diff --git a/tools/cpp_infer.py b/tools/cpp_infer.py deleted file mode 100644 index 1165ed5378e34f76f41c18d06deb7ce6da30f742..0000000000000000000000000000000000000000 --- a/tools/cpp_infer.py +++ /dev/null @@ -1,630 +0,0 @@ -import os -import time - -import numpy as np -from PIL import Image, ImageDraw - -import paddle.fluid as fluid - -import argparse -import cv2 -import yaml -import copy - -import logging -FORMAT = '%(asctime)s-%(levelname)s: %(message)s' -logging.basicConfig(level=logging.INFO, format=FORMAT) -logger = logging.getLogger(__name__) - -precision_map = { - 'trt_int8': fluid.core.AnalysisConfig.Precision.Int8, - 'trt_fp32': fluid.core.AnalysisConfig.Precision.Float32, - 'trt_fp16': fluid.core.AnalysisConfig.Precision.Half -} - - -def create_config(model_path, mode='fluid', batch_size=1, min_subgraph_size=3): - model_file = os.path.join(model_path, '__model__') - params_file = os.path.join(model_path, '__params__') - config = fluid.core.AnalysisConfig(model_file, params_file) - config.enable_use_gpu(100, 0) - config.switch_use_feed_fetch_ops(False) - config.switch_specify_input_names(True) - logger.info('min_subgraph_size = %d.' % (min_subgraph_size)) - - if mode in precision_map.keys(): - config.enable_tensorrt_engine( - workspace_size=1 << 30, - max_batch_size=batch_size, - min_subgraph_size=min_subgraph_size, - precision_mode=precision_map[mode], - use_static=False, - use_calib_mode=mode == 'trt_int8') - logger.info('Run inference by {}.'.format(mode)) - elif mode == 'fluid': - logger.info('Run inference by Fluid FP32.') - else: - logger.fatal( - 'Wrong mode, only support trt_int8, trt_fp32, trt_fp16, fluid.') - return config - - -def offset_to_lengths(lod): - offset = lod[0] - lengths = [offset[i + 1] - offset[i] for i in range(len(offset) - 1)] - return [lengths] - - -def DecodeImage(im_path): - assert os.path.exists(im_path), "Image path {} can not be found".format( - im_path) - with open(im_path, 'rb') as f: - im = f.read() - data = np.frombuffer(im, dtype='uint8') - im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode - im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) - return im - - -def get_extra_info(im, arch, shape, scale): - info = [] - input_shape = [] - im_shape = [] - logger.info('The architecture is {}'.format(arch)) - if 'YOLO' in arch: - im_size = np.array([shape[:2]]).astype('int32') - logger.info('Extra info: im_size') - info.append(im_size) - elif arch in ['SSD', 'Face']: - im_shape = np.array([shape[:2]]).astype('int32') - logger.info('Extra info: im_shape') - info.append([im_shape]) - elif 'RetinaNet' in arch: - input_shape.extend(im.shape[2:]) - im_info = np.array([input_shape + [scale]]).astype('float32') - logger.info('Extra info: im_info') - info.append(im_info) - elif 'RCNN' in arch: - input_shape.extend(im.shape[2:]) - im_shape.extend(shape[:2]) - im_info = np.array([input_shape + [scale]]).astype('float32') - im_shape = np.array([im_shape + [1.]]).astype('float32') - logger.info('Extra info: im_info, im_shape') - info.append(im_info) - info.append(im_shape) - else: - logger.error( - "Unsupported arch: {}, expect YOLO, SSD, RetinaNet, RCNN and Face". - format(arch)) - return info - - -class Resize(object): - def __init__(self, - target_size, - max_size=0, - interp=cv2.INTER_LINEAR, - use_cv2=True, - image_shape=None): - super(Resize, self).__init__() - self.target_size = target_size - self.max_size = max_size - self.interp = interp - self.use_cv2 = use_cv2 - self.image_shape = image_shape - - def __call__(self, im): - origin_shape = im.shape[:2] - im_c = im.shape[2] - if self.max_size != 0: - im_size_min = np.min(origin_shape[0:2]) - im_size_max = np.max(origin_shape[0:2]) - im_scale = float(self.target_size) / float(im_size_min) - if np.round(im_scale * im_size_max) > self.max_size: - im_scale = float(self.max_size) / float(im_size_max) - im_scale_x = im_scale - im_scale_y = im_scale - resize_w = int(im_scale_x * float(origin_shape[1])) - resize_h = int(im_scale_y * float(origin_shape[0])) - else: - im_scale_x = float(self.target_size) / float(origin_shape[1]) - im_scale_y = float(self.target_size) / float(origin_shape[0]) - resize_w = self.target_size - resize_h = self.target_size - if self.use_cv2: - im = cv2.resize( - im, - None, - None, - fx=im_scale_x, - fy=im_scale_y, - interpolation=self.interp) - else: - if self.max_size != 0: - raise TypeError( - 'If you set max_size to cap the maximum size of image,' - 'please set use_cv2 to True to resize the image.') - im = im.astype('uint8') - im = Image.fromarray(im) - im = im.resize((int(resize_w), int(resize_h)), self.interp) - im = np.array(im) - # padding im - if self.max_size != 0 and self.image_shape is not None: - padding_im = np.zeros( - (self.max_size, self.max_size, im_c), dtype=np.float32) - im_h, im_w = im.shape[:2] - padding_im[:im_h, :im_w, :] = im - im = padding_im - return im, im_scale_x - - -class Normalize(object): - def __init__(self, mean, std, is_scale=True, is_channel_first=False): - super(Normalize, self).__init__() - self.mean = mean - self.std = std - self.is_scale = is_scale - self.is_channel_first = is_channel_first - - def __call__(self, im): - im = im.astype(np.float32, copy=False) - if self.is_channel_first: - mean = np.array(self.mean)[:, np.newaxis, np.newaxis] - std = np.array(self.std)[:, np.newaxis, np.newaxis] - else: - mean = np.array(self.mean)[np.newaxis, np.newaxis, :] - std = np.array(self.std)[np.newaxis, np.newaxis, :] - if self.is_scale: - im = im / 255.0 - im -= mean - im /= std - return im - - -class Permute(object): - def __init__(self, to_bgr=False, channel_first=True): - self.to_bgr = to_bgr - self.channel_first = channel_first - - def __call__(self, im): - if self.channel_first: - im = im.transpose((2, 0, 1)) - if self.to_bgr: - im = im[[2, 1, 0], :, :] - return im.copy() - - -class PadStride(object): - def __init__(self, stride=0): - assert stride >= 0, "Unsupported stride: {}," - " the stride in PadStride must be greater " - "or equal to 0".format(stride) - self.coarsest_stride = stride - - def __call__(self, im): - coarsest_stride = self.coarsest_stride - if coarsest_stride == 0: - return im - im_c, im_h, im_w = im.shape - pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride) - pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride) - padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32) - padding_im[:, :im_h, :im_w] = im - return padding_im - - -def Preprocess(img_path, arch, config): - img = DecodeImage(img_path) - orig_shape = img.shape - scale = 1. - data = [] - data_config = copy.deepcopy(config) - for data_aug_conf in data_config: - obj = data_aug_conf.pop('type') - preprocess = eval(obj)(**data_aug_conf) - if obj == 'Resize': - img, scale = preprocess(img) - else: - img = preprocess(img) - - img = img[np.newaxis, :] # N, C, H, W - data.append(img) - extra_info = get_extra_info(img, arch, orig_shape, scale) - data += extra_info - return data - - -def get_category_info(with_background, label_list): - if label_list[0] != 'background' and with_background: - label_list.insert(0, 'background') - if label_list[0] == 'background' and not with_background: - label_list = label_list[1:] - clsid2catid = {i: i for i in range(len(label_list))} - catid2name = {i: name for i, name in enumerate(label_list)} - return clsid2catid, catid2name - - -def clip_bbox(bbox): - xmin = max(min(bbox[0], 1.), 0.) - ymin = max(min(bbox[1], 1.), 0.) - xmax = max(min(bbox[2], 1.), 0.) - ymax = max(min(bbox[3], 1.), 0.) - return xmin, ymin, xmax, ymax - - -def bbox2out(results, clsid2catid, is_bbox_normalized=False): - """ - Args: - results: request a dict, should include: `bbox`, `im_id`, - if is_bbox_normalized=True, also need `im_shape`. - clsid2catid: class id to category id map of COCO2017 dataset. - is_bbox_normalized: whether or not bbox is normalized. - """ - xywh_res = [] - for t in results: - bboxes = t['bbox'][0] - lengths = t['bbox'][1][0] - if bboxes.shape == (1, 1) or bboxes is None: - continue - - k = 0 - for i in range(len(lengths)): - num = lengths[i] - for j in range(num): - dt = bboxes[k] - clsid, score, xmin, ymin, xmax, ymax = dt.tolist() - catid = (clsid2catid[int(clsid)]) - - if is_bbox_normalized: - xmin, ymin, xmax, ymax = \ - clip_bbox([xmin, ymin, xmax, ymax]) - w = xmax - xmin - h = ymax - ymin - im_shape = t['im_shape'][0][i].tolist() - im_height, im_width = int(im_shape[0]), int(im_shape[1]) - xmin *= im_width - ymin *= im_height - w *= im_width - h *= im_height - else: - w = xmax - xmin + 1 - h = ymax - ymin + 1 - - bbox = [xmin, ymin, w, h] - coco_res = {'category_id': catid, 'bbox': bbox, 'score': score} - xywh_res.append(coco_res) - k += 1 - return xywh_res - - -def expand_boxes(boxes, scale): - """ - Expand an array of boxes by a given scale. - """ - w_half = (boxes[:, 2] - boxes[:, 0]) * .5 - h_half = (boxes[:, 3] - boxes[:, 1]) * .5 - x_c = (boxes[:, 2] + boxes[:, 0]) * .5 - y_c = (boxes[:, 3] + boxes[:, 1]) * .5 - - w_half *= scale - h_half *= scale - - boxes_exp = np.zeros(boxes.shape) - boxes_exp[:, 0] = x_c - w_half - boxes_exp[:, 2] = x_c + w_half - boxes_exp[:, 1] = y_c - h_half - boxes_exp[:, 3] = y_c + h_half - - return boxes_exp - - -def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5): - import pycocotools.mask as mask_util - scale = (resolution + 2.0) / resolution - - segm_res = [] - - for t in results: - bboxes = t['bbox'][0] - lengths = t['bbox'][1][0] - if bboxes.shape == (1, 1) or bboxes is None: - continue - if len(bboxes.tolist()) == 0: - continue - masks = t['mask'][0] - - s = 0 - # for each sample - for i in range(len(lengths)): - num = lengths[i] - im_shape = t['im_shape'][i] - - bbox = bboxes[s:s + num][:, 2:] - clsid_scores = bboxes[s:s + num][:, 0:2] - mask = masks[s:s + num] - s += num - - im_h = int(im_shape[0]) - im_w = int(im_shape[1]) - - expand_bbox = expand_boxes(bbox, scale) - expand_bbox = expand_bbox.astype(np.int32) - - padded_mask = np.zeros( - (resolution + 2, resolution + 2), dtype=np.float32) - - for j in range(num): - xmin, ymin, xmax, ymax = expand_bbox[j].tolist() - clsid, score = clsid_scores[j].tolist() - clsid = int(clsid) - padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :] - - catid = clsid2catid[clsid] - - w = xmax - xmin + 1 - h = ymax - ymin + 1 - w = np.maximum(w, 1) - h = np.maximum(h, 1) - - resized_mask = cv2.resize(padded_mask, (w, h)) - resized_mask = np.array( - resized_mask > thresh_binarize, dtype=np.uint8) - im_mask = np.zeros((im_h, im_w), dtype=np.uint8) - - x0 = min(max(xmin, 0), im_w) - x1 = min(max(xmax + 1, 0), im_w) - y0 = min(max(ymin, 0), im_h) - y1 = min(max(ymax + 1, 0), im_h) - - im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), ( - x0 - xmin):(x1 - xmin)] - segm = mask_util.encode( - np.array( - im_mask[:, :, np.newaxis], order='F'))[0] - catid = clsid2catid[clsid] - segm['counts'] = segm['counts'].decode('utf8') - coco_res = { - 'category_id': catid, - 'segmentation': segm, - 'score': score - } - segm_res.append(coco_res) - return segm_res - - -def color_map(num_classes): - color_map = num_classes * [0, 0, 0] - for i in range(0, num_classes): - j = 0 - lab = i - while lab: - color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) - color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) - color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) - j += 1 - lab >>= 3 - color_map = np.array(color_map).reshape(-1, 3) - return color_map - - -def draw_bbox(image, catid2name, bboxes, threshold, color_list): - """ - draw bbox on image - """ - draw = ImageDraw.Draw(image) - - for dt in np.array(bboxes): - catid, bbox, score = dt['category_id'], dt['bbox'], dt['score'] - if score < threshold: - continue - - xmin, ymin, w, h = bbox - xmax = xmin + w - ymax = ymin + h - - color = tuple(color_list[catid]) - - # draw bbox - draw.line( - [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), - (xmin, ymin)], - width=2, - fill=color) - - # draw label - text = "{} {:.2f}".format(catid2name[catid], score) - tw, th = draw.textsize(text) - draw.rectangle( - [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) - draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) - - return image - - -def draw_mask(image, masks, threshold, color_list, alpha=0.7): - """ - Draw mask on image - """ - mask_color_id = 0 - w_ratio = .4 - img_array = np.array(image).astype('float32') - for dt in np.array(masks): - segm, score = dt['segmentation'], dt['score'] - if score < threshold: - continue - import pycocotools.mask as mask_util - mask = mask_util.decode(segm) * 255 - color_mask = color_list[mask_color_id % len(color_list), 0:3] - mask_color_id += 1 - for c in range(3): - color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 - idx = np.nonzero(mask) - img_array[idx[0], idx[1], :] *= 1.0 - alpha - img_array[idx[0], idx[1], :] += alpha * color_mask - return Image.fromarray(img_array.astype('uint8')) - - -def get_bbox_result(output, result, conf, clsid2catid): - is_bbox_normalized = True if conf['arch'] in ['SSD', 'Face'] else False - lengths = offset_to_lengths(output.lod()) - np_data = np.array(output) if conf[ - 'use_python_inference'] else output.copy_to_cpu() - result['bbox'] = (np_data, lengths) - result['im_id'] = np.array([[0]]) - - bbox_results = bbox2out([result], clsid2catid, is_bbox_normalized) - return bbox_results - - -def get_mask_result(output, result, conf, clsid2catid): - resolution = conf['mask_resolution'] - bbox_out, mask_out = output - lengths = offset_to_lengths(bbox_out.lod()) - bbox = np.array(bbox_out) if conf[ - 'use_python_inference'] else bbox_out.copy_to_cpu() - mask = np.array(mask_out) if conf[ - 'use_python_inference'] else mask_out.copy_to_cpu() - result['bbox'] = (bbox, lengths) - result['mask'] = (mask, lengths) - mask_results = mask2out([result], clsid2catid, conf['mask_resolution']) - return mask_results - - -def visualize(bbox_results, catid2name, num_classes, mask_results=None): - image = Image.open(FLAGS.infer_img).convert('RGB') - color_list = color_map(num_classes) - image = draw_bbox(image, catid2name, bbox_results, 0.5, color_list) - if mask_results is not None: - image = draw_mask(image, mask_results, 0.5, color_list) - image_path = os.path.split(FLAGS.infer_img)[-1] - if not os.path.exists(FLAGS.output_dir): - os.makedirs(FLAGS.output_dir) - out_path = os.path.join(FLAGS.output_dir, image_path) - image.save(out_path, quality=95) - logger.info('Save visualize result to {}'.format(out_path)) - - -def infer(): - logger.info("cpp_infer.py is deprecated since release/0.3. Please use" - "deploy/python for your python deployment") - model_path = FLAGS.model_path - config_path = FLAGS.config_path - res = {} - assert model_path is not None, "Model path: {} does not exist!".format( - model_path) - assert config_path is not None, "Config path: {} does not exist!".format( - config_path) - with open(config_path) as f: - conf = yaml.safe_load(f) - - use_trt = not conf['use_python_inference'] and 'trt' in conf['mode'] - if use_trt: - logger.warning( - "Due to the limitation of tensorRT, the image shape needs to set in export_model" - ) - img_data = Preprocess(FLAGS.infer_img, conf['arch'], conf['Preprocess']) - if conf['arch'] in ['SSD', 'Face']: - img_data, res['im_shape'] = img_data - img_data = [img_data] - - if conf['use_python_inference']: - place = fluid.CUDAPlace(0) - exe = fluid.Executor(place) - infer_prog, feed_var_names, fetch_targets = fluid.io.load_inference_model( - dirname=model_path, - executor=exe, - model_filename='__model__', - params_filename='__params__') - data_dict = {k: v for k, v in zip(feed_var_names, img_data)} - else: - config = create_config( - model_path, - mode=conf['mode'], - min_subgraph_size=conf['min_subgraph_size']) - predict = fluid.core.create_paddle_predictor(config) - input_names = predict.get_input_names() - for ind, d in enumerate(img_data): - input_tensor = predict.get_input_tensor(input_names[ind]) - input_tensor.copy_from_cpu(d.copy()) - - logger.info('warmup...') - for i in range(10): - if conf['use_python_inference']: - outs = exe.run(infer_prog, - feed=data_dict, - fetch_list=fetch_targets, - return_numpy=False) - else: - predict.zero_copy_run() - - cnt = 100 - logger.info('run benchmark...') - t1 = time.time() - for i in range(cnt): - if conf['use_python_inference']: - outs = exe.run(infer_prog, - feed=data_dict, - fetch_list=fetch_targets, - return_numpy=False) - else: - outs = [] - predict.zero_copy_run() - output_names = predict.get_output_names() - for o_name in output_names: - outs.append(predict.get_output_tensor(o_name)) - t2 = time.time() - - ms = (t2 - t1) * 1000.0 / float(cnt) - - print("Inference: {} ms per batch image".format(ms)) - - clsid2catid, catid2name = get_category_info(conf['with_background'], - conf['label_list']) - bbox_result = get_bbox_result(outs[0], res, conf, clsid2catid) - - mask_result = None - if 'mask_resolution' in conf: - res['im_shape'] = img_data[-1] - mask_result = get_mask_result(outs, res, conf, clsid2catid) - - if FLAGS.visualize: - visualize(bbox_result, catid2name, len(conf['label_list']), mask_result) - - if FLAGS.dump_result: - import json - bbox_file = os.path.join(FLAGS.output_dir, 'bbox.json') - logger.info('dump bbox to {}'.format(bbox_file)) - with open(bbox_file, 'w') as f: - json.dump(bbox_result, f) - if mask_result is not None: - mask_file = os.path.join(FLAGS.output_dir, 'mask.json') - logger.info('dump mask to {}'.format(mask_file)) - with open(mask_file, 'w') as f: - json.dump(mask_result, f) - - -if __name__ == '__main__': - parser = argparse.ArgumentParser(description=__doc__) - parser.add_argument( - "--model_path", type=str, default=None, help="model path.") - parser.add_argument( - "--config_path", type=str, default=None, help="preprocess config path.") - parser.add_argument( - "--infer_img", type=str, default=None, help="Image path") - parser.add_argument( - "--visualize", - action='store_true', - default=False, - help="Whether to visualize detection output") - parser.add_argument( - "--output_dir", - type=str, - default="output", - help="Directory for storing the output visualization files.") - parser.add_argument( - "--dump_result", - action='store_true', - default=False, - help="Whether to dump result") - FLAGS = parser.parse_args() - infer()