Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d6f38b0c
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d6f38b0c
编写于
5月 21, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
5月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick]fix image_shape in export_model (#3094)
* fix image_shape in export_model
上级
516fab87
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
26 addition
and
60 deletion
+26
-60
configs/slim/README.md
configs/slim/README.md
+2
-2
deploy/TENSOR_RT.md
deploy/TENSOR_RT.md
+3
-2
deploy/cpp/include/config_parser.h
deploy/cpp/include/config_parser.h
+0
-8
deploy/cpp/include/object_detector.h
deploy/cpp/include/object_detector.h
+1
-3
deploy/cpp/include/preprocess_op.h
deploy/cpp/include/preprocess_op.h
+8
-11
deploy/python/infer.py
deploy/python/infer.py
+4
-6
deploy/python/keypoint_infer.py
deploy/python/keypoint_infer.py
+1
-3
deploy/python/preprocess.py
deploy/python/preprocess.py
+2
-15
ppdet/engine/export_utils.py
ppdet/engine/export_utils.py
+5
-10
未找到文件。
configs/slim/README.md
浏览文件 @
d6f38b0c
...
@@ -20,7 +20,7 @@
...
@@ -20,7 +20,7 @@
**PaddleDetection、 PaddlePaddle与PaddleSlim 版本关系:**
**PaddleDetection、 PaddlePaddle与PaddleSlim 版本关系:**
| PaddleDetection版本 | PaddlePaddle版本 | PaddleSlim版本 | 备注 |
| PaddleDetection版本 | PaddlePaddle版本 | PaddleSlim版本 | 备注 |
| :------------------: | :---------------: | :-------: |:---------------: |
| :------------------: | :---------------: | :-------: |:---------------: |
| release/2.1 | >= 2.1.0 | 2.1 |
--
|
| release/2.1 | >= 2.1.0 | 2.1 |
量化模型导出依赖最新Paddle develop分支,可在
[
PaddlePaddle每日版本
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev
)
中下载安装
|
| release/2.0 | >= 2.0.1 | 2.0 | 量化依赖Paddle 2.1及PaddleSlim 2.1 |
| release/2.0 | >= 2.0.1 | 2.0 | 量化依赖Paddle 2.1及PaddleSlim 2.1 |
...
@@ -107,7 +107,7 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
...
@@ -107,7 +107,7 @@ python tools/export_model.py -c configs/{MODEL.yml} --slim_config configs/slim/{
#### COCO上benchmark
#### COCO上benchmark
| 模型 | 压缩策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | 预测时延(SD855) | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| 模型 | 压缩策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | 预测时延(SD855) | Box AP | 下载 | 模型配置文件 | 压缩算法配置文件 |
| :---------: | :-------: | :------------: |:-------------: | :------: | :-------------: | :------: | :-----------------------------------------------------: |:-------------: | :------: |
| :---------: | :-------: | :------------: |:-------------: | :------: | :-------------: | :------: | :-----------------------------------------------------: |:-------------: | :------: |
| PP-YOLO-MobileNetV3_large | baseline | -- | 18.5 | 608 | 25.1ms | 2
4.3
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_large_coco.yml
)
| - |
| PP-YOLO-MobileNetV3_large | baseline | -- | 18.5 | 608 | 25.1ms | 2
3.2
|
[
下载链接
](
https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_large_coco.yml
)
| - |
| PP-YOLO-MobileNetV3_large | 剪裁-FPGM | -37% | 12.6 | 608 | - | 22.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/slim/ppyolo_mbv3_large_prune_fpgm.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_large_coco.yml
)
|
[
slim配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml
)
|
| PP-YOLO-MobileNetV3_large | 剪裁-FPGM | -37% | 12.6 | 608 | - | 22.3 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/slim/ppyolo_mbv3_large_prune_fpgm.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_large_coco.yml
)
|
[
slim配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/prune/ppyolo_mbv3_large_prune_fpgm.yml
)
|
| YOLOv3-DarkNet53 | baseline | -- | 238.2 | 608 | - | 39.0 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml
)
| - |
| YOLOv3-DarkNet53 | baseline | -- | 238.2 | 608 | - | 39.0 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_large_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml
)
| - |
| YOLOv3-DarkNet53 | 剪裁-FPGM | -24% | - | 608 | - | 37.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/slim/yolov3_darknet_prune_fpgm.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml
)
|
[
slim配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/prune/yolov3_darknet_prune_fpgm.yml
)
|
| YOLOv3-DarkNet53 | 剪裁-FPGM | -24% | - | 608 | - | 37.6 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/slim/yolov3_darknet_prune_fpgm.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_darknet53_270e_coco.yml
)
|
[
slim配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/prune/yolov3_darknet_prune_fpgm.yml
)
|
...
...
deploy/TENSOR_RT.md
浏览文件 @
d6f38b0c
...
@@ -8,7 +8,9 @@ TensorRT是NVIDIA提出的用于统一模型部署的加速库,可以应用于
...
@@ -8,7 +8,9 @@ TensorRT是NVIDIA提出的用于统一模型部署的加速库,可以应用于
-
如果Python和CPP官网没有提供已编译好的安装包或预测库,请参考
[
源码安装
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/install/compile/linux-compile.html
)
自行编译
-
如果Python和CPP官网没有提供已编译好的安装包或预测库,请参考
[
源码安装
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/install/compile/linux-compile.html
)
自行编译
注意,您的机器上TensorRT的版本需要跟您使用的预测库中TensorRT版本保持一致。
**注意:**
-
您的机器上TensorRT的版本需要跟您使用的预测库中TensorRT版本保持一致。
-
PaddleDetection中部署预测要求TensorRT版本 > 6.0。
## 2. 导出模型
## 2. 导出模型
模型导出具体请参考文档
[
PaddleDetection模型导出教程
](
../EXPORT_MODEL.md
)
。
模型导出具体请参考文档
[
PaddleDetection模型导出教程
](
../EXPORT_MODEL.md
)
。
...
@@ -31,7 +33,6 @@ config->EnableTensorRtEngine(1 << 20 /*workspace_size*/,
...
@@ -31,7 +33,6 @@ config->EnableTensorRtEngine(1 << 20 /*workspace_size*/,
```
```
### 3.2 TensorRT固定尺寸预测
### 3.2 TensorRT固定尺寸预测
TensorRT版本<=5时,使用TensorRT预测时,只支持固定尺寸输入。
在导出模型时指定模型输入尺寸,设置
`TestReader.inputs_def.image_shape=[3,640,640]`
,具体请参考
[
PaddleDetection模型导出教程
](
../EXPORT_MODEL.md
)
。
在导出模型时指定模型输入尺寸,设置
`TestReader.inputs_def.image_shape=[3,640,640]`
,具体请参考
[
PaddleDetection模型导出教程
](
../EXPORT_MODEL.md
)
。
...
...
deploy/cpp/include/config_parser.h
浏览文件 @
d6f38b0c
...
@@ -91,13 +91,6 @@ class ConfigPaser {
...
@@ -91,13 +91,6 @@ class ConfigPaser {
return
false
;
return
false
;
}
}
if
(
config
[
"image_shape"
].
IsDefined
())
{
image_shape_
=
config
[
"image_shape"
].
as
<
std
::
vector
<
int
>>
();
}
else
{
std
::
cerr
<<
"Please set image_shape."
<<
std
::
endl
;
return
false
;
}
return
true
;
return
true
;
}
}
std
::
string
mode_
;
std
::
string
mode_
;
...
@@ -106,7 +99,6 @@ class ConfigPaser {
...
@@ -106,7 +99,6 @@ class ConfigPaser {
int
min_subgraph_size_
;
int
min_subgraph_size_
;
YAML
::
Node
preprocess_info_
;
YAML
::
Node
preprocess_info_
;
std
::
vector
<
std
::
string
>
label_list_
;
std
::
vector
<
std
::
string
>
label_list_
;
std
::
vector
<
int
>
image_shape_
;
};
};
}
// namespace PaddleDetection
}
// namespace PaddleDetection
...
...
deploy/cpp/include/object_detector.h
浏览文件 @
d6f38b0c
...
@@ -82,8 +82,7 @@ class ObjectDetector {
...
@@ -82,8 +82,7 @@ class ObjectDetector {
config_
.
load_config
(
model_dir
);
config_
.
load_config
(
model_dir
);
this
->
min_subgraph_size_
=
config_
.
min_subgraph_size_
;
this
->
min_subgraph_size_
=
config_
.
min_subgraph_size_
;
threshold_
=
config_
.
draw_threshold_
;
threshold_
=
config_
.
draw_threshold_
;
image_shape_
=
config_
.
image_shape_
;
preprocessor_
.
Init
(
config_
.
preprocess_info_
);
preprocessor_
.
Init
(
config_
.
preprocess_info_
,
image_shape_
);
LoadModel
(
model_dir
,
batch_size
,
run_mode
);
LoadModel
(
model_dir
,
batch_size
,
run_mode
);
}
}
...
@@ -134,7 +133,6 @@ class ObjectDetector {
...
@@ -134,7 +133,6 @@ class ObjectDetector {
std
::
vector
<
int
>
out_bbox_num_data_
;
std
::
vector
<
int
>
out_bbox_num_data_
;
float
threshold_
;
float
threshold_
;
ConfigPaser
config_
;
ConfigPaser
config_
;
std
::
vector
<
int
>
image_shape_
;
};
};
}
// namespace PaddleDetection
}
// namespace PaddleDetection
deploy/cpp/include/preprocess_op.h
浏览文件 @
d6f38b0c
...
@@ -48,19 +48,19 @@ class ImageBlob {
...
@@ -48,19 +48,19 @@ class ImageBlob {
// Abstraction of preprocessing opration class
// Abstraction of preprocessing opration class
class
PreprocessOp
{
class
PreprocessOp
{
public:
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
,
const
std
::
vector
<
int
>
image_shape
)
=
0
;
virtual
void
Init
(
const
YAML
::
Node
&
item
)
=
0
;
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
=
0
;
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
)
=
0
;
};
};
class
InitInfo
:
public
PreprocessOp
{
class
InitInfo
:
public
PreprocessOp
{
public:
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
,
const
std
::
vector
<
int
>
image_shape
)
{}
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
};
};
class
NormalizeImage
:
public
PreprocessOp
{
class
NormalizeImage
:
public
PreprocessOp
{
public:
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
,
const
std
::
vector
<
int
>
image_shape
)
{
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{
mean_
=
item
[
"mean"
].
as
<
std
::
vector
<
float
>>
();
mean_
=
item
[
"mean"
].
as
<
std
::
vector
<
float
>>
();
scale_
=
item
[
"std"
].
as
<
std
::
vector
<
float
>>
();
scale_
=
item
[
"std"
].
as
<
std
::
vector
<
float
>>
();
is_scale_
=
item
[
"is_scale"
].
as
<
bool
>
();
is_scale_
=
item
[
"is_scale"
].
as
<
bool
>
();
...
@@ -77,21 +77,18 @@ class NormalizeImage : public PreprocessOp {
...
@@ -77,21 +77,18 @@ class NormalizeImage : public PreprocessOp {
class
Permute
:
public
PreprocessOp
{
class
Permute
:
public
PreprocessOp
{
public:
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
,
const
std
::
vector
<
int
>
image_shape
)
{}
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{}
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
virtual
void
Run
(
cv
::
Mat
*
im
,
ImageBlob
*
data
);
};
};
class
Resize
:
public
PreprocessOp
{
class
Resize
:
public
PreprocessOp
{
public:
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
,
const
std
::
vector
<
int
>
image_shape
)
{
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{
interp_
=
item
[
"interp"
].
as
<
int
>
();
interp_
=
item
[
"interp"
].
as
<
int
>
();
//max_size_ = item["target_size"].as<int>();
//max_size_ = item["target_size"].as<int>();
keep_ratio_
=
item
[
"keep_ratio"
].
as
<
bool
>
();
keep_ratio_
=
item
[
"keep_ratio"
].
as
<
bool
>
();
target_size_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
();
target_size_
=
item
[
"target_size"
].
as
<
std
::
vector
<
int
>>
();
if
(
item
[
"keep_ratio"
])
{
in_net_shape_
=
image_shape
;
}
}
}
// Compute best resize scale for x-dimension, y-dimension
// Compute best resize scale for x-dimension, y-dimension
...
@@ -109,7 +106,7 @@ class Resize : public PreprocessOp {
...
@@ -109,7 +106,7 @@ class Resize : public PreprocessOp {
// Models with FPN need input shape % stride == 0
// Models with FPN need input shape % stride == 0
class
PadStride
:
public
PreprocessOp
{
class
PadStride
:
public
PreprocessOp
{
public:
public:
virtual
void
Init
(
const
YAML
::
Node
&
item
,
const
std
::
vector
<
int
>
image_shape
)
{
virtual
void
Init
(
const
YAML
::
Node
&
item
)
{
stride_
=
item
[
"stride"
].
as
<
int
>
();
stride_
=
item
[
"stride"
].
as
<
int
>
();
}
}
...
@@ -121,14 +118,14 @@ class PadStride : public PreprocessOp {
...
@@ -121,14 +118,14 @@ class PadStride : public PreprocessOp {
class
Preprocessor
{
class
Preprocessor
{
public:
public:
void
Init
(
const
YAML
::
Node
&
config_node
,
const
std
::
vector
<
int
>
image_shape
)
{
void
Init
(
const
YAML
::
Node
&
config_node
)
{
// initialize image info at first
// initialize image info at first
ops_
[
"InitInfo"
]
=
std
::
make_shared
<
InitInfo
>
();
ops_
[
"InitInfo"
]
=
std
::
make_shared
<
InitInfo
>
();
for
(
const
auto
&
item
:
config_node
)
{
for
(
const
auto
&
item
:
config_node
)
{
auto
op_name
=
item
[
"type"
].
as
<
std
::
string
>
();
auto
op_name
=
item
[
"type"
].
as
<
std
::
string
>
();
ops_
[
op_name
]
=
CreateOp
(
op_name
);
ops_
[
op_name
]
=
CreateOp
(
op_name
);
ops_
[
op_name
]
->
Init
(
item
,
image_shape
);
ops_
[
op_name
]
->
Init
(
item
);
}
}
}
}
...
...
deploy/python/infer.py
浏览文件 @
d6f38b0c
...
@@ -99,8 +99,7 @@ class Detector(object):
...
@@ -99,8 +99,7 @@ class Detector(object):
input_im_lst
=
[]
input_im_lst
=
[]
input_im_info_lst
=
[]
input_im_info_lst
=
[]
for
im_path
in
image_list
:
for
im_path
in
image_list
:
im
,
im_info
=
preprocess
(
im_path
,
preprocess_ops
,
im
,
im_info
=
preprocess
(
im_path
,
preprocess_ops
)
self
.
pred_config
.
input_shape
)
input_im_lst
.
append
(
im
)
input_im_lst
.
append
(
im
)
input_im_info_lst
.
append
(
im_info
)
input_im_info_lst
.
append
(
im_info
)
inputs
=
create_inputs
(
input_im_lst
,
input_im_info_lst
)
inputs
=
create_inputs
(
input_im_lst
,
input_im_info_lst
)
...
@@ -141,12 +140,12 @@ class Detector(object):
...
@@ -141,12 +140,12 @@ class Detector(object):
'''
'''
self
.
det_times
.
preprocess_time_s
.
start
()
self
.
det_times
.
preprocess_time_s
.
start
()
inputs
=
self
.
preprocess
(
image_list
)
inputs
=
self
.
preprocess
(
image_list
)
self
.
det_times
.
preprocess_time_s
.
end
()
np_boxes
,
np_masks
=
None
,
None
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
self
.
det_times
.
preprocess_time_s
.
end
()
for
i
in
range
(
warmup
):
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
output_names
=
self
.
predictor
.
get_output_names
()
...
@@ -236,14 +235,14 @@ class DetectorSOLOv2(Detector):
...
@@ -236,14 +235,14 @@ class DetectorSOLOv2(Detector):
'cate_label': label of segm, shape:[N]
'cate_label': label of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'cate_score': confidence score of segm, shape:[N]
'''
'''
self
.
det_times
.
p
ost
process_time_s
.
start
()
self
.
det_times
.
p
re
process_time_s
.
start
()
inputs
=
self
.
preprocess
(
image
)
inputs
=
self
.
preprocess
(
image
)
self
.
det_times
.
preprocess_time_s
.
end
()
np_label
,
np_score
,
np_segms
=
None
,
None
,
None
np_label
,
np_score
,
np_segms
=
None
,
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
self
.
det_times
.
postprocess_time_s
.
end
()
for
i
in
range
(
warmup
):
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
output_names
=
self
.
predictor
.
get_output_names
()
...
@@ -331,7 +330,6 @@ class PredictConfig():
...
@@ -331,7 +330,6 @@ class PredictConfig():
self
.
mask
=
False
self
.
mask
=
False
if
'mask'
in
yml_conf
:
if
'mask'
in
yml_conf
:
self
.
mask
=
yml_conf
[
'mask'
]
self
.
mask
=
yml_conf
[
'mask'
]
self
.
input_shape
=
yml_conf
[
'image_shape'
]
self
.
print_config
()
self
.
print_config
()
def
check_model
(
self
,
yml_conf
):
def
check_model
(
self
,
yml_conf
):
...
...
deploy/python/keypoint_infer.py
浏览文件 @
d6f38b0c
...
@@ -88,8 +88,7 @@ class KeyPoint_Detector(object):
...
@@ -88,8 +88,7 @@ class KeyPoint_Detector(object):
new_op_info
=
op_info
.
copy
()
new_op_info
=
op_info
.
copy
()
op_type
=
new_op_info
.
pop
(
'type'
)
op_type
=
new_op_info
.
pop
(
'type'
)
preprocess_ops
.
append
(
eval
(
op_type
)(
**
new_op_info
))
preprocess_ops
.
append
(
eval
(
op_type
)(
**
new_op_info
))
im
,
im_info
=
preprocess
(
im
,
preprocess_ops
,
im
,
im_info
=
preprocess
(
im
,
preprocess_ops
)
self
.
pred_config
.
input_shape
)
inputs
=
create_inputs
(
im
,
im_info
)
inputs
=
create_inputs
(
im
,
im_info
)
return
inputs
return
inputs
...
@@ -213,7 +212,6 @@ class PredictConfig_KeyPoint():
...
@@ -213,7 +212,6 @@ class PredictConfig_KeyPoint():
self
.
tagmap
=
False
self
.
tagmap
=
False
if
'keypoint_bottomup'
==
self
.
archcls
:
if
'keypoint_bottomup'
==
self
.
archcls
:
self
.
tagmap
=
True
self
.
tagmap
=
True
self
.
input_shape
=
yml_conf
[
'image_shape'
]
self
.
print_config
()
self
.
print_config
()
def
check_model
(
self
,
yml_conf
):
def
check_model
(
self
,
yml_conf
):
...
...
deploy/python/preprocess.py
浏览文件 @
d6f38b0c
...
@@ -47,11 +47,7 @@ class Resize(object):
...
@@ -47,11 +47,7 @@ class Resize(object):
interp (int): method of resize
interp (int): method of resize
"""
"""
def
__init__
(
def
__init__
(
self
,
target_size
,
keep_ratio
=
True
,
interp
=
cv2
.
INTER_LINEAR
):
self
,
target_size
,
keep_ratio
=
True
,
interp
=
cv2
.
INTER_LINEAR
,
):
if
isinstance
(
target_size
,
int
):
if
isinstance
(
target_size
,
int
):
target_size
=
[
target_size
,
target_size
]
target_size
=
[
target_size
,
target_size
]
self
.
target_size
=
target_size
self
.
target_size
=
target_size
...
@@ -81,14 +77,6 @@ class Resize(object):
...
@@ -81,14 +77,6 @@ class Resize(object):
im_info
[
'im_shape'
]
=
np
.
array
(
im
.
shape
[:
2
]).
astype
(
'float32'
)
im_info
[
'im_shape'
]
=
np
.
array
(
im
.
shape
[:
2
]).
astype
(
'float32'
)
im_info
[
'scale_factor'
]
=
np
.
array
(
im_info
[
'scale_factor'
]
=
np
.
array
(
[
im_scale_y
,
im_scale_x
]).
astype
(
'float32'
)
[
im_scale_y
,
im_scale_x
]).
astype
(
'float32'
)
# padding im when image_shape fixed by infer_cfg.yml
if
self
.
keep_ratio
and
im_info
[
'input_shape'
][
1
]
!=
-
1
:
max_size
=
im_info
[
'input_shape'
][
1
]
padding_im
=
np
.
zeros
(
(
max_size
,
max_size
,
im_channel
),
dtype
=
np
.
float32
)
im_h
,
im_w
=
im
.
shape
[:
2
]
padding_im
[:
im_h
,
:
im_w
,
:]
=
im
im
=
padding_im
return
im
,
im_info
return
im
,
im_info
def
generate_scale
(
self
,
im
):
def
generate_scale
(
self
,
im
):
...
@@ -205,13 +193,12 @@ class PadStride(object):
...
@@ -205,13 +193,12 @@ class PadStride(object):
return
padding_im
,
im_info
return
padding_im
,
im_info
def
preprocess
(
im
,
preprocess_ops
,
input_shape
):
def
preprocess
(
im
,
preprocess_ops
):
# process image by preprocess_ops
# process image by preprocess_ops
im_info
=
{
im_info
=
{
'scale_factor'
:
np
.
array
(
'scale_factor'
:
np
.
array
(
[
1.
,
1.
],
dtype
=
np
.
float32
),
[
1.
,
1.
],
dtype
=
np
.
float32
),
'im_shape'
:
None
,
'im_shape'
:
None
,
'input_shape'
:
input_shape
,
}
}
im
,
im_info
=
decode_image
(
im
,
im_info
)
im
,
im_info
=
decode_image
(
im
,
im_info
)
for
operator
in
preprocess_ops
:
for
operator
in
preprocess_ops
:
...
...
ppdet/engine/export_utils.py
浏览文件 @
d6f38b0c
...
@@ -58,9 +58,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
...
@@ -58,9 +58,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
for
key
,
value
in
st
.
items
():
for
key
,
value
in
st
.
items
():
p
=
{
'type'
:
key
}
p
=
{
'type'
:
key
}
if
key
==
'Resize'
:
if
key
==
'Resize'
:
if
value
.
get
(
'keep_ratio'
,
False
)
and
int
(
image_shape
[
1
])
!=
-
1
:
if
int
(
image_shape
[
1
])
!=
-
1
:
max_size
=
max
(
image_shape
[
1
:])
image_shape
=
[
3
,
max_size
,
max_size
]
value
[
'target_size'
]
=
image_shape
[
1
:]
value
[
'target_size'
]
=
image_shape
[
1
:]
p
.
update
(
value
)
p
.
update
(
value
)
preprocess_list
.
append
(
p
)
preprocess_list
.
append
(
p
)
...
@@ -76,7 +74,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
...
@@ -76,7 +74,7 @@ def _parse_reader(reader_cfg, dataset_cfg, metric, arch, image_shape):
})
})
break
break
return
preprocess_list
,
label_list
,
image_shape
return
preprocess_list
,
label_list
def
_dump_infer_config
(
config
,
path
,
image_shape
,
model
):
def
_dump_infer_config
(
config
,
path
,
image_shape
,
model
):
...
@@ -87,7 +85,6 @@ def _dump_infer_config(config, path, image_shape, model):
...
@@ -87,7 +85,6 @@ def _dump_infer_config(config, path, image_shape, model):
'mode'
:
'fluid'
,
'mode'
:
'fluid'
,
'draw_threshold'
:
0.5
,
'draw_threshold'
:
0.5
,
'metric'
:
config
[
'metric'
],
'metric'
:
config
[
'metric'
],
'image_shape'
:
image_shape
})
})
infer_arch
=
config
[
'architecture'
]
infer_arch
=
config
[
'architecture'
]
...
@@ -107,8 +104,7 @@ def _dump_infer_config(config, path, image_shape, model):
...
@@ -107,8 +104,7 @@ def _dump_infer_config(config, path, image_shape, model):
label_arch
=
'detection_arch'
label_arch
=
'detection_arch'
if
infer_arch
in
KEYPOINT_ARCH
:
if
infer_arch
in
KEYPOINT_ARCH
:
label_arch
=
'keypoint_arch'
label_arch
=
'keypoint_arch'
infer_cfg
[
'Preprocess'
],
infer_cfg
[
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
]
=
_parse_reader
(
'label_list'
],
image_shape
=
_parse_reader
(
config
[
'TestReader'
],
config
[
'TestDataset'
],
config
[
'metric'
],
config
[
'TestReader'
],
config
[
'TestDataset'
],
config
[
'metric'
],
label_arch
,
image_shape
)
label_arch
,
image_shape
)
...
@@ -119,4 +115,3 @@ def _dump_infer_config(config, path, image_shape, model):
...
@@ -119,4 +115,3 @@ def _dump_infer_config(config, path, image_shape, model):
yaml
.
dump
(
infer_cfg
,
open
(
path
,
'w'
))
yaml
.
dump
(
infer_cfg
,
open
(
path
,
'w'
))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
path
)))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
path
)))
return
image_shape
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录