From c6a30d7d6efc78ca5d937c840bdf05e8d96a973d Mon Sep 17 00:00:00 2001 From: wangxinxin08 <69842442+wangxinxin08@users.noreply.github.com> Date: Fri, 5 Feb 2021 10:33:17 +0800 Subject: [PATCH] [cherry-pick]fix problem due to empty bbox_pred and modify ppyolo docs, test=dygraph (#2180) * fix problem due to empty bbox_pred and modify ppyolo docs, test=dygraph * modify post process to avoid dy2st problem --- dygraph/configs/ppyolo/README.md | 16 ++-------------- dygraph/configs/ppyolo/README_cn.md | 16 ++-------------- dygraph/ppdet/modeling/post_process.py | 6 +++++- 3 files changed, 9 insertions(+), 29 deletions(-) diff --git a/dygraph/configs/ppyolo/README.md b/dygraph/configs/ppyolo/README.md index 2d8a1be7d..89ff4d94b 100644 --- a/dygraph/configs/ppyolo/README.md +++ b/dygraph/configs/ppyolo/README.md @@ -46,7 +46,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods: | PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | | PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | | PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | -| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.3 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | +| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.2 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | | PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 416 | 28.6 | 28.9 | 409.8 | 719.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | | PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 320 | 26.2 | 26.4 | 480.7 | 763.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | @@ -129,7 +129,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_ CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=../demo ``` -### 4. Inferece deployment and benchmark +### 4. Inferece deployment For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands: @@ -141,18 +141,6 @@ python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o w CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True ``` -Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands: - -```bash -# export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default -python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --exclude_nms - -# FP32 benchmark -CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True - -# TensorRT FP16 benchmark -CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16 -``` ## Future work diff --git a/dygraph/configs/ppyolo/README_cn.md b/dygraph/configs/ppyolo/README_cn.md index 604c57f32..32d826d03 100644 --- a/dygraph/configs/ppyolo/README_cn.md +++ b/dygraph/configs/ppyolo/README_cn.md @@ -46,7 +46,7 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度: | PP-YOLO_2x | 8 | 24 | ResNet50vd | 512 | 44.4 | 45.0 | 89.9 | 188.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | | PP-YOLO_2x | 8 | 24 | ResNet50vd | 416 | 42.7 | 43.2 | 109.1 | 215.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | | PP-YOLO_2x | 8 | 24 | ResNet50vd | 320 | 39.5 | 40.1 | 132.2 | 242.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | -| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.3 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | +| PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 512 | 29.2 | 29.5 | 357.1 | 657.9 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | | PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 416 | 28.6 | 28.9 | 409.8 | 719.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | | PP-YOLO_ResNet18vd | 4 | 32 | ResNet18vd | 320 | 26.2 | 26.4 | 480.7 | 763.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r18vd_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r18vd_coco.yml) | @@ -128,7 +128,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_ CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=../demo ``` -### 4. 推理部署与benchmark +### 4. 推理部署 PP-YOLO模型部署及推理benchmark需要通过`tools/export_model.py`导出模型后使用Paddle预测库进行部署和推理,可通过如下命令一键式启动。 @@ -140,18 +140,6 @@ python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o w CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True ``` -PP-YOLO模型benchmark测试为不包含数据预处理和网络输出后处理(NMS)的网络结构部分数据,导出模型时须指定`--exlcude_nms`来裁剪掉模型中后处理的NMS部分,通过如下命令进行模型导出和benchmark测试。 - -```bash -# 导出模型,通过--exclude_nms参数裁剪掉模型中的NMS部分,默认存储于output/ppyolo目录 -python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --exclude_nms - -# FP32 benchmark测试 -CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True - -# TensorRT FP16 benchmark测试 -CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16 -``` ## 未来工作 diff --git a/dygraph/ppdet/modeling/post_process.py b/dygraph/ppdet/modeling/post_process.py index 6c5033116..4cfc6beae 100644 --- a/dygraph/ppdet/modeling/post_process.py +++ b/dygraph/ppdet/modeling/post_process.py @@ -36,6 +36,10 @@ class BBoxPostProcess(object): else: bbox_pred, bbox_num = self.decode(head_out, rois, im_shape, scale_factor) + if bbox_pred.shape[0] == 0: + bbox_pred = paddle.to_tensor( + np.array( + [[-1, 0.0, 0.0, 0.0, 0.0, 0.0]], dtype='float32')) return bbox_pred, bbox_num def get_pred(self, bboxes, bbox_num, im_shape, scale_factor): @@ -51,7 +55,7 @@ class BBoxPostProcess(object): bboxes are corresponding to the original image. """ if bboxes.shape[0] == 0: - return paddle.to_tensor([[0, 0.0, 0.0, 0.0, 0.0, 0.0]]) + return paddle.zeros(shape=[1, 6]) origin_shape = paddle.floor(im_shape / scale_factor + 0.5) -- GitLab