From d43fbbae748678fe87098536faaa880cff3206c2 Mon Sep 17 00:00:00 2001 From: xzl Date: Tue, 18 Jul 2017 22:08:20 +0800 Subject: [PATCH] add comments for python api --- .../paddle/trainer_config_helpers/layers.py | 68 ++++++++++++++++++- 1 file changed, 67 insertions(+), 1 deletion(-) diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 351bd8fea..f9457971c 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -2269,7 +2269,6 @@ def img_depthwise_conv_layer(input, name=None, num_channels=None, act=None, - groups=None, stride=1, padding=0, bias_attr=None, @@ -2281,11 +2280,78 @@ def img_depthwise_conv_layer(input, padding_y=None, trans=False, layer_type=None): + """ + DepthwiseConvolution layer for image. + + The details of depthwise convolution layer, please refer + https://arxiv.org/abs/1704.04861 + + The Depthwise Convolution layer must meet this requirement that the groups equals to the + inputChannels. And the groups must be divisible by outputChannels. + So the filter shape will be (groups, outputChannels/groups, 1, filter_size, filter_size_y) + + The example usage is: + + .. code-block:: python + + conv = img_depthwise_conv_layer(input=data, filter_size=1, filter_size_y=1, + num_channels=8, + num_filters=16, stride=1, + bias_attr=False, + act=ReluActivation()) + + :param name: Layer name. + :type name: basestring + :param input: Layer Input. + :type input: LayerOutput + :param filter_size: The x dimension of a filter kernel. Or input a tuple for + two image dimension. + :type filter_size: int|tuple|list + :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle + currently supports rectangular filters, the filter's + shape will be (filter_size, filter_size_y). + :type filter_size_y: int|None + :param num_filters: Each filter group's number of filter + :param act: Activation type. Default is tanh + :type act: BaseActivation + :param stride: The x dimension of the stride. Or input a tuple for two image + dimension. + :type stride: int|tuple|list + :param stride_y: The y dimension of the stride. + :type stride_y: int + :param padding: The x dimension of the padding. Or input a tuple for two + image dimension + :type padding: int|tuple|list + :param padding_y: The y dimension of the padding. + :type padding_y: int + :param bias_attr: DepthwiseConvolution bias attribute. None means default bias. + False means no bias. + :type bias_attr: ParameterAttribute|False + :param num_channels: number of input channels. If None will be set + automatically from previous output. + :type num_channels: int + :param param_attr: DepthwiseConvolution param attribute. None means default attribute + :type param_attr: ParameterAttribute + :param shared_biases: Is biases will be shared between filters or not. + :type shared_biases: bool + :param layer_attr: Layer Extra Attribute. + :type layer_attr: ExtraLayerAttribute + :param trans: true if it is a convTransLayer, false if it is a convLayer + :type trans: bool + :param layer_type: specify the layer_type, default is None. If trans=True, + layer_type has to be "exconvt" or "cudnn_convt", + otherwise layer_type has to be either "exconv" or + "cudnn_conv" + :type layer_type: String + :return: LayerOutput object. + :rtype: LayerOutput + """ if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters + # the groups in depthwise conv should be equal to input channels. groups = num_channels if filter_size_y is None: -- GitLab