Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
e5be4354
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e5be4354
编写于
7月 13, 2020
作者:
S
still-wait
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fast_nms
上级
d43e6d9a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
101 addition
and
2 deletion
+101
-2
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+101
-2
未找到文件。
ppdet/modeling/ops.py
浏览文件 @
e5be4354
...
...
@@ -30,8 +30,8 @@ __all__ = [
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDLiteMultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'DeformConvNorm'
,
'MultiClassSoftNMS'
,
'MatrixNMS'
,
'
LibraBBoxAssigner
'
,
'DeformConv'
'DeformConvNorm'
,
'MultiClassSoftNMS'
,
'MatrixNMS'
,
'
FastNMS
'
,
'
MultiClassDiouNMS'
,
'LibraBBoxAssigner'
,
'
DeformConv'
]
...
...
@@ -537,6 +537,105 @@ class MatrixNMS(object):
self
.
background_label
=
background_label
@
register
@
serializable
class
FastNMS
(
object
):
def
__init__
(
self
,
iou_threshold
=
0.5
,
top_k
=
200
,
second_threshold
=
False
):
super
(
FastNMS
,
self
).
__init__
()
self
.
iou_threshold
=
iou_threshold
self
.
top_k
=
top_k
self
.
second_threshold
=
second_threshold
def
_intersect_tensor
(
box_a
,
box_b
):
n
=
fluid
.
layers
.
shape
(
box_a
)[
0
]
shape_a
=
fluid
.
layers
.
shape
(
box_a
)[
1
]
shape_b
=
fluid
.
layers
.
shape
(
box_b
)[
1
]
max_xy
=
fluid
.
layers
.
elementwise_min
(
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(
box_a
[:,
:,
2
:],
2
),
[
1
,
1
,
shape_b
,
1
]),
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(
box_b
[:,
:,
2
:],
1
),
[
1
,
shape_a
,
1
,
1
]))
min_xy
=
fluid
.
layers
.
elementwise_max
(
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(
box_a
[:,
:,
:
2
],
2
),
[
1
,
1
,
shape_b
,
1
]),
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(
box_b
[:,
:,
:
2
],
1
),
[
1
,
shape_a
,
1
,
1
]))
inter
=
fluid
.
layers
.
clip
((
max_xy
-
min_xy
),
min
=
0
,
max
=
1000
)
return
inter
[:,
:,
:,
0
]
*
inter
[:,
:,
:,
1
]
def
_jaccard_tensor
(
box_a
,
box_b
,
iscrowd
=
False
):
use_batch
=
True
shape_a
=
fluid
.
layers
.
shape
(
box_a
)[
1
]
shape_b
=
fluid
.
layers
.
shape
(
box_b
)[
1
]
inter
=
_intersect_tensor
(
box_a
,
box_b
)
area_a
=
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(((
box_a
[:,
:,
2
]
-
box_a
[:,
:,
0
])
*
(
box_a
[:,
:,
3
]
-
box_a
[:,
:,
1
])),
2
),
[
1
,
1
,
shape_b
])
area_b
=
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(((
box_b
[:,
:,
2
]
-
box_b
[:,
:,
0
])
*
(
box_b
[:,
:,
3
]
-
box_b
[:,
:,
1
])),
1
),
[
1
,
shape_a
,
1
])
union
=
area_a
+
area_b
-
inter
out
=
inter
/
(
area_a
)
if
iscrowd
else
inter
/
(
union
)
return
out
if
use_batch
else
fluid
.
layers
.
squeeze
(
out
,
[
0
])
def
__call__
(
self
,
boxes
,
masks
,
scores
):
scores
,
idx
=
fluid
.
layers
.
argsort
(
scores
,
axis
=
1
,
descending
=
True
)
idx
=
idx
[:,
:
top_k
]
scores
=
scores
[:,
:
top_k
]
idx_shape
=
fluid
.
layers
.
shape
(
idx
)
num_classes
=
idx_shape
[
0
]
num_dets
=
idx_shape
[
1
]
idx
=
fluid
.
layers
.
reshape
(
idx
,
[
-
1
])
boxes
=
fluid
.
layers
.
reshape
(
fluid
.
layers
.
gather
(
boxes
,
idx
),
(
num_classes
,
num_dets
,
4
))
masks
=
fluid
.
layers
.
reshape
(
fluid
.
layers
.
gather
(
masks
,
idx
),
(
num_classes
,
num_dets
,
-
1
))
iou
=
_jaccard_tensor
(
boxes
,
boxes
)
iou
=
paddle
.
tensor
.
triu
(
iou
,
1
)
iou_max
=
fluid
.
layers
.
reduce_max
(
iou
,
1
)
keep
=
(
iou_max
<=
iou_threshold
)
if
second_threshold
:
conf_thresh
=
0.05
keep
*=
fluid
.
layers
.
cast
(
scores
>
conf_thresh
,
'float32'
)
classes
=
fluid
.
layers
.
expand
(
fluid
.
layers
.
unsqueeze
(
fluid
.
layers
.
range
(
0
,
num_classes
,
1
,
'int32'
),
1
),
(
1
,
num_dets
))
out
=
fluid
.
layers
.
where
(
keep
)
classes
=
fluid
.
layers
.
gather_nd
(
classes
,
out
)
boxes
=
fluid
.
layers
.
gather_nd
(
boxes
,
out
)
masks
=
fluid
.
layers
.
gather_nd
(
masks
,
out
)
scores
=
fluid
.
layers
.
gather_nd
(
scores
,
out
)
scores
,
idx
=
fluid
.
layers
.
argsort
(
scores
,
axis
=
0
,
descending
=
True
)
max_num_detections
=
100
idx
=
idx
[:
max_num_detections
]
scores
=
scores
[:
max_num_detections
]
classes
=
fluid
.
layers
.
gather
(
classes
,
idx
)
boxes
=
fluid
.
layers
.
gather
(
boxes
,
idx
)
masks
=
fluid
.
layers
.
gather
(
masks
,
idx
)
return
boxes
,
masks
,
classes
,
scores
@
register
@
serializable
class
MultiClassSoftNMS
(
object
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录