Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
d4b461eb
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d4b461eb
编写于
3月 01, 2019
作者:
C
chengduo
提交者:
ceci3
3月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Unified ParallelExecutor and Compiler (#15970)
* Unified ParallelExecutor and Compiler
上级
ea9d6731
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
65 addition
and
179 deletion
+65
-179
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
...uid/framework/details/fast_threaded_ssa_graph_executor.cc
+3
-1
python/paddle/fluid/compiler.py
python/paddle/fluid/compiler.py
+43
-29
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+0
-9
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+19
-140
未找到文件。
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
浏览文件 @
d4b461eb
...
...
@@ -12,7 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
...
...
@@ -55,7 +57,7 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
std
::
vector
<
FetchOpHandle
*>
fetch_ops
;
for
(
auto
&
fetch_var_name
:
fetch_tensors
)
{
for
(
auto
&
var_map
:
graph_
->
Get
<
details
::
GraphVars
>
(
"vars"
))
{
for
(
auto
&
var_map
:
graph_
->
Get
<
details
::
GraphVars
>
(
details
::
kGraphVars
))
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
*
it
->
second
.
rbegin
());
...
...
python/paddle/fluid/compiler.py
浏览文件 @
d4b461eb
...
...
@@ -17,7 +17,6 @@ import os
import
six
import
sys
from
..
import
compat
as
cpt
from
.
import
framework
from
.
import
core
from
.
import
framework
...
...
@@ -36,6 +35,30 @@ def _place_obj(place):
return
p
def
_is_pserver_mode
(
main_program
):
main
=
main_program
if
main_program
\
else
default_main_program
()
for
op
in
main
.
global_block
().
ops
:
if
op
.
type
in
[
"send"
,
"recv"
]:
return
True
return
False
def
get_available_places
(
use_cuda
):
if
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())]
places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
places
,
"no place for execution"
return
places
class
CompiledProgram
(
object
):
"""
Compiles to Graph for execution.
...
...
@@ -127,8 +150,7 @@ class CompiledProgram(object):
self
.
_exec_strategy
=
ExecutionStrategy
()
if
self
.
_build_strategy
is
None
:
self
.
_build_strategy
=
BuildStrategy
()
self
.
_build_strategy
.
is_distribution
=
framework
.
is_pserver_mode
(
self
.
_program
)
self
.
_build_strategy
.
is_distribution
=
_is_pserver_mode
(
self
.
_program
)
return
self
def
with_inference_optimize
(
self
,
config
):
...
...
@@ -153,9 +175,9 @@ class CompiledProgram(object):
def
_with_distributed
(
self
):
raise
NotImplementedError
()
def
_compile_data_parallel
(
self
):
def
_compile_data_parallel
(
self
,
use_cuda
=
False
,
scope
=
None
):
if
self
.
_share_vars_from
:
if
s
elf
.
_s
cope
:
if
scope
:
sys
.
stderr
.
write
(
"share_vars_from is set, scope is ignored.
\n
"
)
if
not
self
.
_share_vars_from
.
_is_data_parallel
:
raise
ValueError
(
"share_vars_from is not data parallel. Cannot "
...
...
@@ -166,23 +188,11 @@ class CompiledProgram(object):
"var to share."
)
self
.
_local_scopes
=
self
.
_share_vars_from
.
_executor
.
local_scopes
()
else
:
assert
scope
is
not
None
,
""
self
.
_local_scopes
=
[]
self
.
_exec_strategy
.
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
)
if
self
.
_exec_strategy
.
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())
]
self
.
_places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
self
.
_places
,
"no place for execution"
self
.
_exec_strategy
.
use_cuda
=
use_cuda
self
.
_places
=
get_available_places
(
self
.
_exec_strategy
.
use_cuda
)
if
self
.
_exec_strategy
.
num_threads
==
0
:
if
self
.
_exec_strategy
.
use_cuda
:
...
...
@@ -197,9 +207,11 @@ class CompiledProgram(object):
# FIXME(dzhwinter): enable_inplace should be after memory_optimize
# if turn on python memory optimize, turn off the inplace_pass.
if
self
.
_build_strategy
.
memory_optimize
is
None
:
self
.
_build_strategy
.
memory_optimize
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
self
.
_build_strategy
.
memory_optimize
=
False
\
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
if
self
.
_build_strategy
.
enable_inplace
is
None
:
self
.
_build_strategy
.
enable_inplace
=
False
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
self
.
_build_strategy
.
enable_inplace
=
False
\
if
self
.
_program
and
self
.
_program
.
_is_mem_optimized
else
True
# TODO(wuyi): trainer endpoings should be passed in through
# build_strategy, not program.xxx.
...
...
@@ -221,12 +233,12 @@ class CompiledProgram(object):
places
=
list
(
map
(
_place_obj
,
self
.
_places
))
return
core
.
ParallelExecutor
(
places
,
return
core
.
ParallelExecutor
(
places
,
set
(
self
.
_persistable_vars
),
cpt
.
to_text
(
self
.
_loss_name
)
if
self
.
_loss_name
else
six
.
u
(
''
),
self
.
_scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
,
self
.
_graph
)
if
self
.
_loss_name
else
six
.
u
(
''
),
scope
,
self
.
_local_scopes
,
self
.
_exec_strategy
,
self
.
_build_strategy
,
self
.
_graph
)
def
_compile_inference
(
self
):
return
core
.
create_paddle_predictor
(
self
.
_infer_config
)
...
...
@@ -253,7 +265,9 @@ class CompiledProgram(object):
self
.
_scope
=
scope
self
.
_place
=
place
if
self
.
_is_data_parallel
:
self
.
_executor
=
self
.
_compile_data_parallel
()
self
.
_executor
=
self
.
_compile_data_parallel
(
use_cuda
=
isinstance
(
self
.
_place
,
core
.
CUDAPlace
),
scope
=
self
.
_scope
)
elif
self
.
_is_inference
:
self
.
_executor
=
self
.
_compile_inference
()
else
:
...
...
python/paddle/fluid/framework.py
浏览文件 @
d4b461eb
...
...
@@ -87,15 +87,6 @@ def _current_expected_place():
return
_imperative_current_expected_place_
def
is_pserver_mode
(
main_program
):
main
=
main_program
if
main_program
\
else
default_main_program
()
for
op
in
main
.
global_block
().
ops
:
if
op
.
type
in
[
"send"
,
"recv"
]:
return
True
return
False
class
NameScope
(
object
):
def
__init__
(
self
,
name
=
""
,
parent
=
None
):
self
.
_children
=
dict
()
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
d4b461eb
...
...
@@ -13,15 +13,11 @@
# limitations under the License.
from
__future__
import
print_function
import
multiprocessing
from
.
import
core
from
.
import
framework
from
.
import
executor
from
..
import
compat
as
cpt
import
warnings
from
.
import
compiler
import
sys
import
six
import
os
__all__
=
[
'ParallelExecutor'
]
...
...
@@ -97,99 +93,27 @@ class ParallelExecutor(object):
'Please use CompiledProgram and Executor. CompiledProgram '
'is a central place for optimization and Executor is the '
'unified executor. Example can be found in compiler.py.
\n
'
)
# step1: get places, the places are used in run too.
self
.
_places
=
[]
if
use_cuda
:
gpus_env
=
os
.
getenv
(
"FLAGS_selected_gpus"
)
if
gpus_env
:
gpus
=
[
int
(
s
)
for
s
in
gpus_env
.
split
(
","
)]
else
:
gpus
=
[
i
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
())
]
self
.
_places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
gpus
]
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
self
.
_places
=
[
core
.
CPUPlace
()
for
_
in
six
.
moves
.
range
(
cpu_num
)]
assert
self
.
_places
,
"no place for execution"
# step2: init exec_strategy
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
exec_strategy
.
use_cuda
=
use_cuda
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# step3: init build_strategy
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
build_strategy
.
num_trainers
=
num_trainers
build_strategy
.
trainer_id
=
trainer_id
# FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
# num_trainers is 1, so the current fields of build_strategy doesn't tell if
# it's distributed model.
build_strategy
.
is_distribution
=
framework
.
is_pserver_mode
(
main_program
)
or
num_trainers
>
1
# step4: get main_program, scope, local_scopes
main
=
main_program
if
main_program
\
else
framework
.
default_main_program
()
# FIXME(dzhwinter): enable_inplace should be after memory_optimize
# if turn on python memory optimize, turn off the inplace_pass.
if
build_strategy
.
memory_optimize
is
None
:
build_strategy
.
memory_optimize
=
False
if
main
.
_is_mem_optimized
else
True
if
build_strategy
.
enable_inplace
is
None
:
build_strategy
.
enable_inplace
=
False
if
main
.
_is_mem_optimized
else
True
scope
=
scope
if
scope
is
not
None
else
executor
.
global_scope
()
if
share_vars_from
and
not
isinstance
(
share_vars_from
,
ParallelExecutor
):
raise
TypeError
(
"share_vars_from must be ParallelExecutor."
)
local_scopes
=
share_vars_from
.
executor
.
local_scopes
()
\
if
share_vars_from
else
[]
# step5: check trainers_endpoints, it is used for distribution.
trainers_endpoints
=
main
.
_trainers_endpoints
if
num_trainers
>
1
and
trainers_endpoints
:
assert
num_trainers
==
len
(
trainers_endpoints
),
"num_trainers == len(endpoints)"
build_strategy
.
trainers_endpoints
=
trainers_endpoints
# step6: get persistable_vars, places. persistable_vars
# need be broadcast to other local_scope.
persistable_vars
=
set
([
cpt
.
to_text
(
v
.
name
)
for
v
in
[
var
for
var
in
main
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
])
def
place_obj
(
place
):
p
=
core
.
Place
()
p
.
set_place
(
place
)
return
p
places
=
list
(
map
(
place_obj
,
self
.
_places
))
# step7: init ParallelExecutor
# ParallelExecutor API will be deprecated, don't support parallel graph.
self
.
_graph
=
core
.
Graph
(
main
.
desc
)
self
.
_places
=
compiler
.
get_available_places
(
use_cuda
)
self
.
_scope
=
scope
if
scope
is
not
None
else
executor
.
global_scope
()
self
.
executor
=
core
.
ParallelExecutor
(
places
,
persistable_vars
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
self
.
_graph
)
main_program
=
main_program
if
main_program
is
not
None
\
else
framework
.
default_main_program
()
self
.
scope
=
scope
self
.
_compiled_program
=
compiler
.
CompiledProgram
(
main_program
)
self
.
_compiled_program
.
with_data_parallel
(
loss_name
=
loss_name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
,
share_vars_from
=
share_vars_from
)
self
.
_place
=
core
.
CUDAPlace
(
0
)
if
use_cuda
else
core
.
CPUPlace
()
self
.
_executor
=
executor
.
Executor
(
self
.
_place
)
self
.
_compiled_program
.
_compile
(
place
=
self
.
_place
,
scope
=
self
.
_scope
)
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
,
return_numpy
=
True
):
"""
...
...
@@ -256,56 +180,11 @@ class ParallelExecutor(object):
loss = pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))
"""
if
feed
is
None
and
feed_dict
is
not
None
:
feed
=
feed_dict
print
(
"`feed_dict` is deprecated. Please use `feed=`"
,
file
=
sys
.
stderr
)
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
for
feed_name
in
feed
:
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be splitted
# it is fast in CPU
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
self
.
executor
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
elif
isinstance
(
feed
,
list
)
or
isinstance
(
feed
,
tuple
):
if
len
(
feed
)
!=
len
(
self
.
_places
):
raise
ValueError
(
"Feed a list of tensor, the list should be the same size as places"
)
res
=
list
()
for
i
,
each
in
enumerate
(
feed
):
if
not
isinstance
(
each
,
dict
):
raise
TypeError
(
"Each element of feed list should be a dict"
)
res_dict
=
dict
()
for
feed_name
in
each
:
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
tensor
,
self
.
_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
res
.
append
(
res_dict
)
self
.
executor
.
feed_tensors_into_local_scopes
(
res
)
fetch_var_name
=
'fetch'
self
.
executor
.
run
(
fetch_list
,
fetch_var_name
)
arr
=
self
.
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
if
return_numpy
:
return
executor
.
as_numpy
(
arr
)
return
[
arr
[
i
]
for
i
in
range
(
len
(
arr
))]
return
self
.
_executor
.
run
(
program
=
self
.
_compiled_program
,
scope
=
self
.
_scope
,
feed
=
feed
,
fetch_list
=
fetch_list
,
return_numpy
=
return_numpy
)
@
property
def
device_count
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录