diff --git a/CMakeLists.txt b/CMakeLists.txt
index c649aafeddaf9f28c213d086236c3779d3137d92..23bbe829ac16180088bfa37df66e23f19b021ea3 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -179,6 +179,7 @@ set(EXTERNAL_LIBS
if(WITH_GPU)
include(cuda)
+ include(tensorrt)
endif(WITH_GPU)
if(WITH_AMD_GPU)
diff --git a/Dockerfile b/Dockerfile
index 7856d3bbc492af4cad2d6b9f49001c90eadbea43..870304a6acc99e715dffbfabd8058be000b6872c 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -45,6 +45,13 @@ ENV PATH=${PATH}:${GOROOT}/bin:${GOPATH}/bin
# install glide
RUN curl -s -q https://glide.sh/get | sh
+# Install TensorRT
+# The unnecessary files has been removed to make the library small. It only contains include and lib now.
+RUN wget -qO- http://paddlepaddledeps.bj.bcebos.com/TensorRT-4.0.0.3.Ubuntu-16.04.4.x86_64-gnu.cuda-8.0.cudnn7.0.tar.gz | \
+ tar -xz -C /usr/local && \
+ cp -rf /usr/local/TensorRT/include /usr && \
+ cp -rf /usr/local/TensorRT/lib /usr
+
# git credential to skip password typing
RUN git config --global credential.helper store
@@ -57,7 +64,7 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# specify sphinx version as 1.5.6 and remove -U option for [pip install -U
# sphinx-rtd-theme] since -U option will cause sphinx being updated to newest
# version(1.7.1 for now), which causes building documentation failed.
-RUN pip install --upgrade pip && \
+RUN pip install --upgrade pip==9.0.3 && \
pip install -U wheel && \
pip install -U docopt PyYAML sphinx==1.5.6 && \
pip install sphinx-rtd-theme==0.1.9 recommonmark
diff --git a/Dockerfile.android b/Dockerfile.android
index cc022d596b4b74dd1e4f4d0901dd81c91a7decd1..848a7eba6f1421432addae8acff407b611adb4ae 100644
--- a/Dockerfile.android
+++ b/Dockerfile.android
@@ -27,7 +27,7 @@ RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
-RUN pip install --upgrade pip && \
+RUN pip install --upgrade pip==9.0.3 && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel sphinx && \
pip install pre-commit
diff --git a/cmake/configure.cmake b/cmake/configure.cmake
index f726405c4773994f6ca6509e5218750805b03995..e490397cc0624c310949a4b571bd00cac6e8953b 100644
--- a/cmake/configure.cmake
+++ b/cmake/configure.cmake
@@ -80,6 +80,16 @@ if(WITH_GPU)
# Include cuda and cudnn
include_directories(${CUDNN_INCLUDE_DIR})
include_directories(${CUDA_TOOLKIT_INCLUDE})
+
+ if(TENSORRT_FOUND)
+ if(${CUDA_VERSION_MAJOR} VERSION_LESS 8)
+ message(FATAL_ERROR "TensorRT needs CUDA >= 8.0 to compile")
+ endif()
+ if(${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
+ message(FATAL_ERROR "TensorRT needs CUDNN >= 7.0 to compile")
+ endif()
+ include_directories(${TENSORRT_INCLUDE_DIR})
+ endif()
elseif(WITH_AMD_GPU)
add_definitions(-DPADDLE_WITH_HIP)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -D__HIP_PLATFORM_HCC__")
diff --git a/cmake/external/grpc.cmake b/cmake/external/grpc.cmake
index aa249159470773241e0f6da2e8e086264634dd4a..e90948782bb5e333bbdb47ef9d61c1e37e3cf9e4 100644
--- a/cmake/external/grpc.cmake
+++ b/cmake/external/grpc.cmake
@@ -33,7 +33,7 @@ ExternalProject_Add(
extern_grpc
DEPENDS protobuf zlib
GIT_REPOSITORY "https://github.com/grpc/grpc.git"
- GIT_TAG "v1.11.x"
+ GIT_TAG "v1.10.x"
PREFIX ${GRPC_SOURCES_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
diff --git a/cmake/tensorrt.cmake b/cmake/tensorrt.cmake
new file mode 100644
index 0000000000000000000000000000000000000000..0c07d36bed65400164853b99f18ec0335341cd94
--- /dev/null
+++ b/cmake/tensorrt.cmake
@@ -0,0 +1,33 @@
+if(NOT WITH_GPU)
+ return()
+endif()
+
+set(TENSORRT_ROOT "/usr" CACHE PATH "TENSORRT ROOT")
+find_path(TENSORRT_INCLUDE_DIR NvInfer.h
+ PATHS ${TENSORRT_ROOT} ${TENSORRT_ROOT}/include
+ $ENV{TENSORRT_ROOT} $ENV{TENSORRT_ROOT}/include
+ NO_DEFAULT_PATH
+)
+
+find_library(TENSORRT_LIBRARY NAMES libnvinfer.so libnvinfer.a
+ PATHS ${TENSORRT_ROOT} ${TENSORRT_ROOT}/lib
+ $ENV{TENSORRT_ROOT} $ENV{TENSORRT_ROOT}/lib
+ NO_DEFAULT_PATH
+ DOC "Path to TensorRT library.")
+
+if(TENSORRT_INCLUDE_DIR AND TENSORRT_LIBRARY)
+ set(TENSORRT_FOUND ON)
+else()
+ set(TENSORRT_FOUND OFF)
+endif()
+
+if(TENSORRT_FOUND)
+ file(READ ${TENSORRT_INCLUDE_DIR}/NvInfer.h TENSORRT_VERSION_FILE_CONTENTS)
+ string(REGEX MATCH "define NV_TENSORRT_MAJOR +([0-9]+)" TENSORRT_MAJOR_VERSION
+ "${TENSORRT_VERSION_FILE_CONTENTS}")
+ string(REGEX REPLACE "define NV_TENSORRT_MAJOR +([0-9]+)" "\\1"
+ TENSORRT_MAJOR_VERSION "${TENSORRT_MAJOR_VERSION}")
+
+ message(STATUS "Current TensorRT header is ${TENSORRT_INCLUDE_DIR}/NvInfer.h. "
+ "Current TensorRT version is v${TENSORRT_MAJOR_VERSION}. ")
+endif()
diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt
index 7066637a7cb27b83724cb4030c29a1019981f52b..0f9521616952a2857222feab8c38fb480761ee2d 100644
--- a/doc/CMakeLists.txt
+++ b/doc/CMakeLists.txt
@@ -3,7 +3,9 @@ add_custom_target(paddle_apis ALL
add_custom_target(paddle_docs ALL
DEPENDS paddle_v2_docs paddle_v2_docs_cn
- paddle_fluid_docs paddle_fluid_docs_cn)
+ paddle_fluid_docs paddle_fluid_docs_cn
+ paddle_mobile_docs paddle_mobile_docs_cn)
add_subdirectory(v2)
add_subdirectory(fluid)
+add_subdirectory(mobile)
diff --git a/doc/fluid/api/layers.rst b/doc/fluid/api/layers.rst
index 22e6fb13d7320986a60bc1ef5530187e0970c767..5c02886efd7d11e9520910526fb90ec01e123bae 100644
--- a/doc/fluid/api/layers.rst
+++ b/doc/fluid/api/layers.rst
@@ -473,6 +473,12 @@ multiplex
.. autofunction:: paddle.fluid.layers.multiplex
:noindex:
+label_smooth
+------------
+
+.. autofunction:: paddle.fluid.layers.label_smooth
+ :noindex:
+
ops
===
diff --git a/doc/fluid/design/concepts/parallel_executor.md b/doc/fluid/design/concepts/parallel_executor.md
index 9aed3b059a1595ba3971d7d5acfc0d16a731584b..4f88e27bed722e9f2f535e368926fe49b4e72e56 100644
--- a/doc/fluid/design/concepts/parallel_executor.md
+++ b/doc/fluid/design/concepts/parallel_executor.md
@@ -84,7 +84,7 @@ Running an operator can be asynchronized. There is a thread pool to execute an `
## Synchronize GPU Kernels
-The GPU is a non-blocking device. The different streams need be synchronized when switing streams. In current implementation, the synchronization based on the following algorithm:
+The GPU is a non-blocking device. The different streams need be synchronized when switching streams. In current implementation, the synchronization based on the following algorithm:
1. `OpHandle` will record `DeviceContext` that it is used.
2. In `OpHandle::Run`, if the `DeviceContext` of current operator is different from `DeviceContext` of any input variable, just wait the generate operator of this input variable.
diff --git a/doc/fluid/design/dist_train/README.md b/doc/fluid/design/dist_train/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..2dd652d8bdcb8f3b6e759347bd55b217be909386
--- /dev/null
+++ b/doc/fluid/design/dist_train/README.md
@@ -0,0 +1,57 @@
+## Distributed training overview doc
+
+Currently Paddle Fluid use parameter server architecture to support distributed training.
+
+For synchronous and asynchronous training, the differences are mostly in the logic of parameter server. Now we have already support synchronous training.
+
+### Synchronous training
+
+The training process of synchronous training is:
+
+![synchronous distributed training](./src/sync_distributed_training.png)
+
+1. Pserver
+ 1. set `barrier_condition_` to 0 and waits for trainers to send gradient.
+1. Trainer
+ 1. Trainer read minibatch of data, run forward-backward with local parameter copy and get the gradients for parameters.
+ 1. Trainer use split op to split all the gradient into blocks. The split method is determined at compile time.
+ 1. Trainer use send_op to send all the split gradients to corresponding parameter server.
+ 1. After trainer send all the gradients, it will send a `BATCH_BARRIER_MESSAGE` to all pservers.
+ 1. Trainer call GetVariable to pserver and wait for `barrier_condition_` on pserver to be 1.
+1. Pserver
+ 1. Pserver will count the number of `BATCH_BARRIER_MESSAGE`.
+ 1. When the count of `BATCH_BARRIER_MESSAGE` is equal to the number of Trainer. Pserver thinks it received all gradient from all trainers.
+ 1. Pserver will run the optimization block to optimize the parameters.
+ 1. After optimization, pserver set `barrier_condition_` to 1.
+ 1. Pserver wait for `FETCH_BARRIER_MESSAGE`.
+1. Trainer.
+ 1. The trainer uses GetVariable to get all the parameters from pserver.
+ 1. Trainer sends a `FETCH_BARRIER_MESSAGE` to each pserver.
+1. Pserver.
+ 1. when the number of `FETCH_BARRIER_MESSAGE` reach the number of all trainers. Pserver think all the parameters have been got. it will go back to 1. to set `barrier_condition_` to 0.
+
+### Asynchronous training
+In the above process. There are two barriers for all trainers to synchronize with each other. In asynchronous training, these two barriers are not needed. The trainer can just send gradients to pserver and then get parameters back.
+
+The training process of asynchronous training can be:
+
+![asynchronous distributed training](./src/async_distributed_training.png)
+
+1. Pserver:
+ 1. Each parameter has a queue to receive its gradient from trainers.
+ 1. Each parameter has a thread to read data from the queue and run optimize block, using the gradient to optimize the parameter.
+ 1. Using an independent thread to handle RPC call `GetVariable` for trainers to get parameters back.(Maybe here we should use a thread pool to speed up fetching the parameters.)
+
+1. Trainer:
+ 1. Trainer read a batch of data. Run forward and backward with local parameter copy and get the gradients for parameters.
+ 1. Trainer split all gradients to blocks and then send these gradient blocks to pservers(pserver will put them into the queue).
+ 2. Trainer gets all parameters back from pserver.
+
+### Note:
+There are also some conditions that need to consider. For exmaple:
+
+1. If trainer needs to wait for the pserver to apply it's gradient and then get back the parameters back.
+1. If we need a lock between parameter update and parameter fetch.
+1. If one parameter must be on one server, or it can also be split and send to multiple parameter servers.
+
+The above architecture of asynchronous training can support different mode, we can have a detailed test in the future for these problems.
diff --git a/doc/fluid/design/dist_train/async_update.md b/doc/fluid/design/dist_train/async_update.md
new file mode 100644
index 0000000000000000000000000000000000000000..6a0835b761b69030ba30697e6e8863928efbf57f
--- /dev/null
+++ b/doc/fluid/design/dist_train/async_update.md
@@ -0,0 +1,58 @@
+# Design Doc: Asynchronous Update With Distributed Training
+
+## Background
+
+For the typical synchronous distributed training, some significant steps are as follows:
+
+1. A Trainer will compute the gradients and SEND them to the Parameter Server(PServer) nodes.
+1. After the PServer node received gradients came from all the Trainers, It will aggregate the
+gradient variables for the same parameter into one gradient variable and then apply the aggregated
+gradient to the respective parameter, finally using an optimize algorithms(SGD, Monument...)
+to update the parameters.
+1. The Trainer would wait for the PServers finished the optimize stage, and GET the parameters from PServer,
+so all the Trainers would get the same parameters.
+
+In the synchronously distributed training, there should be a `Barrier` to synchronise the
+parameters after the optimizing stage. The performance of a distributed training job would
+depend on the slowest node if there were hundreds or thousands of training nodes in a
+Job, the performance of synchronously distributed training might be very poor because of
+the slow node. So this design doc would introduce an approach to implement
+*asynchronously* distributed training in PaddlePaddle Fluid.
+
+## Design
+
+
+
+As the figure above, we describe a global view of asynchronously update process and use
+the parameter `w1` as an example to introduce the steps:
+1. For each gradient variables, they may distribute on different GPU card and aggregate
+them while they are all calculated.
+1. Split the gradient variable into multiple blocks according to the number of PServer
+instances and then send them.
+1. PServer would run an `Optimize Block` using a specified optimize algorithm to update
+the specified parameter.
+1. The trainer will fetch latest parameter from PServer before running forward Op which depends
+on the specified parameter.
+1. Broadcast the received variable into multiple GPU cards and continue to run the next
+mini-batch.
+
+### Trainer
+
+- For the multiple devices distributed training, we need to aggregate the gradient
+variables which placed on different devices firstly and then schedule a `SendVars` Operator to
+send the gradient variables to the multiple PServer instances.
+- Schedule `FetchVars` operator to fetch the latest parameter from PServer before running
+the forward ops.
+- There could be a large number of gradient variables to be sent, so we need to use another
+thread pool(IO Threadpool) whose a number of the schedulable threads is larger than the
+computing thread pool to avoid competitive the thread resources with computing.
+
+### Parameter Server
+
+
+
+- There should be multiple trainer instances want to optimize the same parameter at
+the same time, to avoid the racing, we need one `BlockingQueue` for each gradient
+variable to process them one by one.
+- We need a `Map` structure to map a gradient variable name to the `OptimizeBlock` which
+can optimize the respective parameter.
diff --git a/doc/fluid/design/dist_train/src/async_distributed_training.png b/doc/fluid/design/dist_train/src/async_distributed_training.png
new file mode 100644
index 0000000000000000000000000000000000000000..3b53ab59c0cd7b44b2956f16f1adc47fe85909d3
Binary files /dev/null and b/doc/fluid/design/dist_train/src/async_distributed_training.png differ
diff --git a/doc/fluid/design/dist_train/src/async_pserver.graffle b/doc/fluid/design/dist_train/src/async_pserver.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..d2301611774fcb3866473e3e6470568d1e1312cf
Binary files /dev/null and b/doc/fluid/design/dist_train/src/async_pserver.graffle differ
diff --git a/doc/fluid/design/dist_train/src/async_pserver.png b/doc/fluid/design/dist_train/src/async_pserver.png
new file mode 100644
index 0000000000000000000000000000000000000000..7d900b0c0eb291c67537b9cf93227c671bafdc73
Binary files /dev/null and b/doc/fluid/design/dist_train/src/async_pserver.png differ
diff --git a/doc/fluid/design/dist_train/src/async_update.graffle b/doc/fluid/design/dist_train/src/async_update.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..3a631888688a0d564a873fcb16d943958c91223e
Binary files /dev/null and b/doc/fluid/design/dist_train/src/async_update.graffle differ
diff --git a/doc/fluid/design/dist_train/src/async_update.png b/doc/fluid/design/dist_train/src/async_update.png
new file mode 100644
index 0000000000000000000000000000000000000000..3e8db973f45d6d9ac8dcce1dc7878067e79e6dcc
Binary files /dev/null and b/doc/fluid/design/dist_train/src/async_update.png differ
diff --git a/doc/fluid/design/dist_train/src/distributed_training.graffle b/doc/fluid/design/dist_train/src/distributed_training.graffle
new file mode 100644
index 0000000000000000000000000000000000000000..1168801bc1fadfce310a74cb3110695bd1629f6b
Binary files /dev/null and b/doc/fluid/design/dist_train/src/distributed_training.graffle differ
diff --git a/doc/fluid/design/dist_train/src/sync_distributed_training.png b/doc/fluid/design/dist_train/src/sync_distributed_training.png
new file mode 100644
index 0000000000000000000000000000000000000000..e4f9a221fea4b7238e8a1d84e609c0371f6ef7a2
Binary files /dev/null and b/doc/fluid/design/dist_train/src/sync_distributed_training.png differ
diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst
index b123b756e2251c38f319e1aefa2cb04fd7a36b03..ad798003f560e7fb0e6db6083fdd152fd3417584 100644
--- a/doc/fluid/dev/index_cn.rst
+++ b/doc/fluid/dev/index_cn.rst
@@ -4,6 +4,7 @@
.. toctree::
:maxdepth: 1
+ api_doc_std_cn.md
new_op_cn.md
new_op_kernel.md
use_eigen_cn.md
diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst
index 98988fc22dcedecdbcd67fb3bf761377bf046337..80c899a82fa452c5cd8f38dad89c15d3041b09e3 100644
--- a/doc/fluid/dev/index_en.rst
+++ b/doc/fluid/dev/index_en.rst
@@ -4,6 +4,7 @@ Development
.. toctree::
:maxdepth: 1
+ api_doc_std_en.md
new_op_en.md
new_op_kernel.md
use_eigen_en.md
diff --git a/doc/mobile/CMakeLists.txt b/doc/mobile/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b104a6318d474d6531670b8ac3569448774850c7
--- /dev/null
+++ b/doc/mobile/CMakeLists.txt
@@ -0,0 +1,53 @@
+if(NOT DEFINED SPHINX_THEME)
+ set(SPHINX_THEME default)
+endif()
+
+if(NOT DEFINED SPHINX_THEME_DIR)
+ set(SPHINX_THEME_DIR)
+endif()
+
+# configured documentation tools and intermediate build results
+set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
+
+# Sphinx cache with pickled ReST documents
+set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
+
+# HTML output director
+set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
+
+configure_file(
+ "${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
+ "${BINARY_BUILD_DIR_EN}/conf.py"
+ @ONLY)
+
+sphinx_add_target(paddle_mobile_docs
+ html
+ ${BINARY_BUILD_DIR_EN}
+ ${SPHINX_CACHE_DIR_EN}
+ ${CMAKE_CURRENT_SOURCE_DIR}
+ ${SPHINX_HTML_DIR_EN})
+
+add_dependencies(paddle_mobile_docs gen_proto_py paddle_python)
+
+# configured documentation tools and intermediate build results
+set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
+
+# Sphinx cache with pickled ReST documents
+set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
+
+# HTML output director
+set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
+
+configure_file(
+ "${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.cn.in"
+ "${BINARY_BUILD_DIR_CN}/conf.py"
+ @ONLY)
+
+sphinx_add_target(paddle_mobile_docs_cn
+ html
+ ${BINARY_BUILD_DIR_CN}
+ ${SPHINX_CACHE_DIR_CN}
+ ${CMAKE_CURRENT_SOURCE_DIR}
+ ${SPHINX_HTML_DIR_CN})
+
+add_dependencies(paddle_mobile_docs_cn gen_proto_py paddle_python)
diff --git a/doc/mobile/index_cn.rst b/doc/mobile/index_cn.rst
new file mode 100644
index 0000000000000000000000000000000000000000..8297316e8fbb2b8f41954030293feadbcd81295e
--- /dev/null
+++ b/doc/mobile/index_cn.rst
@@ -0,0 +1,9 @@
+移动端
+=====
+
+.. toctree::
+ :maxdepth: 1
+
+ cross_compiling_for_android_cn.md
+ cross_compiling_for_ios_cn.md
+ cross_compiling_for_raspberry_cn.md
\ No newline at end of file
diff --git a/doc/mobile/index_en.rst b/doc/mobile/index_en.rst
new file mode 100644
index 0000000000000000000000000000000000000000..e0acdff0284e3bc84b2cc4a34a142ee01754f940
--- /dev/null
+++ b/doc/mobile/index_en.rst
@@ -0,0 +1,9 @@
+Mobile
+======
+
+.. toctree::
+ :maxdepth: 1
+
+ cross_compiling_for_android_en.md
+ cross_compiling_for_ios_en.md
+ cross_compiling_for_raspberry_en.md
diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
index e0dd9e6068174a4b0348d503f4082bee6ff68dac..5a95cbc53625888bac539f91af391ff0babec17b 100644
--- a/paddle/fluid/framework/details/multi_devices_graph_builder.cc
+++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc
@@ -55,21 +55,21 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
}
}
-void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, OpDesc *op,
+void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
+ const OpDesc &op,
const platform::Place &p,
const size_t &i) const {
auto *op_handle = result->ops_.back().get();
- op_handle->dev_ctxes_[p] = const_cast(
- platform::DeviceContextPool::Instance().Get(p));
+ op_handle->dev_ctxes_[p] = platform::DeviceContextPool::Instance().Get(p);
- auto var_names = op->InputArgumentNames();
+ auto var_names = op.InputArgumentNames();
for (auto &each_var_name : var_names) {
VarHandle *var = CreateOrGetLatestVarHandle(result, each_var_name, p, i);
op_handle->AddInput(var);
}
- var_names = op->OutputArgumentNames();
+ var_names = op.OutputArgumentNames();
for (auto &each_var_name : var_names) {
CreateOpOutput(result, op_handle, each_var_name, p, i);
@@ -107,7 +107,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
result.ops_.emplace_back(new SendOpHandle(*op, s, p));
// Create inputs for output on original place and no ssa output
// is created for send op.
- CreateOpHandleIOs(&result, op, p, 0);
+ CreateOpHandleIOs(&result, *op, p, 0);
continue;
}
@@ -117,7 +117,7 @@ std::unique_ptr MultiDevSSAGraphBuilder::Build(
result.ops_.emplace_back(new ComputationOpHandle(*op, s, p));
auto *op_handle = result.ops_.back().get();
- CreateOpHandleIOs(&result, op, p, i);
+ CreateOpHandleIOs(&result, *op, p, i);
auto var_names = op->OutputArgumentNames();
diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.h b/paddle/fluid/framework/details/multi_devices_graph_builder.h
index de34caab1be85eecb741a5003f026eb982e178ea..f1518d75b421006db6311c3b0f602e47000ab381 100644
--- a/paddle/fluid/framework/details/multi_devices_graph_builder.h
+++ b/paddle/fluid/framework/details/multi_devices_graph_builder.h
@@ -45,8 +45,8 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
std::unique_ptr Build(const ProgramDesc &program) const override;
private:
- void CreateOpHandleIOs(SSAGraph *result, OpDesc *op, const platform::Place &p,
- const size_t &i) const;
+ void CreateOpHandleIOs(SSAGraph *result, const OpDesc &op,
+ const platform::Place &p, const size_t &i) const;
private:
std::string loss_var_name_;
diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
index a371ee10fe03cda86c316f3503f9cadb8c716ae5..3d2bd633afff1d453d00faeca3b3dcf77f8dd5d7 100644
--- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
+++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
@@ -33,13 +33,6 @@ ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
running_ops_(0),
allow_op_delay_(allow_op_delay) {}
-void ThreadedSSAGraphExecutor::RunDelayedOps(
- const std::unordered_set &delayed_ops) {
- for (auto op : delayed_ops) {
- op->Run(use_event_);
- }
-}
-
FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector &fetch_tensors) {
std::unordered_map pending_ops;
@@ -51,8 +44,6 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
// together since we currently cannot overlap computation and memcpy streams.
// Should revisit it if overlapping is available.
std::unordered_set delayed_ops;
- std::unordered_set blocked_by_delayed_ops;
- std::unordered_set delayed_vars;
auto InsertPendingVar = [&pending_vars, &ready_vars](VarHandleBase &var) {
pending_vars.insert(&var);
@@ -122,24 +113,26 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
InsertPendingOp(*op);
}
- auto run_all_ready_ops = [&] {
- for (auto *op : ready_ops) {
- if (op->IsMultiDeviceTransfer() && allow_op_delay_) {
- delayed_ops.insert(op);
- delayed_vars.insert(op->outputs_.begin(), op->outputs_.end());
- ready_vars.Extend(op->outputs_);
- continue;
- }
+ auto run_all_ops = [&](std::unordered_set &set) {
+ for (auto *op : set) {
running_ops_++;
RunOp(&ready_vars, op);
}
- ready_ops.clear();
+ set.clear();
};
// Step 3. Execution
- while (!pending_vars.empty() || !ready_ops.empty() || !delayed_ops.empty()) {
+ while (!pending_vars.empty()) {
// 1. Run All Ready ops
- run_all_ready_ops();
+ // Keep loop until all vars are ready.
+ //
+ // NOTE: DelayedOps have a lower priority. It will be scheduled after all
+ // ready_ops have been performed.
+ if (ready_ops.empty() && allow_op_delay_) {
+ run_all_ops(delayed_ops);
+ } else {
+ run_all_ops(ready_ops);
+ }
// 2. Find ready variable
bool timeout;
@@ -160,29 +153,16 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op];
--deps;
if (deps == 0) {
- if (delayed_vars.find(ready_var) != delayed_vars.end()) {
- blocked_by_delayed_ops.insert(op);
+ if (op->IsMultiDeviceTransfer() && allow_op_delay_) {
+ delayed_ops.insert(op);
} else {
ready_ops.insert(op);
}
}
}
}
- // When there are no other ops to schedule, schedule buffered delayed
- // ops and unblock other ops.
- if (ready_ops.empty() && !delayed_ops.empty() && running_ops_ == 0) {
- RunDelayedOps(delayed_ops);
- delayed_ops.clear();
- for (auto *op : blocked_by_delayed_ops) {
- ready_ops.insert(op);
- }
- blocked_by_delayed_ops.clear();
- }
- // Keep loop until all vars are ready.
}
PADDLE_ENFORCE(ready_ops.empty());
- PADDLE_ENFORCE(delayed_ops.empty());
- PADDLE_ENFORCE(blocked_by_delayed_ops.empty());
// Wait FetchOps.
if (!fetch_ops.empty()) {
diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h
index bb5e837b135c35b5aea403496b45aab1ccc288ff..d70bbd4ef0eb02d1b473bf88e526996819aec5f9 100644
--- a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h
@@ -88,8 +88,6 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
void RunOp(BlockingQueue *ready_var_q,
details::OpHandleBase *op);
- void RunDelayedOps(const std::unordered_set &delayed_ops);
-
private:
std::unique_ptr<::ThreadPool> pool_;
std::vector local_scopes_;
diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc
index c1486b527d2e06d2b3f7e0f89458bf9a22564586..0962f40c4a64f18f7105626c54a83f1c5b299c50 100644
--- a/paddle/fluid/framework/parallel_executor.cc
+++ b/paddle/fluid/framework/parallel_executor.cc
@@ -155,13 +155,9 @@ void ParallelExecutor::BCastParamsToGPUs(
#endif
}
-void ParallelExecutor::Run(
- const std::vector &fetch_tensors,
- const std::string &fetched_var_name,
- const std::unordered_map &feed_tensors) {
+void ParallelExecutor::Run(const std::vector &fetch_tensors,
+ const std::string &fetched_var_name) {
platform::RecordBlock b(0);
- SplitTensorToPlaces(feed_tensors);
-
// Create local scopes.
for (auto &scope : member_->local_scopes_) {
Scope &local_scope = scope->NewScope();
@@ -195,14 +191,28 @@ void ParallelExecutor::Run(
auto &local_scope =
*scope->Var(details::kLocalExecScopeName)->GetMutable();
scope->DeleteScope(local_scope);
- local_scope = nullptr;
}
}
-void ParallelExecutor::SplitTensorToPlaces(
- const std::unordered_map &feed_tensors) {
- for (auto it : feed_tensors) {
- auto lod_tensors = it.second.SplitLoDTensor(member_->places_);
+void ParallelExecutor::FeedTensorsIntoLocalScopes(
+ const std::vector> &tensors) {
+ PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());
+
+ for (size_t i = 0; i < tensors.size(); ++i) {
+ auto &map = tensors[i];
+ auto *scope = member_->local_scopes_[i];
+ for (auto &pair : map) {
+ auto *trg = scope->Var(pair.first)->GetMutable();
+ trg->ShareDataWith(pair.second);
+ trg->set_lod(pair.second.lod());
+ }
+ }
+}
+
+void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
+ const std::unordered_map &tensors) {
+ for (auto pair : tensors) {
+ auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
PADDLE_ENFORCE_EQ(
member_->places_.size(), lod_tensors.size(),
"The number of samples of current batch is less than the count of "
@@ -211,7 +221,7 @@ void ParallelExecutor::SplitTensorToPlaces(
for (size_t j = 0; j < member_->places_.size(); ++j) {
// TODO(panxy0718): Do I need to delete this var?
auto t =
- member_->local_scopes_[j]->Var(it.first)->GetMutable();
+ member_->local_scopes_[j]->Var(pair.first)->GetMutable();
t->ShareDataWith(lod_tensors[j]);
t->set_lod(lod_tensors[j].lod());
}
diff --git a/paddle/fluid/framework/parallel_executor.h b/paddle/fluid/framework/parallel_executor.h
index b4f16dba858fb279ec23a8a04257dda6651148cc..303ac3bc55cfed57a03765b27d8aba581eabd1c8 100644
--- a/paddle/fluid/framework/parallel_executor.h
+++ b/paddle/fluid/framework/parallel_executor.h
@@ -44,16 +44,22 @@ class ParallelExecutor {
std::vector& GetLocalScopes();
+ /**
+ * Feed tensors to local scopes. The size of tensors should be equal to the
+ * size of local scopes.
+ */
+ void FeedTensorsIntoLocalScopes(
+ const std::vector>& tensors);
+
+ void FeedAndSplitTensorIntoLocalScopes(
+ const std::unordered_map& tensors);
+
void Run(const std::vector& fetch_tensors,
- const std::string& fetched_var_name,
- const std::unordered_map& feed_tensors);
+ const std::string& fetched_var_name);
void BCastParamsToGPUs(const std::unordered_set& vars) const;
private:
- void SplitTensorToPlaces(
- const std::unordered_map& feed_tensors);
-
ParallelExecutorPrivate* member_;
};
diff --git a/paddle/fluid/framework/program_desc_test.cc b/paddle/fluid/framework/program_desc_test.cc
index 66618a291b59996836e822587af618927a4263c7..6c46e9aad5b7fbf67fdcc07a12e7932ac8b6412b 100644
--- a/paddle/fluid/framework/program_desc_test.cc
+++ b/paddle/fluid/framework/program_desc_test.cc
@@ -66,7 +66,7 @@ TEST(ProgramDesc, copy_ctor) {
for (size_t i = 0; i < global_block->OpSize(); ++i) {
auto op_origin = global_block->Op(i);
- auto op_copy = global_block->Op(i);
+ auto op_copy = global_block_copy->Op(i);
ASSERT_EQ(op_origin->Type(), op_copy->Type());
ASSERT_EQ(op_origin->Inputs(), op_copy->Inputs());
@@ -131,7 +131,7 @@ TEST(ProgramDescBind, serialize_and_deserialize) {
for (size_t i = 0; i < global_block->OpSize(); ++i) {
auto op_origin = global_block->Op(i);
- auto op_restored = global_block->Op(i);
+ auto op_restored = global_block_restored->Op(i);
ASSERT_EQ(op_origin->Type(), op_restored->Type());
ASSERT_EQ(op_origin->Inputs(), op_restored->Inputs());
diff --git a/paddle/fluid/inference/CMakeLists.txt b/paddle/fluid/inference/CMakeLists.txt
index e53bcf2384e54e21c7dd5638f3b7469a35b571bf..cc45bfe9b17d767be039cc0d8d83234b6994d6c1 100644
--- a/paddle/fluid/inference/CMakeLists.txt
+++ b/paddle/fluid/inference/CMakeLists.txt
@@ -21,4 +21,7 @@ endif()
if(WITH_TESTING)
add_subdirectory(tests/book)
+ if (TENSORRT_FOUND)
+ add_subdirectory(tensorrt)
+ endif()
endif()
diff --git a/paddle/fluid/inference/tensorrt/CMakeLists.txt b/paddle/fluid/inference/tensorrt/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e39c0daac76e0993382868289f66351da3d16f8f
--- /dev/null
+++ b/paddle/fluid/inference/tensorrt/CMakeLists.txt
@@ -0,0 +1 @@
+nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
diff --git a/paddle/fluid/inference/tensorrt/test_tensorrt.cc b/paddle/fluid/inference/tensorrt/test_tensorrt.cc
new file mode 100644
index 0000000000000000000000000000000000000000..a81a708e7a79225fd52c4b8e081afdcd8fe7e9ad
--- /dev/null
+++ b/paddle/fluid/inference/tensorrt/test_tensorrt.cc
@@ -0,0 +1,155 @@
+/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License. */
+
+#include
+#include
+#include "NvInfer.h"
+#include "cuda.h"
+#include "cuda_runtime_api.h"
+#include "paddle/fluid/platform/dynload/tensorrt.h"
+
+namespace dy = paddle::platform::dynload;
+
+class Logger : public nvinfer1::ILogger {
+ public:
+ void log(nvinfer1::ILogger::Severity severity, const char* msg) override {
+ switch (severity) {
+ case Severity::kINFO:
+ LOG(INFO) << msg;
+ break;
+ case Severity::kWARNING:
+ LOG(WARNING) << msg;
+ break;
+ case Severity::kINTERNAL_ERROR:
+ case Severity::kERROR:
+ LOG(ERROR) << msg;
+ break;
+ default:
+ break;
+ }
+ }
+};
+
+class ScopedWeights {
+ public:
+ ScopedWeights(float value) : value_(value) {
+ w.type = nvinfer1::DataType::kFLOAT;
+ w.values = &value_;
+ w.count = 1;
+ }
+ const nvinfer1::Weights& get() { return w; }
+
+ private:
+ float value_;
+ nvinfer1::Weights w;
+};
+
+// The following two API are implemented in TensorRT's header file, cannot load
+// from the dynamic library. So create our own implementation and directly
+// trigger the method from the dynamic library.
+nvinfer1::IBuilder* createInferBuilder(nvinfer1::ILogger& logger) {
+ return static_cast(
+ dy::createInferBuilder_INTERNAL(&logger, NV_TENSORRT_VERSION));
+}
+nvinfer1::IRuntime* createInferRuntime(nvinfer1::ILogger& logger) {
+ return static_cast(
+ dy::createInferRuntime_INTERNAL(&logger, NV_TENSORRT_VERSION));
+}
+
+const char* kInputTensor = "input";
+const char* kOutputTensor = "output";
+
+// Creates a network to compute y = 2x + 3
+nvinfer1::IHostMemory* CreateNetwork() {
+ Logger logger;
+ // Create the engine.
+ nvinfer1::IBuilder* builder = createInferBuilder(logger);
+ ScopedWeights weights(2.);
+ ScopedWeights bias(3.);
+
+ nvinfer1::INetworkDefinition* network = builder->createNetwork();
+ // Add the input
+ auto input = network->addInput(kInputTensor, nvinfer1::DataType::kFLOAT,
+ nvinfer1::DimsCHW{1, 1, 1});
+ EXPECT_NE(input, nullptr);
+ // Add the hidden layer.
+ auto layer = network->addFullyConnected(*input, 1, weights.get(), bias.get());
+ EXPECT_NE(layer, nullptr);
+ // Mark the output.
+ auto output = layer->getOutput(0);
+ output->setName(kOutputTensor);
+ network->markOutput(*output);
+ // Build the engine.
+ builder->setMaxBatchSize(1);
+ builder->setMaxWorkspaceSize(1 << 10);
+ auto engine = builder->buildCudaEngine(*network);
+ EXPECT_NE(engine, nullptr);
+ // Serialize the engine to create a model, then close.
+ nvinfer1::IHostMemory* model = engine->serialize();
+ network->destroy();
+ engine->destroy();
+ builder->destroy();
+ return model;
+}
+
+void Execute(nvinfer1::IExecutionContext& context, const float* input,
+ float* output) {
+ const nvinfer1::ICudaEngine& engine = context.getEngine();
+ // Two binds, input and output
+ ASSERT_EQ(engine.getNbBindings(), 2);
+ const int input_index = engine.getBindingIndex(kInputTensor);
+ const int output_index = engine.getBindingIndex(kOutputTensor);
+ // Create GPU buffers and a stream
+ void* buffers[2];
+ ASSERT_EQ(0, cudaMalloc(&buffers[input_index], sizeof(float)));
+ ASSERT_EQ(0, cudaMalloc(&buffers[output_index], sizeof(float)));
+ cudaStream_t stream;
+ ASSERT_EQ(0, cudaStreamCreate(&stream));
+ // Copy the input to the GPU, execute the network, and copy the output back.
+ ASSERT_EQ(0, cudaMemcpyAsync(buffers[input_index], input, sizeof(float),
+ cudaMemcpyHostToDevice, stream));
+ context.enqueue(1, buffers, stream, nullptr);
+ ASSERT_EQ(0, cudaMemcpyAsync(output, buffers[output_index], sizeof(float),
+ cudaMemcpyDeviceToHost, stream));
+ cudaStreamSynchronize(stream);
+
+ // Release the stream and the buffers
+ cudaStreamDestroy(stream);
+ ASSERT_EQ(0, cudaFree(buffers[input_index]));
+ ASSERT_EQ(0, cudaFree(buffers[output_index]));
+}
+
+TEST(TensorrtTest, BasicFunction) {
+ // Create the network serialized model.
+ nvinfer1::IHostMemory* model = CreateNetwork();
+
+ // Use the model to create an engine and an execution context.
+ Logger logger;
+ nvinfer1::IRuntime* runtime = createInferRuntime(logger);
+ nvinfer1::ICudaEngine* engine =
+ runtime->deserializeCudaEngine(model->data(), model->size(), nullptr);
+ model->destroy();
+ nvinfer1::IExecutionContext* context = engine->createExecutionContext();
+
+ // Execute the network.
+ float input = 1234;
+ float output;
+ Execute(*context, &input, &output);
+ EXPECT_EQ(output, input * 2 + 3);
+
+ // Destroy the engine.
+ context->destroy();
+ engine->destroy();
+ runtime->destroy();
+}
diff --git a/paddle/fluid/platform/dynload/CMakeLists.txt b/paddle/fluid/platform/dynload/CMakeLists.txt
index 84dac2937de02b3374156ebc83e19dac9f9a3e7a..364c4901b297dbd647faae85b01f682a1daace9c 100644
--- a/paddle/fluid/platform/dynload/CMakeLists.txt
+++ b/paddle/fluid/platform/dynload/CMakeLists.txt
@@ -1,6 +1,11 @@
cc_library(dynamic_loader SRCS dynamic_loader.cc DEPS glog gflags enforce)
list(APPEND CUDA_SRCS cublas.cc cudnn.cc curand.cc nccl.cc)
+if (TENSORRT_FOUND)
+ list(APPEND CUDA_SRCS tensorrt.cc)
+endif()
+
+
configure_file(cupti_lib_path.h.in ${CMAKE_CURRENT_BINARY_DIR}/cupti_lib_path.h)
if (CUPTI_FOUND)
list(APPEND CUDA_SRCS cupti.cc)
diff --git a/paddle/fluid/platform/dynload/dynamic_loader.cc b/paddle/fluid/platform/dynload/dynamic_loader.cc
index 3c1ccc7445ed27c711ab250aa223c66ae0da45dc..19c01dc5a968c7e1d2b0f15cf9a0e8427004e58b 100644
--- a/paddle/fluid/platform/dynload/dynamic_loader.cc
+++ b/paddle/fluid/platform/dynload/dynamic_loader.cc
@@ -45,6 +45,10 @@ DEFINE_string(nccl_dir, "",
DEFINE_string(cupti_dir, "", "Specify path for loading cupti.so.");
+DEFINE_string(
+ tensorrt_dir, "",
+ "Specify path for loading tensorrt library, such as libnvinfer.so.");
+
namespace paddle {
namespace platform {
namespace dynload {
@@ -194,6 +198,14 @@ void* GetNCCLDsoHandle() {
#endif
}
+void* GetTensorRtDsoHandle() {
+#if defined(__APPLE__) || defined(__OSX__)
+ return GetDsoHandleFromSearchPath(FLAGS_tensorrt_dir, "libnvinfer.dylib");
+#else
+ return GetDsoHandleFromSearchPath(FLAGS_tensorrt_dir, "libnvinfer.so");
+#endif
+}
+
} // namespace dynload
} // namespace platform
} // namespace paddle
diff --git a/paddle/fluid/platform/dynload/dynamic_loader.h b/paddle/fluid/platform/dynload/dynamic_loader.h
index 4c85093a43e0e8d75b64c5b29d1ec68db1b44909..0de3559b6088086cb52c254535b6ec42da7dd724 100644
--- a/paddle/fluid/platform/dynload/dynamic_loader.h
+++ b/paddle/fluid/platform/dynload/dynamic_loader.h
@@ -25,6 +25,7 @@ void* GetCurandDsoHandle();
void* GetWarpCTCDsoHandle();
void* GetLapackDsoHandle();
void* GetNCCLDsoHandle();
+void* GetTensorRtDsoHandle();
} // namespace dynload
} // namespace platform
diff --git a/paddle/fluid/platform/dynload/tensorrt.cc b/paddle/fluid/platform/dynload/tensorrt.cc
new file mode 100644
index 0000000000000000000000000000000000000000..f3c8e27944ca9b6419de87d752df3a83751039b1
--- /dev/null
+++ b/paddle/fluid/platform/dynload/tensorrt.cc
@@ -0,0 +1,30 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License. */
+
+#include "paddle/fluid/platform/dynload/tensorrt.h"
+
+namespace paddle {
+namespace platform {
+namespace dynload {
+
+std::once_flag tensorrt_dso_flag;
+void *tensorrt_dso_handle;
+
+#define DEFINE_WRAP(__name) DynLoad__##__name __name
+
+TENSORRT_RAND_ROUTINE_EACH(DEFINE_WRAP);
+
+} // namespace dynload
+} // namespace platform
+} // namespace paddle
diff --git a/paddle/fluid/platform/dynload/tensorrt.h b/paddle/fluid/platform/dynload/tensorrt.h
new file mode 100644
index 0000000000000000000000000000000000000000..f584a49da0fefe0b064b5fb55b01ec132225ce5e
--- /dev/null
+++ b/paddle/fluid/platform/dynload/tensorrt.h
@@ -0,0 +1,69 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+#pragma once
+
+#include
+#include
+
+#include // NOLINT
+
+#include "paddle/fluid/platform/dynload/dynamic_loader.h"
+#include "paddle/fluid/platform/enforce.h"
+
+namespace paddle {
+namespace platform {
+namespace dynload {
+
+extern std::once_flag tensorrt_dso_flag;
+extern void* tensorrt_dso_handle;
+
+#ifdef PADDLE_USE_DSO
+
+#define DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP(__name) \
+ struct DynLoad__##__name { \
+ template \
+ auto operator()(Args... args) -> decltype(__name(args...)) { \
+ using tensorrt_func = decltype(__name(args...)) (*)(Args...); \
+ std::call_once(tensorrt_dso_flag, []() { \
+ tensorrt_dso_handle = \
+ paddle::platform::dynload::GetTensorRtDsoHandle(); \
+ PADDLE_ENFORCE(tensorrt_dso_handle, "load tensorrt so failed"); \
+ }); \
+ void* p_##__name = dlsym(tensorrt_dso_handle, #__name); \
+ PADDLE_ENFORCE(p_##__name, "load %s failed", #__name); \
+ return reinterpret_cast(p_##__name)(args...); \
+ } \
+ }; \
+ extern DynLoad__##__name __name
+
+#else
+#define DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP(__name) \
+ struct DynLoad__##__name { \
+ template \
+ tensorrtResult_t operator()(Args... args) { \
+ return __name(args...); \
+ } \
+ }; \
+ extern DynLoad__##__name __name
+#endif
+
+#define TENSORRT_RAND_ROUTINE_EACH(__macro) \
+ __macro(createInferBuilder_INTERNAL); \
+ __macro(createInferRuntime_INTERNAL);
+
+TENSORRT_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_TENSORRT_WRAP)
+
+} // namespace dynload
+} // namespace platform
+} // namespace paddle
diff --git a/paddle/fluid/platform/float16.h b/paddle/fluid/platform/float16.h
index 673e1bcae4af6d039bc969f1de6e4bcab3748cb5..ffd183af68514dbb1a8b3de39000c9ca3f56ddc3 100644
--- a/paddle/fluid/platform/float16.h
+++ b/paddle/fluid/platform/float16.h
@@ -873,6 +873,11 @@ HOSTDEVICE inline bool(isfinite)(const float16& a) {
return !((isnan)(a)) && !((isinf)(a));
}
+inline std::ostream& operator<<(std::ostream& os, const float16& a) {
+ os << static_cast(a);
+ return os;
+}
+
} // namespace platform
} // namespace paddle
diff --git a/paddle/fluid/platform/float16_test.cc b/paddle/fluid/platform/float16_test.cc
index d60aecf96c8828a5656f81fd3602cfb2e66990cf..a589e32b61a9b6a44bdc4529eee715d987d6922c 100644
--- a/paddle/fluid/platform/float16_test.cc
+++ b/paddle/fluid/platform/float16_test.cc
@@ -141,5 +141,10 @@ TEST(float16, lod_tensor_cpu) {
}
}
+TEST(float16, print) {
+ float16 a = float16(1.0f);
+ std::cout << a << std::endl;
+}
+
} // namespace platform
} // namespace paddle
diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc
index a1e8ff6399f0812773a7bb753c90e4400b1763d9..19bd30d9665dc1e8f9d475868cabbf14c8847352 100644
--- a/paddle/fluid/pybind/pybind.cc
+++ b/paddle/fluid/pybind/pybind.cc
@@ -505,11 +505,19 @@ All parameter, weight, gradient are variables in Paddle.
scope, local_scopes, allow_op_delay);
})
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
+ // NOTE: even we return a vec* to Python use reference policy.
+ // We still cannot get local_scope from this vector, since the element
+ // of vec will be freed by Python GC. We can only return Scope*
+ // one by one and mark them as reference.
.def("local_scopes",
[](ParallelExecutor &self) -> std::vector * {
return &self.GetLocalScopes();
},
py::return_value_policy::reference)
+ .def("feed_tensors_into_local_scopes",
+ &ParallelExecutor::FeedTensorsIntoLocalScopes)
+ .def("feed_and_split_tensor_into_local_scopes",
+ &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
.def("run", &ParallelExecutor::Run);
BindRecordIOWriter(&m);
diff --git a/paddle/fluid/pybind/tensor_py.h b/paddle/fluid/pybind/tensor_py.h
index 4a9dbd324c90380e784cc9457845fabd858585be..159d1d5f4e70033fabf93514bd63b38f83675bff 100644
--- a/paddle/fluid/pybind/tensor_py.h
+++ b/paddle/fluid/pybind/tensor_py.h
@@ -190,6 +190,11 @@ void PyCUDATensorSetFromArray(
static_cast(pool.Get(place));
paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(),
cudaMemcpyHostToDevice, dev_ctx->stream());
+ // NOTE: For safety, here wait the copy complete.
+ // It because the CPU array.data() could be destroyed after this method.
+ // If we make this method async, it could be copied data from a memory buffer
+ // that has been freed.
+ dev_ctx->Wait();
}
template <>
@@ -216,6 +221,11 @@ void PyCUDATensorSetFromArray(
paddle::platform::GpuMemcpyAsync(dst, array.data(),
sizeof(uint16_t) * array.size(),
cudaMemcpyHostToDevice, dev_ctx->stream());
+ // NOTE: For safety, here wait the copy complete.
+ // It because the CPU array.data() could be destroyed after this method.
+ // If we make this method async, it could be copied data from a memory buffer
+ // that has been freed.
+ dev_ctx->Wait();
}
template
diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh
index be1565ab533037d4bc72b6d2834c48b04638c297..2b2a904974f3756576fb47851400e344c9357c57 100755
--- a/paddle/scripts/docker/build.sh
+++ b/paddle/scripts/docker/build.sh
@@ -198,7 +198,7 @@ EOF
# run paddle version to install python packages first
RUN apt-get update &&\
${NCCL_DEPS}\
- apt-get install -y wget python-pip dmidecode python-tk && pip install -U pip && \
+ apt-get install -y wget python-pip dmidecode python-tk && pip install -U pip==9.0.3 && \
pip install /*.whl; apt-get install -f -y && \
apt-get clean -y && \
rm -f /*.whl && \
diff --git a/paddle/utils/DynamicLoader.cpp b/paddle/utils/DynamicLoader.cpp
index 5604a90038b06d2c1a4d9db70e4185cddfd25d3e..9ac4a56c6e300d299467630b39a32567af72cf40 100644
--- a/paddle/utils/DynamicLoader.cpp
+++ b/paddle/utils/DynamicLoader.cpp
@@ -32,6 +32,8 @@ DEFINE_string(warpctc_dir, "", "Specify path for loading libwarpctc.so.");
DEFINE_string(lapack_dir, "", "Specify path for loading liblapack.so.");
+DEFINE_string(tensorrt_dir, "", "Specify path for loading libnvinfer.so.");
+
static inline std::string join(const std::string& part1,
const std::string& part2) {
// directory separator
@@ -157,3 +159,12 @@ void GetLapackDsoHandle(void** dso_handle) {
GetDsoHandleFromSearchPath(FLAGS_lapack_dir, "liblapacke.so", dso_handle);
#endif
}
+
+void GetTensorRtDsoHandle(void** dso_handle) {
+#if defined(__APPLE__) || defined(__OSX__)
+ GetDsoHandleFromSearchPath(
+ FLAGS_tensorrt_dir, "libnvinfer.dylib", dso_handle);
+#else
+ GetDsoHandleFromSearchPath(FLAGS_tensorrt_dir, "libnvinfer.so", dso_handle);
+#endif
+}
diff --git a/paddle/utils/DynamicLoader.h b/paddle/utils/DynamicLoader.h
index 2e5ff76a06152b6a12818f06baaeaa6a69726ba8..02f519de4b3988fb6aca323aaa1751ee2c4bd738 100644
--- a/paddle/utils/DynamicLoader.h
+++ b/paddle/utils/DynamicLoader.h
@@ -58,3 +58,11 @@ void GetWarpCTCDsoHandle(void** dso_handle);
*
*/
void GetLapackDsoHandle(void** dso_handle);
+
+/**
+ * @brief load the DSO of tensorrt
+ *
+ * @param **dso_handle dso handler
+ *
+ */
+void GetTensorRtDsoHandle(void** dso_handle);
diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py
index 5c2c2dd7abebf8960d68b4c4dfd746a4e27acd03..bba8b64bd88c3edc6eda110dde38c0ced50439f6 100644
--- a/python/paddle/fluid/layers/nn.py
+++ b/python/paddle/fluid/layers/nn.py
@@ -77,6 +77,7 @@ __all__ = [
'lod_reset',
'lrn',
'pad',
+ 'label_smooth',
]
@@ -3678,3 +3679,68 @@ def pad(x, paddings, pad_value=0., name=None):
attrs={'paddings': paddings,
'pad_value': float(pad_value)})
return out
+
+
+def label_smooth(label,
+ prior_dist=None,
+ epsilon=0.1,
+ dtype="float32",
+ name=None):
+ """
+ Label smoothing is a mechanism to regularize the classifier layer and is
+ called label-smoothing regularization (LSR).
+
+ Label smoothing is proposed to encourage the model to be less confident,
+ since optimizing the log-likelihood of the correct label directly may
+ cause overfitting and reduce the ability of the model to adapt. Label
+ smoothing replaces the ground-truth label :math:`y` with the weighted sum
+ of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
+ i.e.
+
+ .. math::
+
+ \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,
+
+ where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
+ respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
+ uniform distribution is used for :math:`\mu`.
+
+ See more details about label smoothing in https://arxiv.org/abs/1512.00567.
+
+ Args:
+ label(Variable): The input variable containing the label data. The
+ label data should use one-hot representation.
+ prior_dist(Variable): The prior distribution to be used to smooth
+ labels. If not provided, an uniform distribution
+ is used. The shape of :attr:`prior_dist` should
+ be :math:`(1, class\_num)`.
+ epsilon(float): The weight used to mix up the original ground-truth
+ distribution and the fixed distribution.
+ dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
+ float_64, int etc.
+ name(str|None): A name for this layer(optional). If set None, the layer
+ will be named automatically.
+
+ Returns:
+ Variable: The tensor variable containing the smoothed labels.
+
+ Examples:
+ .. code-block:: python
+
+ label = layers.data(name="label", shape=[1], dtype="float32")
+ one_hot_label = layers.one_hot(input=label, depth=10)
+ smooth_label = layers.label_smooth(
+ label=one_hot_label, epsilon=0.1, dtype="float32")
+ """
+ if epsilon > 1. or epsilon < 0.:
+ raise ValueError("The value of epsilon must be between 0 and 1.")
+ helper = LayerHelper("label_smooth", **locals())
+ label.stop_gradient = True
+ smooth_label = helper.create_tmp_variable(dtype)
+ helper.append_op(
+ type="label_smooth",
+ inputs={"X": label,
+ "PriorDist": prior_dist} if prior_dist else {"X": label},
+ outputs={"Out": smooth_label},
+ attrs={"epsilon": float(epsilon)})
+ return smooth_label
diff --git a/python/paddle/fluid/metrics.py b/python/paddle/fluid/metrics.py
index 99a81c1d4244b919a53dfec36fc5a6659c10adae..c618b02a768f2ca3e2b2914d8ee0134836d5c0d2 100644
--- a/python/paddle/fluid/metrics.py
+++ b/python/paddle/fluid/metrics.py
@@ -169,7 +169,7 @@ class Accuracy(MetricBase):
return self.value / self.weight
-class ChunkEvalutor(MetricBase):
+class ChunkEvaluator(MetricBase):
"""
Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter
@@ -177,7 +177,7 @@ class ChunkEvalutor(MetricBase):
"""
def __init__(self, name=None):
- super(ChunkEvalutor, self).__init__(name)
+ super(ChunkEvaluator, self).__init__(name)
self.num_infer_chunks = 0
self.num_label_chunks = 0
self.num_correct_chunks = 0
diff --git a/python/paddle/fluid/parallel_executor.py b/python/paddle/fluid/parallel_executor.py
index 5ce2aa1fc4d0b275b502af0f97e4a0f83e85de5b..07cc1e29341bd497e88097a9ee5653631b79d734 100644
--- a/python/paddle/fluid/parallel_executor.py
+++ b/python/paddle/fluid/parallel_executor.py
@@ -16,6 +16,7 @@ import core
import multiprocessing
import framework
import executor
+import sys
__all__ = ['ParallelExecutor']
@@ -123,28 +124,93 @@ class ParallelExecutor(object):
allow_op_delay)
self.scope = scope
- def run(self, fetch_list, feed_dict={}):
+ def run(self, fetch_list, feed=None, feed_dict=None):
"""
- :param fetch_list: A list of variable names that will be fetched.
- :param feed_dict: A dict mapping for feed variable name to LoDTensor
- or numpy array.
- :return: fetched value list.
- """
- if not isinstance(feed_dict, dict):
- raise TypeError("feed_dict should be a dict")
+ Run a parallel executor with fetch_list.
+
+ The feed parameter can be a dict or a list. If feed is a dict, the
+ feed data will be split into multiple devices. If feed is a list, we
+ assume the data has been splitted into multiple devices, the each
+ element in the list will be copied to each device directly.
+
+ For example, if the feed is a dict:
+ >>> exe = ParallelExecutor()
+ >>> # the image will be splitted into devices. If there is two devices
+ >>> # each device will process an image with shape (24, 1, 28, 28)
+ >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})
+
+ For example, if the feed is a list:
+ >>> exe = ParallelExecutor()
+ >>> # each device will process each element in the list.
+ >>> # the 1st device will process an image with shape (48, 1, 28, 28)
+ >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
+ >>> #
+ >>> # you can use exe.device_count to get the device number.
+ >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
+ >>> {"image": numpy.random.random(size=(32, 1, 28, 28))},
+ >>> ])
+
+
+ Args:
+ fetch_list(list): The fetched variable names
+ feed(list|dict|None): The feed variables. If the feed is a dict,
+ tensors in that dict will be splitted into each devices. If
+ the feed is a list, each element of the list will be copied
+ to each device.
+ feed_dict: Alias for feed parameter, for backward compatibility.
+ This parameter is deprecated.
- feed_tensor_dict = {}
- for i, feed_name in enumerate(feed_dict):
- feed_tensor = feed_dict[feed_name]
- if not isinstance(feed_tensor, core.LoDTensor):
- feed_tensor = core.LoDTensor()
- feed_tensor.set(feed_dict[feed_name], self._act_places[0])
- feed_tensor_dict[feed_name] = feed_tensor
+ Returns: fetched result list.
+
+ """
+ if feed is None:
+ feed = feed_dict
+ print >> sys.stderr, "`feed_dict` is deprecated. Please use `feed=`"
+
+ if isinstance(feed, dict):
+ feed_tensor_dict = dict()
+ for feed_name in feed:
+ feed_tensor = feed[feed_name]
+ if not isinstance(feed_tensor, core.LoDTensor):
+ feed_tensor = core.LoDTensor()
+ # always set to CPU place, since the tensor need to be splitted
+ # it is fast in CPU
+ feed_tensor.set(feed[feed_name], core.CPUPlace())
+ feed_tensor_dict[feed_name] = feed_tensor
+
+ self.executor.feed_and_split_tensor_into_local_scopes(
+ feed_tensor_dict)
+ elif isinstance(feed, list) or isinstance(feed, tuple):
+ if len(feed) != len(self._act_places):
+ raise ValueError(
+ "Feed a list of tensor, the list should be the same size as places"
+ )
+
+ res = list()
+
+ for i, each in enumerate(feed):
+ if not isinstance(each, dict):
+ raise TypeError(
+ "Each element of feed list should be a dict")
+ res_dict = dict()
+ for feed_name in each:
+ tensor = each[feed_name]
+ if not isinstance(tensor, core.LoDTensor):
+ tmp = core.LoDTensor()
+ tmp.set(tensor, self._act_places[i])
+ tensor = tmp
+ res_dict[feed_name] = tensor
+ res.append(res_dict)
+ self.executor.feed_tensors_into_local_scopes(res)
fetch_var_name = '@FETCHED_VAR_NAME@'
- self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict)
+ self.executor.run(fetch_list, fetch_var_name)
arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
return [arr[i] for i in range(len(arr))]
def bcast_params(self):
self.executor.bcast_params(set(self.persistable_vars))
+
+ @property
+ def device_count(self):
+ return len(self._act_places)
diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py
index f88a6f1ce6e953c54da29f9e96199169b2cecd8b..a1be2d671ddc5c689b16319fcf5bf12dca5dde7e 100644
--- a/python/paddle/fluid/tests/unittests/test_layers.py
+++ b/python/paddle/fluid/tests/unittests/test_layers.py
@@ -340,6 +340,16 @@ class TestBook(unittest.TestCase):
print(layers.lod_reset(x=x, y=y))
print(str(program))
+ def test_label_smooth(self):
+ program = Program()
+ with program_guard(program):
+ label = layers.data(name="label", shape=[1], dtype="float32")
+ one_hot_label = layers.one_hot(input=label, depth=10)
+ smooth_label = layers.label_smooth(
+ label=one_hot_label, epsilon=0.1, dtype="float32")
+ self.assertIsNotNone(smooth_label)
+ print(str(program))
+
if __name__ == '__main__':
unittest.main()
diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor.py b/python/paddle/fluid/tests/unittests/test_parallel_executor.py
index 83d22fd799eea55eedb58f93421b275985edb50b..3ddafbbc57b29d506158bcb57188ab96f814e0d3 100644
--- a/python/paddle/fluid/tests/unittests/test_parallel_executor.py
+++ b/python/paddle/fluid/tests/unittests/test_parallel_executor.py
@@ -203,31 +203,32 @@ class TestParallelExecutorBase(unittest.TestCase):
iter=10,
batch_size=None,
allow_op_delay=False,
- feed_dict={}):
+ feed_dict=None):
main = fluid.Program()
startup = fluid.Program()
+ startup.random_seed = 1 # Fix random seed
with fluid.program_guard(main, startup):
- loss = method(use_feed=len(feed_dict) > 0)
+ loss = method(use_feed=feed_dict is not None)
adam = fluid.optimizer.Adam()
adam.minimize(loss)
if memory_opt:
fluid.memory_optimize(main)
-
place = fluid.CUDAPlace(0)
startup_exe = fluid.Executor(place)
startup_exe.run(startup)
- exe = fluid.ParallelExecutor(True, loss_name=loss.name)
+ exe = fluid.ParallelExecutor(
+ True, loss_name=loss.name, allow_op_delay=allow_op_delay)
if batch_size is not None:
batch_size *= fluid.core.get_cuda_device_count()
begin = time.time()
- first_loss, = exe.run([loss.name], feed_dict=feed_dict)
+ first_loss, = exe.run([loss.name], feed=feed_dict)
first_loss = numpy.array(first_loss)
for i in xrange(iter):
- exe.run([], feed_dict=feed_dict)
+ exe.run([], feed=feed_dict)
- last_loss, = exe.run([loss.name], feed_dict=feed_dict)
+ last_loss, = exe.run([loss.name], feed=feed_dict)
end = time.time()
if batch_size is not None:
@@ -648,5 +649,5 @@ class TestCRFModel(unittest.TestCase):
for i in xrange(10):
cur_batch = next(data)
print map(numpy.array,
- pe.run(feed_dict=feeder.feed(cur_batch),
+ pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))[0]
diff --git a/python/paddle/v2/reader/__init__.py b/python/paddle/v2/reader/__init__.py
index 3b059735a924d58714cd88a761eb83143f1192d6..12efdc4a0fec83fed57bdcbf687aaec69d13ba91 100644
--- a/python/paddle/v2/reader/__init__.py
+++ b/python/paddle/v2/reader/__init__.py
@@ -50,7 +50,7 @@ An example implementation for single item data reader creator:
def reader():
while True:
yield numpy.random.uniform(-1, 1, size=width*height)
- return reader
+ return reader
An example implementation for multiple item data reader creator:
@@ -60,7 +60,7 @@ An example implementation for multiple item data reader creator:
def reader():
while True:
yield numpy.random.uniform(-1, 1, size=width*height), label
- return reader
+ return reader
TODO(yuyang18): Should we add whole design doc here?
diff --git a/tools/aws_benchmarking/README.md b/tools/aws_benchmarking/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..837fcbb8512bce027ecd09a7f39b806151e9154b
--- /dev/null
+++ b/tools/aws_benchmarking/README.md
@@ -0,0 +1,160 @@
+# AWS benchmark testing tool
+This is an automation tool for deploying paddlepaddle benchmark testing to AWS.
+
+## Features
+
+ - subnet creation to fit just the amount of ec2 instances required.
+ - pserver and trainer ec2 instances allocation, and instance state verification
+ - nvidia-docker ready for GPU training
+ - Instances and network element garbage collection when a task is accomplished or an error occurred
+ - Test log is collected in realtime
+ - Web service for checking log or tearing down the testing setup
+ - No testing code change needed
+ - Lots of optional configuration options
+
+ ## Usages
+
+ ### Prerequisites
+
+ - You have a working AWS account
+ - You have [AWS Command Line Interface](https://aws.amazon.com/cli/) installed
+ - Your AWS cli is bind with a account which has `AmazonEC2FullAccess` permission, and it's set as default credential.
+ - You have key pair created and pem file downloaded.
+ - You have a default VPC in the region you want to run the test.
+ - You have a Security Group created for the VPC mentioned above, which allows port 22 and the port you want to expose your control web service (5436 by default)
+ - If your test is supposed to run in a GPU machine, especially a multi card GPU machine (p2, p3 series), you might need to contact amazon to raise the limit which allows no more than 1 GPU instance at a time.
+
+ ### Start a benchmark test
+
+#### Create training image
+
+*What to expect in this step:*
+
+*You will have your training logic packed with paddle runtime in a docker image, and be able to be picked up by AWS instance for training.*
+
+Training python script and PaddlePaddle runtime are supposed to be packed into one docker image. Use PaddlePaddle production images as base image and create the training images with the docker file as follows:
+
+```Dockerfile
+FROM paddlepaddle/paddle:latest-gpu
+
+ENV HOME /root
+COPY ./ /root/
+WORKDIR /root
+RUN pip install -r /root/requirements.txt
+ENTRYPOINT ["python", "my_training.py"]
+```
+
+***Please Note***
+Training nodes will run your `ENTRYPOINT` script with the following environment variables:
+
+ - `TASK_NAME`: unique name to identify this training process.
+ - `TRAINING_ROLE`: current node's role in this training process, either "PSERVER" or "TRAINER"
+ - `PSERVER_HOSTS`: comma separated value of pserver end points, I.E. "192.168.1.2:5436,192.168.1.3:5436"
+ - `PSERVERS`: same as above
+ - `TRAINERS`: trainer count
+ - `SERVER_ENDPOINT`: current server end point if the node role is a pserver
+ - `TRAINER_INDEX`: an integer to identify the index of current trainer if the node role is a trainer.
+ - `PADDLE_INIT_TRAINER_ID`: same as above
+
+ Now we have a working distributed training script which takes advantage of node environment variables and docker file to generate the training image. Run the following command:
+
+ ```bash
+ docker build -t myreponname/paddle_benchmark .
+ ```
+
+ Now you have the image built and tagged with `myreponame/paddle_benchmark`, let's push it to dockerhub so that it can be picked up by out AWS instance.
+
+ ```bash
+ docker push myreponame/paddle_benchmark
+ ```
+
+#### Create instances and start training
+
+*What to expect in this step*
+
+*you will be asked to provide some basic settings to config your training, and this tool will have your training started and monitored*
+
+Now let's start the training process:
+
+```bash
+docker run -i -v $HOME/.aws:/root/.aws -v :/root/.pem \
+putcn/paddle_aws_client \
+--action create \
+--key_name \
+--security_group_id \
+--docker_image myreponame/paddle_benchmark \
+--pserver_count 2 \
+--trainer_count 2
+```
+
+Now just wait until you see this:
+```
+master server finished init process, visit http://XXX:XXX/status to check master log
+```
+That means you can turn off your laptop and your cluster is creating instances, starting training process, collecting logs and eventually shut all pservers and trainers down when training is finished.
+
+#### Post creation operations
+
+To access the master log:
+
+```bash
+docker run -i -v $HOME/.aws:/root/.aws \
+putcn/paddle_aws_client \
+--action status \
+--master_server_public_ip \
+--master_server_port
+```
+
+To tear down the training setup:
+
+```bash
+docker run -i -v $HOME/.aws:/root/.aws \
+putcn/paddle_aws_client \
+--action cleanup \
+--master_server_public_ip \
+--master_server_port
+```
+
+To retrieve training logs
+TBD
+
+### Tech details
+
+*What to expect in this step*
+
+*You will understand what is happening behind the scene, and how to check the training log, how to tear down the training on the fly, etc.*
+
+Let's understand what is happening under the hood when you run above command in your laptop
+
+![alt](diagram.png)
+
+There are 4 roles in the figure above:
+ - client: your laptop
+ - master: who tasks to aws api server to create/tear down instances, and monitor training process
+ - AWS api server: the one who actually creates and manages instances
+ - pservers and trainers: training instances
+
+When you run the `docker run` command above, what it actually does is to ask aws api service to create a subnet (step 1) and a master instance (step 2), and pass all the parameters the client collected or generated (step 3). The master is kept as minimum hardware config to keep the running cost low.
+
+Then when the master is up and running, it will ask the aws api server to create the heavy lifting training instances who are expensive to run (step 4). And the master will start training process as soon as they are done initializing (step 5).
+
+Meanwhile, the master will expose a web service for client to check training log or even tear the training setup down by a web service call.
+
+if you are creating the training with client docker container, and also monitoring your aws dashboard, you will initially see a instance tagged with `ROLE=MASTER` and `TASK_NAME=_master` starts, then you will see several instances tagged with `ROLE=PSERVER` and `ROLE=TRAINER` starts.
+When the training is finished, pservers and trainers will be terminated. All their logs are kept in master node's docker env.
+
+Master exposes 4 major services:
+
+ - GET `/status`: return master log
+ - GET `/logs`: return list of log file names
+ - GET `/log/`: return a particular log by log file name
+ - POST `/cleanup`: teardown the whole setup
+
+
+### Parameters
+
+TBD, please refer to client/cluster_launcher.py for now
+
+### Trouble shooting
+
+TBD
diff --git a/tools/aws_benchmarking/client/Dockerfile b/tools/aws_benchmarking/client/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..812c5d4bce0adff404577ce6b5fd3f0f4a91118c
--- /dev/null
+++ b/tools/aws_benchmarking/client/Dockerfile
@@ -0,0 +1,7 @@
+FROM python:2.7.14-stretch
+
+ENV HOME /root
+COPY ./ /root/
+WORKDIR /root
+RUN pip install -r /root/requirements.txt
+ENTRYPOINT ["python", "cluster_launcher.py"]
\ No newline at end of file
diff --git a/tools/aws_benchmarking/client/cluster_launcher.py b/tools/aws_benchmarking/client/cluster_launcher.py
new file mode 100644
index 0000000000000000000000000000000000000000..594378ff8fc0744a4b11b1c11e2e3b270be7aed0
--- /dev/null
+++ b/tools/aws_benchmarking/client/cluster_launcher.py
@@ -0,0 +1,407 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import os
+import time
+import math
+import logging
+import copy
+
+import netaddr
+import boto3
+import namesgenerator
+import paramiko
+from scp import SCPClient
+import requests
+
+
+def str2bool(v):
+ if v.lower() in ('yes', 'true', 't', 'y', '1'):
+ return True
+ elif v.lower() in ('no', 'false', 'f', 'n', '0'):
+ return False
+ else:
+ raise argparse.ArgumentTypeError('Boolean value expected.')
+
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ '--key_name', type=str, default="", help="required, key pair name")
+parser.add_argument(
+ '--security_group_id',
+ type=str,
+ default="",
+ help="required, the security group id associated with your VPC")
+
+parser.add_argument(
+ '--vpc_id',
+ type=str,
+ default="",
+ help="The VPC in which you wish to run test")
+parser.add_argument(
+ '--subnet_id',
+ type=str,
+ default="",
+ help="The Subnet_id in which you wish to run test")
+
+parser.add_argument(
+ '--pserver_instance_type',
+ type=str,
+ default="c5.2xlarge",
+ help="your pserver instance type, c5.2xlarge by default")
+parser.add_argument(
+ '--trainer_instance_type',
+ type=str,
+ default="p2.8xlarge",
+ help="your trainer instance type, p2.8xlarge by default")
+
+parser.add_argument(
+ '--task_name',
+ type=str,
+ default="",
+ help="the name you want to identify your job")
+parser.add_argument(
+ '--pserver_image_id',
+ type=str,
+ default="ami-da2c1cbf",
+ help="ami id for system image, default one has nvidia-docker ready, \
+ use ami-1ae93962 for us-east-2")
+
+parser.add_argument(
+ '--pserver_command', type=str, default="", help="pserver start command")
+
+parser.add_argument(
+ '--trainer_image_id',
+ type=str,
+ default="ami-da2c1cbf",
+ help="ami id for system image, default one has nvidia-docker ready, \
+ use ami-1ae93962 for us-west-2")
+
+parser.add_argument(
+ '--trainer_command', type=str, default="", help="trainer start command")
+
+parser.add_argument(
+ '--availability_zone',
+ type=str,
+ default="us-east-2a",
+ help="aws zone id to place ec2 instances")
+
+parser.add_argument(
+ '--trainer_count', type=int, default=1, help="Trainer count")
+
+parser.add_argument(
+ '--pserver_count', type=int, default=1, help="Pserver count")
+
+parser.add_argument(
+ '--action', type=str, default="create", help="create|cleanup|status")
+
+parser.add_argument('--pem_path', type=str, help="private key file")
+
+parser.add_argument(
+ '--pserver_port', type=str, default="5436", help="pserver port")
+
+parser.add_argument(
+ '--docker_image', type=str, default="busybox", help="training docker image")
+
+parser.add_argument(
+ '--master_server_port', type=int, default=5436, help="master server port")
+
+parser.add_argument(
+ '--master_server_public_ip', type=str, help="master server public ip")
+
+parser.add_argument(
+ '--master_docker_image',
+ type=str,
+ default="putcn/paddle_aws_master:latest",
+ help="master docker image id")
+
+parser.add_argument(
+ '--no_clean_up',
+ type=str2bool,
+ default=False,
+ help="whether to clean up after training")
+
+args = parser.parse_args()
+
+logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
+
+ec2client = boto3.client('ec2')
+
+
+def print_arguments():
+ print('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ print('%s: %s' % (arg, value))
+ print('------------------------------------------------')
+
+
+def create_subnet():
+ # if no vpc id provided, list vpcs
+ logging.info("start creating subnet")
+ if not args.vpc_id:
+ logging.info("no vpc provided, trying to find the default one")
+ vpcs_desc = ec2client.describe_vpcs(
+ Filters=[{
+ "Name": "isDefault",
+ "Values": ["true", ]
+ }], )
+ if len(vpcs_desc["Vpcs"]) == 0:
+ raise ValueError('No default VPC')
+ args.vpc_id = vpcs_desc["Vpcs"][0]["VpcId"]
+ vpc_cidrBlock = vpcs_desc["Vpcs"][0]["CidrBlock"]
+
+ logging.info("default vpc fount with id %s and CidrBlock %s" %
+ (args.vpc_id, vpc_cidrBlock))
+
+ if not vpc_cidrBlock:
+ logging.info("trying to find cidrblock for vpc")
+ vpcs_desc = ec2client.describe_vpcs(
+ Filters=[{
+ "Name": "vpc-id",
+ "Values": [args.vpc_id, ],
+ }], )
+ if len(vpcs_desc["Vpcs"]) == 0:
+ raise ValueError('No VPC found')
+ vpc_cidrBlock = vpcs_desc["Vpcs"][0]["CidrBlock"]
+ logging.info("cidrblock for vpc is %s" % vpc_cidrBlock)
+
+ # list subnets in vpc in order to create a new one
+
+ logging.info("trying to find ip blocks for new subnet")
+ subnets_desc = ec2client.describe_subnets(
+ Filters=[{
+ "Name": "vpc-id",
+ "Values": [args.vpc_id, ],
+ }], )
+
+ ips_taken = []
+ for subnet_dec in subnets_desc["Subnets"]:
+ ips_taken.append(subnet_dec["CidrBlock"])
+
+ ip_blocks_avaliable = netaddr.IPSet(
+ [vpc_cidrBlock]) ^ netaddr.IPSet(ips_taken)
+ # adding 10 addresses as buffer
+ cidr_prefix = 32 - math.ceil(
+ math.log(args.pserver_count + args.trainer_count + 10, 2))
+ if cidr_prefix <= 16:
+ raise ValueError('Too many nodes to fit in current VPC')
+
+ for ipnetwork in ip_blocks_avaliable.iter_cidrs():
+ try:
+ subnet_cidr = ipnetwork.subnet(int(cidr_prefix)).next()
+ logging.info("subnet ip block found %s" % (subnet_cidr))
+ break
+ except Exception:
+ pass
+
+ if not subnet_cidr:
+ raise ValueError(
+ 'No avaliable subnet to fit required nodes in current VPC')
+
+ logging.info("trying to create subnet")
+ subnet_desc = ec2client.create_subnet(
+ CidrBlock=str(subnet_cidr),
+ VpcId=args.vpc_id,
+ AvailabilityZone=args.availability_zone)
+
+ subnet_id = subnet_desc["Subnet"]["SubnetId"]
+
+ subnet_waiter = ec2client.get_waiter('subnet_available')
+ # sleep for 1s before checking its state
+ time.sleep(1)
+ subnet_waiter.wait(SubnetIds=[subnet_id, ])
+
+ logging.info("subnet created")
+
+ logging.info("adding tags to newly created subnet")
+ ec2client.create_tags(
+ Resources=[subnet_id, ],
+ Tags=[{
+ "Key": "Task_name",
+ 'Value': args.task_name
+ }])
+ return subnet_id
+
+
+def run_instances(image_id, instance_type, count=1, role="MASTER", cmd=""):
+ response = ec2client.run_instances(
+ ImageId=image_id,
+ InstanceType=instance_type,
+ MaxCount=count,
+ MinCount=count,
+ UserData=cmd,
+ DryRun=False,
+ InstanceInitiatedShutdownBehavior="stop",
+ KeyName=args.key_name,
+ Placement={'AvailabilityZone': args.availability_zone},
+ NetworkInterfaces=[{
+ 'DeviceIndex': 0,
+ 'SubnetId': args.subnet_id,
+ "AssociatePublicIpAddress": True,
+ 'Groups': args.security_group_ids
+ }],
+ TagSpecifications=[{
+ 'ResourceType': "instance",
+ 'Tags': [{
+ "Key": 'Task_name',
+ "Value": args.task_name + "_master"
+ }, {
+ "Key": 'Role',
+ "Value": role
+ }]
+ }])
+
+ instance_ids = []
+ for instance in response["Instances"]:
+ instance_ids.append(instance["InstanceId"])
+
+ if len(instance_ids) > 0:
+ logging.info(str(len(instance_ids)) + " instance(s) created")
+ else:
+ logging.info("no instance created")
+ #create waiter to make sure it's running
+
+ logging.info("waiting for instance to become accessible")
+ waiter = ec2client.get_waiter('instance_status_ok')
+ waiter.wait(
+ Filters=[{
+ "Name": "instance-status.status",
+ "Values": ["ok"]
+ }, {
+ "Name": "instance-status.reachability",
+ "Values": ["passed"]
+ }, {
+ "Name": "instance-state-name",
+ "Values": ["running"]
+ }],
+ InstanceIds=instance_ids)
+
+ instances_response = ec2client.describe_instances(InstanceIds=instance_ids)
+
+ return instances_response["Reservations"][0]["Instances"]
+
+
+def generate_task_name():
+ return namesgenerator.get_random_name()
+
+
+def init_args():
+
+ if not args.task_name:
+ args.task_name = generate_task_name()
+ logging.info("task name generated %s" % (args.task_name))
+
+ if not args.pem_path:
+ args.pem_path = os.path.expanduser("~") + "/" + args.key_name + ".pem"
+ if args.security_group_id:
+ args.security_group_ids = (args.security_group_id, )
+
+
+def create():
+
+ init_args()
+
+ # create subnet
+ if not args.subnet_id:
+ args.subnet_id = create_subnet()
+
+ # create master node
+
+ master_instance_response = run_instances(
+ image_id="ami-7a05351f", instance_type="t2.nano")
+
+ logging.info("master server started")
+
+ args.master_server_public_ip = master_instance_response[0][
+ "PublicIpAddress"]
+ args.master_server_ip = master_instance_response[0]["PrivateIpAddress"]
+
+ logging.info("master server started, master_ip=%s, task_name=%s" %
+ (args.master_server_public_ip, args.task_name))
+
+ # cp config file and pems to master node
+
+ ssh_key = paramiko.RSAKey.from_private_key_file(args.pem_path)
+ ssh_client = paramiko.SSHClient()
+ ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
+ ssh_client.connect(
+ hostname=args.master_server_public_ip, username="ubuntu", pkey=ssh_key)
+
+ with SCPClient(ssh_client.get_transport()) as scp:
+ scp.put(os.path.expanduser("~") + "/" + ".aws",
+ recursive=True,
+ remote_path='/home/ubuntu/')
+ scp.put(args.pem_path,
+ remote_path='/home/ubuntu/' + args.key_name + ".pem")
+
+ logging.info("credentials and pem copied to master")
+
+ # set arguments and start docker
+ kick_off_cmd = "docker run -d -v /home/ubuntu/.aws:/root/.aws/"
+ kick_off_cmd += " -v /home/ubuntu/" + args.key_name + ".pem:/root/" + args.key_name + ".pem"
+ kick_off_cmd += " -v /home/ubuntu/logs/:/root/logs/"
+ kick_off_cmd += " -p " + str(args.master_server_port) + ":" + str(
+ args.master_server_port)
+ kick_off_cmd += " " + args.master_docker_image
+
+ args_to_pass = copy.copy(args)
+ args_to_pass.action = "serve"
+ del args_to_pass.pem_path
+ del args_to_pass.security_group_ids
+ del args_to_pass.master_docker_image
+ del args_to_pass.master_server_public_ip
+ for arg, value in sorted(vars(args_to_pass).iteritems()):
+ if value:
+ kick_off_cmd += ' --%s %s' % (arg, value)
+
+ logging.info(kick_off_cmd)
+ stdin, stdout, stderr = ssh_client.exec_command(command=kick_off_cmd)
+ return_code = stdout.channel.recv_exit_status()
+ logging.info(return_code)
+ if return_code != 0:
+ raise Exception("Error while kicking off master")
+
+ logging.info(
+ "master server finished init process, visit %s to check master log" %
+ (get_master_web_url("/status")))
+
+
+def cleanup():
+ print requests.post(get_master_web_url("/cleanup")).text
+
+
+def status():
+ print requests.post(get_master_web_url("/status")).text
+
+
+def get_master_web_url(path):
+ return "http://" + args.master_server_public_ip + ":" + str(
+ args.master_server_port) + path
+
+
+if __name__ == "__main__":
+ print_arguments()
+ if args.action == "create":
+ if not args.key_name or not args.security_group_id:
+ raise ValueError("key_name and security_group_id are required")
+ create()
+ elif args.action == "cleanup":
+ if not args.master_server_public_ip:
+ raise ValueError("master_server_public_ip is required")
+ cleanup()
+ elif args.action == "status":
+ if not args.master_server_public_ip:
+ raise ValueError("master_server_public_ip is required")
+ status()
diff --git a/tools/aws_benchmarking/client/requirements.txt b/tools/aws_benchmarking/client/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9454801f2025671cfd1a2c3b71cf4c2ac07cb8fb
--- /dev/null
+++ b/tools/aws_benchmarking/client/requirements.txt
@@ -0,0 +1,6 @@
+netaddr==0.7.19
+boto3==1.6.21
+namesgenerator==0.3
+paramiko==2.4.1
+scp
+requests
diff --git a/tools/aws_benchmarking/diagram.png b/tools/aws_benchmarking/diagram.png
new file mode 100644
index 0000000000000000000000000000000000000000..b97909c5fe78b59d0e636ff73c2ed3e63a0be722
Binary files /dev/null and b/tools/aws_benchmarking/diagram.png differ
diff --git a/tools/aws_benchmarking/server/Dockerfile b/tools/aws_benchmarking/server/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..333523abcdb6fbe7dc01bbaf7d32ce1d8e866028
--- /dev/null
+++ b/tools/aws_benchmarking/server/Dockerfile
@@ -0,0 +1,7 @@
+FROM python:2.7.14-stretch
+
+ENV HOME /root
+COPY ./ /root/
+WORKDIR /root
+RUN pip install -r /root/requirements.txt
+ENTRYPOINT ["python", "cluster_master.py"]
\ No newline at end of file
diff --git a/tools/aws_benchmarking/server/cluster_master.py b/tools/aws_benchmarking/server/cluster_master.py
new file mode 100644
index 0000000000000000000000000000000000000000..21f85a5fc43e951897eb6b785367630abda722c0
--- /dev/null
+++ b/tools/aws_benchmarking/server/cluster_master.py
@@ -0,0 +1,673 @@
+# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import os
+import json
+import math
+import time
+import threading
+import logging
+
+import netaddr
+import boto3
+import namesgenerator
+import paramiko
+
+from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer
+
+
+# You must have aws_access_key_id, aws_secret_access_key, region set in
+# ~/.aws/credentials and ~/.aws/config
+def str2bool(v):
+ if v.lower() in ('yes', 'true', 't', 'y', '1'):
+ return True
+ elif v.lower() in ('no', 'false', 'f', 'n', '0'):
+ return False
+ else:
+ raise argparse.ArgumentTypeError('Boolean value expected.')
+
+
+parser = argparse.ArgumentParser(description=__doc__)
+parser.add_argument(
+ '--key_name', type=str, default="", help="required, key pair name")
+parser.add_argument(
+ '--security_group_id',
+ type=str,
+ default="",
+ help="required, the security group id associated with your VPC")
+
+parser.add_argument(
+ '--vpc_id',
+ type=str,
+ default="",
+ help="The VPC in which you wish to run test")
+parser.add_argument(
+ '--subnet_id',
+ type=str,
+ default="",
+ help="The Subnet_id in which you wish to run test")
+
+parser.add_argument(
+ '--pserver_instance_type',
+ type=str,
+ default="c5.2xlarge",
+ help="your pserver instance type, c5.2xlarge by default")
+parser.add_argument(
+ '--trainer_instance_type',
+ type=str,
+ default="p2.8xlarge",
+ help="your trainer instance type, p2.8xlarge by default")
+
+parser.add_argument(
+ '--task_name',
+ type=str,
+ default="",
+ help="the name you want to identify your job")
+parser.add_argument(
+ '--pserver_image_id',
+ type=str,
+ default="ami-da2c1cbf",
+ help="ami id for system image, default one has nvidia-docker ready, use ami-1ae93962 for us-east-2"
+)
+parser.add_argument(
+ '--trainer_image_id',
+ type=str,
+ default="ami-da2c1cbf",
+ help="ami id for system image, default one has nvidia-docker ready, use ami-1ae93962 for us-west-2"
+)
+
+parser.add_argument(
+ '--availability_zone',
+ type=str,
+ default="us-east-2a",
+ help="aws zone id to place ec2 instances")
+
+parser.add_argument(
+ '--trainer_count', type=int, default=1, help="Trainer count")
+
+parser.add_argument(
+ '--pserver_count', type=int, default=1, help="Pserver count")
+
+parser.add_argument(
+ '--pserver_bash_file',
+ type=str,
+ default=os.path.join(os.path.dirname(__file__), "pserver.sh.template"),
+ help="pserver bash file path")
+
+parser.add_argument(
+ '--pserver_command', type=str, default="", help="pserver start command")
+
+parser.add_argument(
+ '--trainer_bash_file',
+ type=str,
+ default=os.path.join(os.path.dirname(__file__), "trainer.sh.template"),
+ help="trainer bash file path")
+
+parser.add_argument(
+ '--trainer_command', type=str, default="", help="trainer start command")
+
+parser.add_argument(
+ '--action', type=str, default="serve", help="create|cleanup|serve")
+
+parser.add_argument('--pem_path', type=str, help="private key file")
+
+parser.add_argument(
+ '--pserver_port', type=str, default="5436", help="pserver port")
+
+parser.add_argument(
+ '--docker_image', type=str, default="busybox", help="training docker image")
+
+parser.add_argument(
+ '--master_server_port', type=int, default=5436, help="master server port")
+
+parser.add_argument(
+ '--master_server_ip', type=str, default="", help="master server private ip")
+
+parser.add_argument(
+ '--no_clean_up',
+ type=str2bool,
+ default=False,
+ help="whether to clean up after training")
+
+args = parser.parse_args()
+
+ec2client = boto3.client('ec2')
+
+args.log_path = os.path.join(os.path.dirname(__file__), "logs/")
+
+logging.basicConfig(
+ filename=args.log_path + 'master.log',
+ level=logging.INFO,
+ format='%(asctime)s %(message)s')
+
+log_files = ["master.log"]
+
+
+def create_subnet():
+ # if no vpc id provided, list vpcs
+ logging.info("start creating subnet")
+ if not args.vpc_id:
+ logging.info("no vpc provided, trying to find the default one")
+ vpcs_desc = ec2client.describe_vpcs(
+ Filters=[{
+ "Name": "isDefault",
+ "Values": ["true", ]
+ }], )
+ if len(vpcs_desc["Vpcs"]) == 0:
+ raise ValueError('No default VPC')
+ args.vpc_id = vpcs_desc["Vpcs"][0]["VpcId"]
+ vpc_cidrBlock = vpcs_desc["Vpcs"][0]["CidrBlock"]
+
+ logging.info("default vpc fount with id %s and CidrBlock %s" %
+ (args.vpc_id, vpc_cidrBlock))
+
+ if not vpc_cidrBlock:
+ logging.info("trying to find cidrblock for vpc")
+ vpcs_desc = ec2client.describe_vpcs(
+ Filters=[{
+ "Name": "vpc-id",
+ "Values": [args.vpc_id, ],
+ }], )
+ if len(vpcs_desc["Vpcs"]) == 0:
+ raise ValueError('No VPC found')
+ vpc_cidrBlock = vpcs_desc["Vpcs"][0]["CidrBlock"]
+ logging.info("cidrblock for vpc is %s" % vpc_cidrBlock)
+
+ # list subnets in vpc in order to create a new one
+
+ logging.info("trying to find ip blocks for new subnet")
+ subnets_desc = ec2client.describe_subnets(
+ Filters=[{
+ "Name": "vpc-id",
+ "Values": [args.vpc_id, ],
+ }], )
+
+ ips_taken = []
+ for subnet_dec in subnets_desc["Subnets"]:
+ ips_taken.append(subnet_dec["CidrBlock"])
+
+ ip_blocks_avaliable = netaddr.IPSet(
+ [vpc_cidrBlock]) ^ netaddr.IPSet(ips_taken)
+ # adding 10 addresses as buffer
+ cidr_prefix = 32 - math.ceil(
+ math.log(args.pserver_count + args.trainer_count + 10, 2))
+ if cidr_prefix <= 16:
+ raise ValueError('Too many nodes to fit in current VPC')
+
+ for ipnetwork in ip_blocks_avaliable.iter_cidrs():
+ try:
+ subnet_cidr = ipnetwork.subnet(int(cidr_prefix)).next()
+ logging.info("subnet ip block found %s" % (subnet_cidr))
+ break
+ except Exception:
+ pass
+
+ if not subnet_cidr:
+ raise ValueError(
+ 'No avaliable subnet to fit required nodes in current VPC')
+
+ logging.info("trying to create subnet")
+ subnet_desc = ec2client.create_subnet(
+ CidrBlock=str(subnet_cidr),
+ VpcId=args.vpc_id,
+ AvailabilityZone=args.availability_zone)
+
+ subnet_id = subnet_desc["Subnet"]["SubnetId"]
+
+ subnet_waiter = ec2client.get_waiter('subnet_available')
+ # sleep for 1s before checking its state
+ time.sleep(1)
+ subnet_waiter.wait(SubnetIds=[subnet_id, ])
+
+ logging.info("subnet created")
+
+ logging.info("adding tags to newly created subnet")
+ ec2client.create_tags(
+ Resources=[subnet_id, ],
+ Tags=[{
+ "Key": "Task_name",
+ 'Value': args.task_name
+ }])
+ return subnet_id
+
+
+def generate_task_name():
+ return namesgenerator.get_random_name()
+
+
+def script_to_str(file_path):
+ if not file_path:
+ return "echo $PSERVER_HOSTS"
+ file = open(file_path, 'r')
+ text = file.read().strip()
+ file.close()
+ return text
+
+
+def run_instances(image_id, instance_type, count, role, cmd=""):
+ response = ec2client.run_instances(
+ ImageId=image_id,
+ InstanceType=instance_type,
+ MaxCount=count,
+ MinCount=count,
+ UserData=cmd,
+ DryRun=False,
+ InstanceInitiatedShutdownBehavior="stop",
+ KeyName=args.key_name,
+ Placement={'AvailabilityZone': args.availability_zone},
+ NetworkInterfaces=[{
+ 'DeviceIndex': 0,
+ 'SubnetId': args.subnet_id,
+ "AssociatePublicIpAddress": True,
+ 'Groups': args.security_group_ids
+ }],
+ TagSpecifications=[{
+ 'ResourceType': "instance",
+ 'Tags': [{
+ "Key": 'Task_name',
+ "Value": args.task_name
+ }, {
+ "Key": 'Role',
+ "Value": role
+ }]
+ }])
+
+ instance_ids = []
+ for instance in response["Instances"]:
+ instance_ids.append(instance["InstanceId"])
+
+ if len(instance_ids) > 0:
+ logging.info(str(len(instance_ids)) + " instance(s) created")
+ else:
+ logging.info("no instance created")
+ #create waiter to make sure it's running
+
+ logging.info("waiting for instance to become accessible")
+ waiter = ec2client.get_waiter('instance_status_ok')
+ waiter.wait(
+ Filters=[{
+ "Name": "instance-status.status",
+ "Values": ["ok"]
+ }, {
+ "Name": "instance-status.reachability",
+ "Values": ["passed"]
+ }, {
+ "Name": "instance-state-name",
+ "Values": ["running"]
+ }],
+ InstanceIds=instance_ids)
+
+ instances_response = ec2client.describe_instances(InstanceIds=instance_ids)
+
+ return instances_response["Reservations"][0]["Instances"]
+
+
+def create_pservers():
+ try:
+ return run_instances(
+ image_id=args.pserver_image_id,
+ instance_type=args.pserver_instance_type,
+ count=args.pserver_count,
+ role="PSERVER", )
+ except Exception:
+ logging.exception("error while trying to create pservers")
+ cleanup(args.task_name)
+
+
+def log_to_file(source, filename):
+ if not filename in log_files:
+ log_files.append(filename)
+ with open(args.log_path + filename, "a") as log_file:
+ for line in iter(source.readline, ""):
+ log_file.write(line)
+
+
+def create_trainers(kickoff_cmd, pserver_endpoints_str):
+ def create_and_start_trainer(trainer_index):
+ logging.info("trainer " + str(trainer_index) + " is starting")
+
+ instance_response = run_instances(
+ image_id=args.trainer_image_id,
+ instance_type=args.trainer_instance_type,
+ count=1,
+ role="TRAINER", )[0]
+ trainer_ip = instance_response["PrivateIpAddress"]
+
+ logging.info("trainer " + str(trainer_index) + " started")
+
+ ssh_key = paramiko.RSAKey.from_private_key_file(args.pem_path)
+ ssh_client = paramiko.SSHClient()
+ ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
+ ssh_client.connect(hostname=trainer_ip, username="ubuntu", pkey=ssh_key)
+
+ logging.info("trainer " + str(trainer_index) +
+ " terminal connected via ssh")
+
+ cmd = kickoff_cmd.format(
+ PSERVER_HOSTS=pserver_endpoints_str,
+ DOCKER_IMAGE=args.docker_image,
+ TRAINER_INDEX=str(trainer_index),
+ TASK_NAME=args.task_name,
+ TRAINER_COUNT=args.trainer_count,
+ COMMAND=args.trainer_command,
+ MASTER_ENDPOINT=args.master_server_ip + ":" +
+ str(args.master_server_port))
+ logging.info(cmd)
+
+ stdin, stdout, stderr = ssh_client.exec_command(command=cmd)
+
+ # read and save output log
+
+ logging.info("trainer " + str(trainer_index) +
+ " command executed, keep fetching log")
+
+ stdout_thread = threading.Thread(
+ target=log_to_file,
+ args=(
+ stdout,
+ "trainer_" + str(trainer_index) + ".log", ))
+ stderr_thread = threading.Thread(
+ target=log_to_file,
+ args=(
+ stderr,
+ "trainer_" + str(trainer_index) + "_err.log", ))
+ stdout_thread.start()
+ stderr_thread.start()
+
+ stdout_thread.join()
+ stderr_thread.join()
+
+ return_code = stdout.channel.recv_exit_status()
+ if return_code != 0:
+ trainer_create_results[trainer_index] = {'has_error': True}
+ raise ValueError("trainer didn't finish with exit code 0")
+
+ ssh_client.close()
+
+ # multi thread starting trainer instance and run kickoff command
+
+ trainer_threads = []
+ trainer_create_results = {}
+ try:
+ for i in xrange(args.trainer_count):
+ logging.info("starting tread for trainer " + str(i))
+ trainer_thread = threading.Thread(
+ target=create_and_start_trainer, args=(i, ))
+ trainer_thread.start()
+ trainer_threads.append(trainer_thread)
+
+ for trainer_thread in trainer_threads:
+ trainer_thread.join()
+
+ for result in trainer_create_results:
+ if result["has_error"]:
+ logging.error(
+ "error during trainer starting or training, destorying the while cluster "
+ )
+ cleanup(args.task_name)
+ break
+
+ logging.info("all trainers stopped")
+ except Exception, e:
+ logging.info(
+ "Training exception, clean up resources, please check log for more info"
+ )
+ finally:
+ cleanup(args.task_name)
+
+
+def cleanup(task_name):
+ if args.no_clean_up:
+ logging.info("no clean up option set, going to leave the setup running")
+ return
+ #shutdown all ec2 instances
+ print("going to clean up " + task_name + " instances")
+ instances_response = ec2client.describe_instances(Filters=[{
+ "Name": "tag:Task_name",
+ "Values": [task_name]
+ }])
+
+ instance_ids = []
+ if len(instances_response["Reservations"]) > 0:
+ for reservation in instances_response["Reservations"]:
+ for instance in reservation["Instances"]:
+ instance_ids.append(instance["InstanceId"])
+
+ ec2client.terminate_instances(InstanceIds=instance_ids)
+
+ instance_termination_waiter = ec2client.get_waiter(
+ 'instance_terminated')
+ instance_termination_waiter.wait(InstanceIds=instance_ids)
+
+ #delete the subnet created
+
+ subnet = ec2client.describe_subnets(Filters=[{
+ "Name": "tag:Task_name",
+ "Values": [task_name]
+ }])
+
+ if len(subnet["Subnets"]) > 0:
+ ec2client.delete_subnet(SubnetId=subnet["Subnets"][0]["SubnetId"])
+ # no subnet delete waiter, just leave it.
+ logging.info("Clearnup done")
+ return
+
+
+def kickoff_pserver(host, pserver_endpoints_str):
+ try:
+ ssh_key = paramiko.RSAKey.from_private_key_file(args.pem_path)
+ ssh_client = paramiko.SSHClient()
+ ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
+ ssh_client.connect(hostname=host, username="ubuntu", pkey=ssh_key)
+ cmd = (script_to_str(args.pserver_bash_file)).format(
+ PSERVER_HOSTS=pserver_endpoints_str,
+ DOCKER_IMAGE=args.docker_image,
+ PSERVER_PORT=args.pserver_port,
+ TASK_NAME=args.task_name,
+ COMMAND=args.pserver_command,
+ TRAINER_COUNT=args.trainer_count,
+ TRAINER_INDEX=0,
+ # there is no way to use 0.0.0.0:port to start pserver
+ # has to docker --network="host" with host ip to make this work
+ SERVER_ENDPOINT=host + ":" + str(args.pserver_port),
+ MASTER_ENDPOINT=args.master_server_ip + ":" +
+ str(args.master_server_port))
+ logging.info(cmd)
+ stdin, stdout, stderr = ssh_client.exec_command(command=cmd)
+
+ stdout_thread = threading.Thread(
+ target=log_to_file, args=(
+ stdout,
+ "pserver_" + host + ".log", ))
+ stderr_thread = threading.Thread(
+ target=log_to_file, args=(
+ stderr,
+ "pserver_" + host + "_err.log", ))
+ stdout_thread.start()
+ stderr_thread.start()
+
+ stdout_thread.join()
+ stderr_thread.join()
+
+ return_code = stdout.channel.recv_exit_status()
+ logging.info(return_code)
+ if return_code != 0:
+ raise Exception("Error while kicking off pserver training process")
+ except Exception:
+ logging.exception("Error while kicking off pserver training process")
+ cleanup(args.task_name)
+ finally:
+ ssh_client.close()
+
+
+def init_args():
+
+ if not args.task_name:
+ args.task_name = generate_task_name()
+ logging.info("task name generated %s" % (args.task_name))
+
+ if not args.pem_path:
+ args.pem_path = os.path.expanduser("~") + "/" + args.key_name + ".pem"
+ if args.security_group_id:
+ args.security_group_ids = (args.security_group_id, )
+
+ args.trainers_job_done_count = 0
+
+
+def create_cluster():
+
+ if not args.subnet_id:
+ logging.info("creating subnet for this task")
+ args.subnet_id = create_subnet()
+ logging.info("subnet %s created" % (args.subnet_id))
+
+ logging.info("creating pservers")
+ pserver_create_response = create_pservers()
+ logging.info("pserver created, collecting pserver ips")
+
+ pserver_endpoints = []
+ for pserver in pserver_create_response:
+ pserver_endpoints.append(pserver["NetworkInterfaces"][0][
+ "PrivateIpAddress"] + ":" + args.pserver_port)
+
+ pserver_endpoints_str = ",".join(pserver_endpoints)
+
+ logging.info("kicking off pserver training process")
+ pserver_threads = []
+ for pserver in pserver_create_response:
+ pserver_thread = threading.Thread(
+ target=kickoff_pserver,
+ args=(pserver["PrivateIpAddress"], pserver_endpoints_str))
+ pserver_thread.start()
+ pserver_threads.append(pserver_thread)
+
+ logging.info("all pserver training process started")
+
+ logging.info("creating trainers and kicking off trainer training process")
+ create_trainers(
+ kickoff_cmd=script_to_str(args.trainer_bash_file),
+ pserver_endpoints_str=pserver_endpoints_str)
+
+ for pserver_thread in pserver_threads:
+ pserver_thread.join()
+
+ logging.info("all process ended")
+
+
+def start_server(args):
+ class S(BaseHTTPRequestHandler):
+ def _set_headers(self):
+ self.send_response(200)
+ self.send_header('Content-type', 'text/text')
+ self.end_headers()
+
+ def do_HEAD(self):
+ self._set_headers()
+
+ def do_404(self):
+ self.send_response(404)
+ self.send_header('Content-type', 'text/text')
+ self.end_headers()
+ logging.info("Received invalid GET request" + self.path)
+ self.wfile.write("NO ACTION FOUND")
+
+ def do_GET(self):
+
+ request_path = self.path
+ if request_path == "/status" or request_path == "/master_logs":
+ self._set_headers()
+ logging.info("Received request to return status")
+ with open(args.log_path + "master.log", "r") as logfile:
+ self.wfile.write(logfile.read().strip())
+ elif request_path == "/list_logs" or request_path == "/logs":
+ self._set_headers()
+ self.wfile.write("\n".join(log_files))
+ elif "/log/" in request_path:
+ self._set_headers()
+ log_file_path = request_path.replace("/log/", "")
+ logging.info("requesting log file path is" + args.log_path +
+ log_file_path)
+ with open(args.log_path + log_file_path, "r") as logfile:
+ self.wfile.write(logfile.read().strip())
+ else:
+ self.do_404()
+
+ def do_POST(self):
+
+ request_path = self.path
+
+ if request_path == "/save_data":
+ self._set_headers()
+ logging.info("Received request to save data")
+ self.wfile.write("DATA SAVED!")
+ content_length = int(self.headers['Content-Length'])
+ post_data = self.rfile.read(content_length)
+ if args.task_name:
+ with open(args.task_name + ".txt", "a") as text_file:
+ text_file.write(post_data + "\n")
+
+ elif request_path == "/cleanup":
+ self._set_headers()
+ logging.info("Received request to cleanup cluster")
+ cleanup(args.task_name)
+ self.wfile.write("cleanup in progress")
+
+ else:
+ self.do_404()
+
+ server_address = ('', args.master_server_port)
+ httpd = HTTPServer(server_address, S)
+ logging.info("HTTP server is starting")
+ httpd.serve_forever()
+
+
+def print_arguments():
+ logging.info('----------- Configuration Arguments -----------')
+ for arg, value in sorted(vars(args).iteritems()):
+ logging.info('%s: %s' % (arg, value))
+ logging.info('------------------------------------------------')
+
+
+if __name__ == "__main__":
+ print_arguments()
+ if args.action == "create":
+ logging.info("going to create cluster")
+ if not args.key_name or not args.security_group_id:
+ raise ValueError("key_name and security_group_id are required")
+ init_args()
+ create_cluster()
+ elif args.action == "cleanup":
+ logging.info("going to cleanup cluster")
+ if not args.task_name:
+ raise ValueError("task_name is required")
+ cleanup(args.task_name)
+ elif args.action == "serve":
+ # serve mode
+ if not args.master_server_ip:
+ raise ValueError(
+ "No master server ip set, please run with --action create")
+
+ logging.info("going to start serve and create cluster")
+
+ init_args()
+
+ logging.info("starting server in another thread")
+ server_thread = threading.Thread(target=start_server, args=(args, ))
+ server_thread.start()
+
+ create_cluster()
+ server_thread.join()
+ elif args.action == "test":
+ start_server(args)
diff --git a/tools/aws_benchmarking/server/logs/master.log b/tools/aws_benchmarking/server/logs/master.log
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/tools/aws_benchmarking/server/pserver.sh.template b/tools/aws_benchmarking/server/pserver.sh.template
new file mode 100644
index 0000000000000000000000000000000000000000..2612856d1e6273fe2642f82e8c616eb9ff24f8a4
--- /dev/null
+++ b/tools/aws_benchmarking/server/pserver.sh.template
@@ -0,0 +1,2 @@
+#!/bin/bash
+docker run --network="host" -i -e "SERVER_ENDPOINT={SERVER_ENDPOINT}" -e "MASTER_ENDPOINT={MASTER_ENDPOINT}" -e "TASK_NAME={TASK_NAME}" -e "TRAINER_INDEX={TRAINER_INDEX}" -e "TRAINING_ROLE=PSERVER" -e "TRAINER_COUNT={TRAINER_COUNT}" -e "TRAINERS={TRAINER_COUNT}" -e "PSERVER_HOSTS={PSERVER_HOSTS}" -e "PSERVERS={PSERVER_HOSTS}" {DOCKER_IMAGE} {COMMAND} --device CPU
\ No newline at end of file
diff --git a/tools/aws_benchmarking/server/requirements.txt b/tools/aws_benchmarking/server/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5c523854f28b0a6f024fba2b2f344b53ba967a2f
--- /dev/null
+++ b/tools/aws_benchmarking/server/requirements.txt
@@ -0,0 +1,4 @@
+netaddr==0.7.19
+boto3==1.6.21
+namesgenerator==0.3
+paramiko==2.4.1
diff --git a/tools/aws_benchmarking/server/trainer.sh.template b/tools/aws_benchmarking/server/trainer.sh.template
new file mode 100644
index 0000000000000000000000000000000000000000..a4b2876b08cdf05e90e50589f897d74ca5f90443
--- /dev/null
+++ b/tools/aws_benchmarking/server/trainer.sh.template
@@ -0,0 +1,2 @@
+#!/bin/bash
+nvidia-docker run --network="host" -i -e "MASTER_ENDPOINT={MASTER_ENDPOINT}" -e "TASK_NAME={TASK_NAME}" -e "TRAINER_COUNT={TRAINER_COUNT}" -e "TRAINERS={TRAINER_COUNT}" -e "TRAINER_INDEX={TRAINER_INDEX}" -e "PADDLE_INIT_TRAINER_ID={TRAINER_INDEX}" -e "TRAINING_ROLE=TRAINER" -e "PSERVER_HOSTS={PSERVER_HOSTS}" -e "PSERVERS={PSERVER_HOSTS}" {DOCKER_IMAGE} {COMMAND} --device GPU
\ No newline at end of file
diff --git a/tools/manylinux1/Dockerfile.android b/tools/manylinux1/Dockerfile.android
index b6cae228a0c45ab70ba8ecc80ae4df7e0fa5bdbc..7eb040902b0f8f3cc9f7a31ec9f96467de654c3e 100644
--- a/tools/manylinux1/Dockerfile.android
+++ b/tools/manylinux1/Dockerfile.android
@@ -37,7 +37,7 @@ RUN git config --global credential.helper store
# Fix locales to en_US.UTF-8
RUN localedef -i en_US -f UTF-8 en_US.UTF-8
-RUN pip install --upgrade pip && \
+RUN pip install --upgrade pip==9.0.3 && \
pip install -U 'protobuf==3.1.0' && \
pip install -U wheel sphinx && \
pip install pre-commit