From c9a653820bc2bfaa0a47b67916a445ceaa7abdad Mon Sep 17 00:00:00 2001 From: frankwhzhang Date: Mon, 10 Dec 2018 12:20:34 +0800 Subject: [PATCH] fix label_pos ,add test_layers.py, test=develop --- paddle/fluid/operators/bpr_loss_op.cc | 35 +++++++++---------- paddle/fluid/operators/bpr_loss_op.h | 18 +++++----- python/paddle/fluid/layers/nn.py | 17 ++++++--- .../fluid/tests/unittests/test_bpr_loss_op.py | 9 +++-- .../fluid/tests/unittests/test_layers.py | 9 +++++ 5 files changed, 51 insertions(+), 37 deletions(-) diff --git a/paddle/fluid/operators/bpr_loss_op.cc b/paddle/fluid/operators/bpr_loss_op.cc index 075b1b2c7..9258d7c7e 100644 --- a/paddle/fluid/operators/bpr_loss_op.cc +++ b/paddle/fluid/operators/bpr_loss_op.cc @@ -23,18 +23,17 @@ class BprLossOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); - PADDLE_ENFORCE(ctx->HasInput("LabelPos"), - "Input(LabelPos) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null."); auto x_dims = ctx->GetInputDim("X"); - auto label_pos_dims = ctx->GetInputDim("LabelPos"); + auto label_dims = ctx->GetInputDim("Label"); int rank = x_dims.size(); - PADDLE_ENFORCE_EQ(rank, label_pos_dims.size(), - "Input(X) and Input(LabelPos) shall have the same rank."); + PADDLE_ENFORCE_EQ(rank, label_dims.size(), + "Input(X) and Input(Label) shall have the same rank."); PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1), - framework::slice_ddim(label_pos_dims, 0, rank - 1), - "Input(X) and Input(LabelPos) shall have the same shape " + framework::slice_ddim(label_dims, 0, rank - 1), + "Input(X) and Input(Label) shall have the same shape " "except the last dimension."); auto y_dims = x_dims; @@ -60,25 +59,23 @@ class BprLossGradientOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null."); - PADDLE_ENFORCE(ctx->HasInput("LabelPos"), - "Input(LabelPos) should be not null."); + PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), "Input(Y@GRAD) shoudl be not null."); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), "Output(X@GRAD) should be not null."); auto x_dims = ctx->GetInputDim("X"); - auto label_pos_dims = ctx->GetInputDim("LabelPos"); + auto label_dims = ctx->GetInputDim("Label"); auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y")); int rank = x_dims.size(); PADDLE_ENFORCE_EQ(dy_dims.size(), rank, "Input(Y@Grad) and Input(X) should have the same rank."); - PADDLE_ENFORCE_EQ( - label_pos_dims.size(), rank, - "Input(LabelPos) and Input(X) should have the same rank."); + PADDLE_ENFORCE_EQ(label_dims.size(), rank, + "Input(Label) and Input(X) should have the same rank."); PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1), - framework::slice_ddim(label_pos_dims, 0, rank - 1), - "The Input(X) and Input(LabelPos) should have the same " + framework::slice_ddim(label_dims, 0, rank - 1), + "The Input(X) and Input(Label) should have the same " "shape except the last dimension."); PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1), framework::slice_ddim(dy_dims, 0, rank - 1), @@ -86,8 +83,8 @@ class BprLossGradientOp : public framework::OperatorWithKernel { "shape except the last dimension."); PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1, "The last dimension of Input(Y@Grad) should be 1."); - PADDLE_ENFORCE_EQ(label_pos_dims[rank - 1], 1, - " the last dimension of Input(LabelPos) should be 1."); + PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1, + " the last dimension of Input(Label) should be 1."); ctx->SetOutputDim(framework::GradVarName("X"), x_dims); ctx->ShareLoD("X", framework::GradVarName("X")); } @@ -111,7 +108,7 @@ class BprLossOpMaker : public framework::OpProtoAndCheckerMaker { "size is equal to the number of classes. This input is a " "real number."); AddInput( - "LabelPos", + "Label", "(Tensor), the tensor which represents the ground truth. It has the " "same shape with 'X' except the last dimension. the last dimension " "size is 1."); @@ -122,7 +119,7 @@ class BprLossOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Bayesian Personalized Ranking Loss Operator. -This operator belongs to pairwise ranking loss. LabelPos is the desired item. +This operator belongs to pairwise ranking loss. Label is the desired item. The loss at a given point in one session is defined as: $Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$ diff --git a/paddle/fluid/operators/bpr_loss_op.h b/paddle/fluid/operators/bpr_loss_op.h index ab6816594..e223be7af 100644 --- a/paddle/fluid/operators/bpr_loss_op.h +++ b/paddle/fluid/operators/bpr_loss_op.h @@ -41,17 +41,17 @@ class BprLossOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); - auto* label_pos = ctx.Input("LabelPos"); + auto* label = ctx.Input("Label"); auto* y = ctx.Output("Y"); y->mutable_data(ctx.GetPlace()); int rank = x->dims().size(); Tensor x_2d = framework::ReshapeToMatrix(*x, rank - 1); - Tensor labels_Pos_2d = framework::ReshapeToMatrix(*label_pos, rank - 1); + Tensor labels_2d = framework::ReshapeToMatrix(*label, rank - 1); Tensor y_2d = framework::ReshapeToMatrix(*y, rank - 1); const framework::Tensor* logits = &x_2d; - const framework::Tensor* labels_pos = &labels_Pos_2d; + const framework::Tensor* labels = &labels_2d; framework::Tensor* out = &y_2d; const int step_size = logits->dims()[0]; @@ -59,9 +59,9 @@ class BprLossOpKernel : public framework::OpKernel { const T* logits_data = logits->data(); T* loss_data = out->data(); - const int64_t* label_pos_data = labels_pos->data(); + const int64_t* label_data = labels->data(); for (int i = 0; i < step_size; ++i) { - int lbl_pos = label_pos_data[i]; + int lbl_pos = label_data[i]; PADDLE_ENFORCE_GE(lbl_pos, 0); PADDLE_ENFORCE_LT(lbl_pos, class_num); int index_pos = i * class_num + lbl_pos; @@ -84,7 +84,7 @@ class BprLossGradientOpKernel : public framework::OpKernel { void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* dy = ctx.Input(framework::GradVarName("Y")); - auto* label_pos = ctx.Input("LabelPos"); + auto* label = ctx.Input("Label"); auto* dx = ctx.Output(framework::GradVarName("X")); const int step_size = x->dims()[0]; @@ -92,16 +92,16 @@ class BprLossGradientOpKernel : public framework::OpKernel { T* dx_data = dx->mutable_data(ctx.GetPlace()); const T* dy_data = dy->data(); const T* x_data = x->data(); - const int64_t* label_pos_data = label_pos->data(); + const int64_t* label_data = label->data(); for (size_t sample_id = 0; sample_id < step_size; sample_id++) { for (size_t x_offset = sample_id * num_classes; x_offset < (sample_id + 1) * num_classes; x_offset++) { dx_data[x_offset] = static_cast(0); } - auto p_index = sample_id * num_classes + label_pos_data[sample_id]; + auto p_index = sample_id * num_classes + label_data[sample_id]; for (size_t ni = 0; ni < num_classes; ni++) { - if (label_pos_data[sample_id] == ni) continue; + if (label_data[sample_id] == ni) continue; auto n_index = sample_id * num_classes + ni; auto grad_ = -dy_data[sample_id] / ((num_classes - 1) * diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 9233fe130..04582acf6 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1349,21 +1349,30 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex): return out -def bpr_loss(input, label_pos): +def bpr_loss(input, label): """ Bayesian Personalized Ranking Loss Operator. - This operator belongs to pairwise ranking loss. LabelPos is the desired item. + This operator belongs to pairwise ranking loss. Label is the desired item. The loss at a given point in one session is defined as: $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j(https://arxiv.org/abs/1511.06939) + Args: + input (Variable|list): a 2-D tensor with shape [N x D], where N is the + batch size and D is the number of classes. + This input is not probability but logits. + label (Variable|list): the ground truth which is a 2-D tensor. `label` + is a tensor with shape [N x 1]. + Returns: + A 2-D tensor with shape [N x 1], the bpr loss. + Examples: .. code-block:: python - cost = fluid.layers.bpr_loss(input=predict, label_pos=label) + cost = fluid.layers.bpr_loss(input=predict, label=label) """ helper = LayerHelper('bpr_loss', **locals()) @@ -1371,7 +1380,7 @@ def bpr_loss(input, label_pos): helper.append_op( type='bpr_loss', inputs={'X': [input], - 'LabelPos': [label_pos]}, + 'Label': [label]}, outputs={'Y': [out]}) return out diff --git a/python/paddle/fluid/tests/unittests/test_bpr_loss_op.py b/python/paddle/fluid/tests/unittests/test_bpr_loss_op.py index 80916f4a8..c8dc5fbd2 100644 --- a/python/paddle/fluid/tests/unittests/test_bpr_loss_op.py +++ b/python/paddle/fluid/tests/unittests/test_bpr_loss_op.py @@ -28,18 +28,17 @@ class TestBprLossOp1(OpTest): batch_size = 40 class_num = 5 X = randomize_probability(batch_size, class_num, dtype='float64') - label_pos = np.random.randint( - 0, class_num, (batch_size, 1), dtype="int64") + label = np.random.randint(0, class_num, (batch_size, 1), dtype="int64") bpr_loss_result = [] for i in range(batch_size): sum = 0.0 for j in range(class_num): - if j == label_pos[i][0]: + if j == label[i][0]: continue - sum += (-np.log(1.0 + np.exp(X[i][j] - X[i][label_pos[i][0]]))) + sum += (-np.log(1.0 + np.exp(X[i][j] - X[i][label[i][0]]))) bpr_loss_result.append(-sum / (class_num - 1)) bpr_loss = np.asmatrix([[x] for x in bpr_loss_result], dtype="float64") - self.inputs = {"X": X, "LabelPos": label_pos} + self.inputs = {"X": X, "Label": label} self.outputs = {"Y": bpr_loss} def test_check_output(self): diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index be51fb06a..10e8bb5a8 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -846,6 +846,15 @@ class TestBook(unittest.TestCase): out = layers.cross_entropy(x, label, False, 4) self.assertIsNotNone(out) + def test_bpr_loss(self): + program = Program() + with program_guard(program): + x = layers.data(name="x", shape=[30, 10], dtype="float32") + label = layers.data(name="label", shape=[30, 1], dtype="int32") + out = layers.bpr_loss(x, label) + self.assertIsNotNone(out) + print(str(program)) + def test_expand(self): program = Program() with program_guard(program): -- GitLab