未验证 提交 de89b472 编写于 作者: Y Yang yaming 提交者: GitHub

Merge pull request #7575 from pkuyym/fix-7555

Add pyton wrapper for row conv operator.
...@@ -529,3 +529,8 @@ sequence_reshape ...@@ -529,3 +529,8 @@ sequence_reshape
---------------- ----------------
.. autofunction:: paddle.v2.fluid.layers.sequence_reshape .. autofunction:: paddle.v2.fluid.layers.sequence_reshape
:noindex: :noindex:
row_conv
--------
.. autofunction:: paddle.v2.fluid.layers.row_conv
:noindex:
...@@ -62,6 +62,7 @@ __all__ = [ ...@@ -62,6 +62,7 @@ __all__ = [
'im2sequence', 'im2sequence',
'nce', 'nce',
'beam_search', 'beam_search',
'row_conv',
] ]
...@@ -2564,3 +2565,56 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None): ...@@ -2564,3 +2565,56 @@ def im2sequence(input, filter_size=1, stride=1, padding=0, name=None):
'paddings': padding, 'paddings': padding,
}) })
return out return out
def row_conv(input, future_context_size, param_attr=None, act=None):
"""Row Conv Operator. This layer will apply lookahead convolution to
**input**. The input variable should be a 2D LoDTensor with shape [T, D].
Parameters with shape [future_context_size + 1, D] will be created. The math
equation of row convolution is as follows:
.. math::
Out_{i} = \sum_{j = i} ^ {i + \\tau} X_{j} \odot W_{i - j}
In the above equation:
* :math:`Out_{i}`: The i-th row of output variable with shape [1, D].
* :math:`\\tau`: Future context size.
* :math:`X_{j}`: The j-th row of input variable with shape [1, D].
* :math:`W_{i-j}`: The (i-j)-th row of parameters with shape [1, D].
More details about row_conv please refer to the paper \
(http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf) and
the design document \
(https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645).
Args:
input (Variable): Input variable, a 2D LoDTensor with shape [T, D].
future_context_size (int): Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].
param_attr (ParamAttr): Attributes of parameters, including
name, initializer etc.
act (str): Non-linear activation to be applied to output variable.
Returns:
Variable: The output tensor with same shape as input tensor.
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[16],
dtype='float32', lod_level=1)
out = fluid.layers.row_conv(input=x, future_context_size=2)
"""
helper = LayerHelper('row_conv', **locals())
dtype = helper.input_dtype()
filter_shape = [future_context_size + 1, input.shape[1]]
filter_param = helper.create_parameter(
attr=helper.param_attr, shape=filter_shape, dtype=dtype)
out = helper.create_tmp_variable(dtype)
helper.append_op(
type='row_conv',
inputs={'X': [input],
'Filter': [filter_param]},
outputs={'Out': [out]})
return helper.append_activation(out)
...@@ -271,6 +271,14 @@ class TestBook(unittest.TestCase): ...@@ -271,6 +271,14 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(avg_loss) self.assertIsNotNone(avg_loss)
print(str(default_main_program())) print(str(default_main_program()))
def test_row_conv(self):
program = Program()
with program_guard(program):
x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
out = layers.row_conv(input=x, future_context_size=2)
self.assertIsNotNone(out)
print(str(program))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册