Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e6919efd
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e6919efd
编写于
6月 23, 2021
作者:
W
Wenyu
提交者:
GitHub
6月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Random resize crop (#3465)
* add random resize and crop * update * update
上级
1f34af72
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
256 addition
and
0 deletion
+256
-0
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+256
-0
未找到文件。
ppdet/data/transform/operators.py
浏览文件 @
e6919efd
...
...
@@ -2094,3 +2094,259 @@ class BboxCXCYWH2XYXY(BaseOperator):
bbox
[:,
2
:
4
]
=
bbox0
[:,
:
2
]
+
bbox0
[:,
2
:
4
]
/
2.
sample
[
'gt_bbox'
]
=
bbox
return
sample
@
register_op
class
RandomResizeCrop
(
BaseOperator
):
"""Random resize and crop image and bboxes.
Args:
resizes (list): resize image to one of resizes. if keep_ratio is True and mode is
'long', resize the image's long side to the maximum of target_size, if keep_ratio is
True and mode is 'short', resize the image's short side to the minimum of target_size.
cropsizes (list): crop sizes after resize, [(min_crop_1, max_crop_1), ...]
mode (str): resize mode, `long` or `short`. Details see resizes.
prob (float): probability of this op.
keep_ratio (bool): whether keep_ratio or not, default true
interp (int): the interpolation method
thresholds (list): iou thresholds for decide a valid bbox crop.
num_attempts (int): number of tries before giving up.
allow_no_crop (bool): allow return without actually cropping them.
cover_all_box (bool): ensure all bboxes are covered in the final crop.
is_mask_crop(bool): whether crop the segmentation.
"""
def
__init__
(
self
,
resizes
,
cropsizes
,
prob
=
0.5
,
mode
=
'short'
,
keep_ratio
=
True
,
interp
=
cv2
.
INTER_LINEAR
,
num_attempts
=
3
,
cover_all_box
=
False
,
allow_no_crop
=
False
,
thresholds
=
[
0.3
,
0.5
,
0.7
],
is_mask_crop
=
False
,
):
super
(
RandomResizeCrop
,
self
).
__init__
()
self
.
resizes
=
resizes
self
.
cropsizes
=
cropsizes
self
.
prob
=
prob
self
.
mode
=
mode
self
.
resizer
=
Resize
(
0
,
keep_ratio
=
keep_ratio
,
interp
=
interp
)
self
.
croper
=
RandomCrop
(
num_attempts
=
num_attempts
,
cover_all_box
=
cover_all_box
,
thresholds
=
thresholds
,
allow_no_crop
=
allow_no_crop
,
is_mask_crop
=
is_mask_crop
)
def
_format_size
(
self
,
size
):
if
isinstance
(
size
,
Integral
):
size
=
(
size
,
size
)
return
size
def
apply
(
self
,
sample
,
context
=
None
):
if
random
.
random
()
<
self
.
prob
:
_resize
=
self
.
_format_size
(
random
.
choice
(
self
.
resizes
))
_cropsize
=
self
.
_format_size
(
random
.
choice
(
self
.
cropsizes
))
sample
=
self
.
_resize
(
self
.
resizer
,
sample
,
size
=
_resize
,
mode
=
self
.
mode
,
context
=
context
)
sample
=
self
.
_random_crop
(
self
.
croper
,
sample
,
size
=
_cropsize
,
context
=
context
)
return
sample
@
staticmethod
def
_random_crop
(
croper
,
sample
,
size
,
context
=
None
):
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
==
0
:
return
sample
self
=
croper
h
,
w
=
sample
[
'image'
].
shape
[:
2
]
gt_bbox
=
sample
[
'gt_bbox'
]
cropsize
=
size
min_crop
=
min
(
cropsize
)
max_crop
=
max
(
cropsize
)
thresholds
=
list
(
self
.
thresholds
)
np
.
random
.
shuffle
(
thresholds
)
for
thresh
in
thresholds
:
found
=
False
for
_
in
range
(
self
.
num_attempts
):
crop_h
=
random
.
randint
(
min_crop
,
min
(
h
,
max_crop
))
crop_w
=
random
.
randint
(
min_crop
,
min
(
w
,
max_crop
))
crop_y
=
random
.
randint
(
0
,
h
-
crop_h
)
crop_x
=
random
.
randint
(
0
,
w
-
crop_w
)
crop_box
=
[
crop_x
,
crop_y
,
crop_x
+
crop_w
,
crop_y
+
crop_h
]
iou
=
self
.
_iou_matrix
(
gt_bbox
,
np
.
array
(
[
crop_box
],
dtype
=
np
.
float32
))
if
iou
.
max
()
<
thresh
:
continue
if
self
.
cover_all_box
and
iou
.
min
()
<
thresh
:
continue
cropped_box
,
valid_ids
=
self
.
_crop_box_with_center_constraint
(
gt_bbox
,
np
.
array
(
crop_box
,
dtype
=
np
.
float32
))
if
valid_ids
.
size
>
0
:
found
=
True
break
if
found
:
if
self
.
is_mask_crop
and
'gt_poly'
in
sample
and
len
(
sample
[
'gt_poly'
])
>
0
:
crop_polys
=
self
.
crop_segms
(
sample
[
'gt_poly'
],
valid_ids
,
np
.
array
(
crop_box
,
dtype
=
np
.
int64
),
h
,
w
)
if
[]
in
crop_polys
:
delete_id
=
list
()
valid_polys
=
list
()
for
id
,
crop_poly
in
enumerate
(
crop_polys
):
if
crop_poly
==
[]:
delete_id
.
append
(
id
)
else
:
valid_polys
.
append
(
crop_poly
)
valid_ids
=
np
.
delete
(
valid_ids
,
delete_id
)
if
len
(
valid_polys
)
==
0
:
return
sample
sample
[
'gt_poly'
]
=
valid_polys
else
:
sample
[
'gt_poly'
]
=
crop_polys
if
'gt_segm'
in
sample
:
sample
[
'gt_segm'
]
=
self
.
_crop_segm
(
sample
[
'gt_segm'
],
crop_box
)
sample
[
'gt_segm'
]
=
np
.
take
(
sample
[
'gt_segm'
],
valid_ids
,
axis
=
0
)
sample
[
'image'
]
=
self
.
_crop_image
(
sample
[
'image'
],
crop_box
)
sample
[
'gt_bbox'
]
=
np
.
take
(
cropped_box
,
valid_ids
,
axis
=
0
)
sample
[
'gt_class'
]
=
np
.
take
(
sample
[
'gt_class'
],
valid_ids
,
axis
=
0
)
if
'gt_score'
in
sample
:
sample
[
'gt_score'
]
=
np
.
take
(
sample
[
'gt_score'
],
valid_ids
,
axis
=
0
)
if
'is_crowd'
in
sample
:
sample
[
'is_crowd'
]
=
np
.
take
(
sample
[
'is_crowd'
],
valid_ids
,
axis
=
0
)
return
sample
return
sample
@
staticmethod
def
_resize
(
resizer
,
sample
,
size
,
mode
=
'short'
,
context
=
None
):
self
=
resizer
im
=
sample
[
'image'
]
target_size
=
size
if
not
isinstance
(
im
,
np
.
ndarray
):
raise
TypeError
(
"{}: image type is not numpy."
.
format
(
self
))
if
len
(
im
.
shape
)
!=
3
:
raise
ImageError
(
'{}: image is not 3-dimensional.'
.
format
(
self
))
# apply image
im_shape
=
im
.
shape
if
self
.
keep_ratio
:
im_size_min
=
np
.
min
(
im_shape
[
0
:
2
])
im_size_max
=
np
.
max
(
im_shape
[
0
:
2
])
target_size_min
=
np
.
min
(
target_size
)
target_size_max
=
np
.
max
(
target_size
)
if
mode
==
'long'
:
im_scale
=
min
(
target_size_min
/
im_size_min
,
target_size_max
/
im_size_max
)
else
:
im_scale
=
max
(
target_size_min
/
im_size_min
,
target_size_max
/
im_size_max
)
resize_h
=
im_scale
*
float
(
im_shape
[
0
])
resize_w
=
im_scale
*
float
(
im_shape
[
1
])
im_scale_x
=
im_scale
im_scale_y
=
im_scale
else
:
resize_h
,
resize_w
=
target_size
im_scale_y
=
resize_h
/
im_shape
[
0
]
im_scale_x
=
resize_w
/
im_shape
[
1
]
im
=
self
.
apply_image
(
sample
[
'image'
],
[
im_scale_x
,
im_scale_y
])
sample
[
'image'
]
=
im
sample
[
'im_shape'
]
=
np
.
asarray
([
resize_h
,
resize_w
],
dtype
=
np
.
float32
)
if
'scale_factor'
in
sample
:
scale_factor
=
sample
[
'scale_factor'
]
sample
[
'scale_factor'
]
=
np
.
asarray
(
[
scale_factor
[
0
]
*
im_scale_y
,
scale_factor
[
1
]
*
im_scale_x
],
dtype
=
np
.
float32
)
else
:
sample
[
'scale_factor'
]
=
np
.
asarray
(
[
im_scale_y
,
im_scale_x
],
dtype
=
np
.
float32
)
# apply bbox
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
>
0
:
sample
[
'gt_bbox'
]
=
self
.
apply_bbox
(
sample
[
'gt_bbox'
],
[
im_scale_x
,
im_scale_y
],
[
resize_w
,
resize_h
])
# apply rbox
if
'gt_rbox2poly'
in
sample
:
if
np
.
array
(
sample
[
'gt_rbox2poly'
]).
shape
[
1
]
!=
8
:
logger
.
warn
(
"gt_rbox2poly's length shoule be 8, but actually is {}"
.
format
(
len
(
sample
[
'gt_rbox2poly'
])))
sample
[
'gt_rbox2poly'
]
=
self
.
apply_bbox
(
sample
[
'gt_rbox2poly'
],
[
im_scale_x
,
im_scale_y
],
[
resize_w
,
resize_h
])
# apply polygon
if
'gt_poly'
in
sample
and
len
(
sample
[
'gt_poly'
])
>
0
:
sample
[
'gt_poly'
]
=
self
.
apply_segm
(
sample
[
'gt_poly'
],
im_shape
[:
2
],
[
im_scale_x
,
im_scale_y
])
# apply semantic
if
'semantic'
in
sample
and
sample
[
'semantic'
]:
semantic
=
sample
[
'semantic'
]
semantic
=
cv2
.
resize
(
semantic
.
astype
(
'float32'
),
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
self
.
interp
)
semantic
=
np
.
asarray
(
semantic
).
astype
(
'int32'
)
semantic
=
np
.
expand_dims
(
semantic
,
0
)
sample
[
'semantic'
]
=
semantic
# apply gt_segm
if
'gt_segm'
in
sample
and
len
(
sample
[
'gt_segm'
])
>
0
:
masks
=
[
cv2
.
resize
(
gt_segm
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_NEAREST
)
for
gt_segm
in
sample
[
'gt_segm'
]
]
sample
[
'gt_segm'
]
=
np
.
asarray
(
masks
).
astype
(
np
.
uint8
)
return
sample
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录