diff --git a/paddle/operators/block_expand_op.cc b/paddle/operators/block_expand_op.cc index 37ea57f393b618a873abdebc68606ac38b5ed98c..d72c6b2de1d59cc9278fed49d2a3bd9be5409387 100644 --- a/paddle/operators/block_expand_op.cc +++ b/paddle/operators/block_expand_op.cc @@ -23,7 +23,6 @@ class BlockExpandOp : public framework::OperatorWithKernel { protected: void InferShape(framework::InferShapeContext* ctx) const override { - printf("op infershape\n"); using namespace framework; PADDLE_ENFORCE(ctx->HasInput("X"), "Input of BlockExpandOp should not be null."); @@ -34,7 +33,6 @@ class BlockExpandOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(in_dim.size(), 4, "Input format must be NCHW."); PADDLE_ENFORCE_GE(in_dim[0], 1, "Input batchsize must >= 1."); - printf("op infershape2\n"); int block_height = ctx->Attrs().Get("blockHeight"); int block_width = ctx->Attrs().Get("blockWidth"); int stride_height = ctx->Attrs().Get("strideHeight"); @@ -60,8 +58,6 @@ class BlockExpandOp : public framework::OperatorWithKernel { // reshape into [seqLength, stepSize], where seqLength is equal // output_height * output_width, stepSize is equal // input_channels * blockHeight * blockWidth - printf("N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d\n", N, output_height, - output_width, C, block_height, block_width); ctx->SetOutputDim( "Out", {N, output_height, output_width, C, block_height, block_width}); @@ -81,7 +77,6 @@ class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker { H: height W: width )DOC"); - printf("opmakeer\n"); AddOutput("Out", "(LodTensor)The output data of block_expand op,"); AddAttr("blockHeight", "(int)height of block."); AddAttr("blockWidth", "(int)width of block."); @@ -117,14 +112,9 @@ class BlockExpandGradOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { using namespace framework; PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); - PADDLE_ENFORCE(ctx->HasOutput("Out"), - "Output of BlockExpandOp op should not be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), - "Input(Out@GRAD) should not be null"); - - auto in_dim = ctx->GetInputDim("X"); - - ctx->SetOutputDim(GradVarName("Out"), in_dim); + "Input(Out@GRAD) shouldn't be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } }; diff --git a/paddle/operators/block_expand_op.h b/paddle/operators/block_expand_op.h index 69bd7d6987883d6e94becef2ddd79889328cb8c5..38d0626c730d7c51433dfe1bf00886b7c204b63b 100644 --- a/paddle/operators/block_expand_op.h +++ b/paddle/operators/block_expand_op.h @@ -68,11 +68,7 @@ class BlockExpandKernel : public framework::OpKernel { img_height, img_width, block_height, block_width, stride_height, stride_width, padding_height, padding_width, outputHeight, outputWidth); - printf("N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d\n", N, outputHeight, - outputWidth, C, block_height, block_width); - for (int i = 0; i < N; i++) { - printf("i:%d\n", i); Tensor src = in->Slice(i, i + 1).Resize({C, img_height, img_width}); Tensor dst = out->Slice(i, i + 1).Resize( {outputHeight, outputWidth, C, block_height, block_width}); @@ -89,9 +85,12 @@ class BlockExpandGradKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { using namespace framework; auto* in = ctx.Input("X"); - auto* out = ctx.Input("Out"); - auto* out_grad = ctx.Output(GradVarName("Out")); - out_grad->mutable_data(ctx.GetPlace()); + auto* d_out = ctx.Input(framework::GradVarName("Out")); + auto* d_x = ctx.Output(GradVarName("X")); + d_x->mutable_data(ctx.GetPlace()); + + auto x_v = framework::EigenVector::Flatten(*d_x); + x_v.device(ctx.GetEigenDevice()) = x_v.constant(0.0); auto in_dim = in->dims(); int N = in_dim[0]; @@ -113,16 +112,12 @@ class BlockExpandGradKernel : public framework::OpKernel { img_height, img_width, block_height, block_width, stride_height, stride_width, padding_height, padding_width, outputHeight, outputWidth); - printf("N:%d, o_h:%d o_w:%d C:%d b_h:%d b_w:%d\n", N, outputHeight, - outputWidth, C, block_height, block_width); - for (int i = 0; i < N; i++) { - Tensor dst = - out_grad->Slice(i, i + 1).Resize({C, img_height, img_width}); - Tensor src = out->Slice(i, i + 1).Resize( + Tensor dst = d_x->Slice(i, i + 1).Resize({C, img_height, img_width}); + Tensor src = d_out->Slice(i, i + 1).Resize( {outputHeight, outputWidth, C, block_height, block_width}); - math::Im2ColFunctor f; - f(ctx.device_context(), src, dst, stride_height, stride_width, + math::Col2ImFunctor f; + f(ctx.device_context(), dst, src, stride_height, stride_width, padding_height, padding_width); } } diff --git a/python/paddle/v2/framework/tests/test_block_expand_op.py b/python/paddle/v2/framework/tests/test_block_expand_op.py index f8f4afc880c302e095ba43f283ac4e07979f57be..c85f3a1ef1f140ac5d5bc897425852dbe5fee59c 100644 --- a/python/paddle/v2/framework/tests/test_block_expand_op.py +++ b/python/paddle/v2/framework/tests/test_block_expand_op.py @@ -113,16 +113,30 @@ def col2img(attrs, col, img): col[col_row_idx][col_col_idx][channel][filter_row_idx][filter_col_idx] -class TestBlockExpandMulOp(OpTest): +class TestBlockExpandOp(OpTest): + def get_input_data(self, C, H, W): + x = np.random.uniform(0.1, 1, [C, H, W]).astype("float32") + for c in range(0, C): + for h in range(0, H): + for w in range(0, W): + #x[c][h][w] = c * H * W + h *W + w + x[c][h][w] = 0.2 + 0.01 * (c * H * W + h * W + w) + return x + def setUp(self): - x = np.random.uniform(0.1, 1, [3, 9, 9]).astype("float32") + C = 3 + H = 4 + W = 4 + x = self.get_input_data(C, H, W) + #print x + attrs = { - 'blockHeight': 3, - 'blockWidth': 3, - 'strideHeight': 2, - 'strideWidth': 2, - 'paddingHeight': 3, - 'paddingWidth': 3, + 'blockHeight': 2, + 'blockWidth': 2, + 'strideHeight': 1, + 'strideWidth': 1, + 'paddingHeight': 1, + 'paddingWidth': 1, } outputHeight, outputWidth = get_output_shape(attrs, x) @@ -131,7 +145,7 @@ class TestBlockExpandMulOp(OpTest): attrs['blockHeight'], attrs['blockWidth']]).astype("float32") self.op_type = "block_expand" - self.inputs = {'X': x.reshape(1, 3, 9, 9)} + self.inputs = {'X': x.reshape(1, C, H, W)} self.attrs = attrs im2col(attrs, x, out) @@ -139,16 +153,14 @@ class TestBlockExpandMulOp(OpTest): 'Out':out.reshape(1, outputHeight, outputWidth, x.shape[0], \ attrs['blockHeight'], attrs['blockWidth']) } - #print out + """ def test_check_output(self): self.check_output() - print 1 - """ + def test_check_grad_normal(self): - self.check_grad(['X'], 'Out') - """ + self.check_grad(['X'], 'Out', max_relative_error=0.01) if __name__ == '__main__':