no
bias will be applied
.
Returns:
Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
...
...
@@ -3889,11 +3892,9 @@ def hsigmoid(input, label, num_classes=2, param_attr=None, bias_attr=None):
.. code-block:: python
x = fluid.layers.data(name='x', shape=[3, 2],
dtype='float32')
y = fluid.layers.data(name='y', shape=[1, 3],
dtype='int64')
out = fluid.layers.hsigmoid(input=x, label=y, num_classes=2)
x = fluid.layers.data(name='x', shape=[2], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='int64')
out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
"""
helper
=
LayerHelper
(
'hierarchical_sigmoid'
,
**
locals
())
...
...
@@ -3902,7 +3903,7 @@ def hsigmoid(input, label, num_classes=2, param_attr=None, bias_attr=None):
pre_out
=
helper
.
create_tmp_variable
(
dtype
)
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
raise
ValueError
(
"num_classes must
be lager or equal
than 2."
)
raise
ValueError
(
"num_classes must
not be less
than 2."
)
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
e7a4cfc0
...
...
@@ -55,10 +55,7 @@ def hsigmoid(x, w, label, bias, num_classes):
length
=
code_table
.
get_length
()
for
k
in
range
(
length
):
idx
=
code_table
.
cal_index
(
k
)
sum
=
0.0
for
l
in
range
(
x
.
shape
[
1
]):
sum
+=
w
[
idx
][
l
]
*
x
[
j
][
l
]
pre_output
[
j
][
k
]
+=
sum
pre_output
[
j
][
k
]
=
np
.
dot
(
w
[
idx
],
x
[
j
])
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
...
...
@@ -71,7 +68,6 @@ def hsigmoid(x, w, label, bias, num_classes):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
# soft relu
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
pre_output
=
np
.
log
(
1
+
np
.
exp
(
pre_output
))
pre_sum
=
pre_output
.
sum
(
1
).
reshape
((
batch_size
,
1
))
out
+=
pre_sum
...
...
@@ -81,11 +77,11 @@ def hsigmoid(x, w, label, bias, num_classes):
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
4
embded_size
=
1
batch_size
=
1
x
=
np
.
random
.
random
((
batch_size
,
embded
_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
embded
_size
)).
astype
(
"float32"
)
num_classes
=
6
feature_size
=
5
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature
_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature
_size
)).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
num_classes
,
batch_size
)
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
}
...
...
@@ -97,7 +93,7 @@ class TestHSigmoidOp(OpTest):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
'Out'
,
no_grad_set
=
set
(
'Label'
))
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
]
,
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录