Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c2e851f7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2e851f7
编写于
12月 12, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop, remove sparse bias and add prefetch and related tests
上级
c35fdf15
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
418 addition
and
86 deletion
+418
-86
paddle/fluid/operators/distributed/parameter_prefetch.cc
paddle/fluid/operators/distributed/parameter_prefetch.cc
+6
-6
paddle/fluid/operators/distributed/parameter_prefetch.h
paddle/fluid/operators/distributed/parameter_prefetch.h
+24
-0
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+34
-13
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+57
-26
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+0
-17
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+11
-16
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+12
-5
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+3
-3
python/paddle/fluid/tests/unittests/test_hsigmoid_remote_table_op.py
...le/fluid/tests/unittests/test_hsigmoid_remote_table_op.py
+271
-0
未找到文件。
paddle/fluid/operators/distributed/parameter_prefetch.cc
浏览文件 @
c2e851f7
...
@@ -32,7 +32,7 @@ namespace paddle {
...
@@ -32,7 +32,7 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
namespace
distributed
{
namespace
distributed
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoD
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
using
DDim
=
framework
::
DDim
;
...
@@ -120,8 +120,8 @@ static void MergeMultipleVarsIntoOneBySection(
...
@@ -120,8 +120,8 @@ static void MergeMultipleVarsIntoOneBySection(
PADDLE_ENFORCE_GT
(
PADDLE_ENFORCE_GT
(
out_tensor
->
numel
(),
0
,
out_tensor
->
numel
(),
0
,
"When calling this method, the Tensor's numel must larger than zero. "
"When calling this method, the
LoD
Tensor's numel must larger than zero. "
"Please check Tensor::Resize has been called first."
);
"Please check
LoD
Tensor::Resize has been called first."
);
auto
*
out_tensor_data
=
out_tensor
->
mutable_data
<
float
>
(
id_tensor
.
place
());
auto
*
out_tensor_data
=
out_tensor
->
mutable_data
<
float
>
(
id_tensor
.
place
());
...
@@ -144,7 +144,7 @@ static void MergeMultipleVarsIntoOneBySection(
...
@@ -144,7 +144,7 @@ static void MergeMultipleVarsIntoOneBySection(
auto
row_numel
=
dims
[
1
];
auto
row_numel
=
dims
[
1
];
for
(
size
_t
i
=
0
;
i
<
dims
[
0
];
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
dims
[
0
];
++
i
)
{
auto
id
=
ids_in_this_section
[
i
];
auto
id
=
ids_in_this_section
[
i
];
auto
origin_id
=
id
+
abs_sections
[
section_idx
];
auto
origin_id
=
id
+
abs_sections
[
section_idx
];
auto
&
offsets
=
id_to_offset
[
origin_id
];
auto
&
offsets
=
id_to_offset
[
origin_id
];
...
@@ -201,7 +201,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
...
@@ -201,7 +201,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
std
::
vector
<
int64_t
>
ids_vector
;
std
::
vector
<
int64_t
>
ids_vector
;
if
(
platform
::
is_cpu_place
(
id_tensor
.
place
()))
{
if
(
platform
::
is_cpu_place
(
id_tensor
.
place
()))
{
auto
*
id_data
=
id_tensor
.
data
<
int64_t
>
();
auto
*
id_data
=
id_tensor
.
data
<
int64_t
>
();
for
(
size
_t
i
=
0
;
i
<
id_tensor
.
numel
();
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
id_tensor
.
numel
();
++
i
)
{
ids_vector
.
push_back
(
id_data
[
i
]);
ids_vector
.
push_back
(
id_data
[
i
]);
}
}
}
else
{
}
else
{
...
@@ -209,7 +209,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
...
@@ -209,7 +209,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
PADDLE_THROW
(
"paddle is not compiled with CUDA!"
);
PADDLE_THROW
(
"paddle is not compiled with CUDA!"
);
#else
#else
auto
cpu_place
=
platform
::
CPUPlace
();
auto
cpu_place
=
platform
::
CPUPlace
();
framework
::
Tensor
cpu_tensor
;
framework
::
LoD
Tensor
cpu_tensor
;
auto
*
cpu_tensor_data
=
auto
*
cpu_tensor_data
=
cpu_tensor
.
mutable_data
<
int64_t
>
(
id_tensor
.
dims
(),
cpu_place
);
cpu_tensor
.
mutable_data
<
int64_t
>
(
id_tensor
.
dims
(),
cpu_place
);
auto
stream
=
auto
stream
=
...
...
paddle/fluid/operators/distributed/parameter_prefetch.h
浏览文件 @
c2e851f7
...
@@ -30,6 +30,30 @@ void prefetch(const std::string& id_name, const std::string& out_name,
...
@@ -30,6 +30,30 @@ void prefetch(const std::string& id_name, const std::string& out_name,
const
framework
::
ExecutionContext
&
context
,
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Scope
&
scope
);
const
framework
::
Scope
&
scope
);
template
<
typename
T
>
void
prefetch_with_reconstruct
(
const
std
::
string
&
id_name
,
const
std
::
string
&
out_name
,
const
std
::
vector
<
std
::
string
>&
table_names
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
int
>&
height_sections
,
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Scope
&
scope
,
framework
::
LoDTensor
*
original
)
{
prefetch
(
id_name
,
out_name
,
table_names
,
epmap
,
height_sections
,
context
,
scope
);
auto
&
out
=
scope
.
FindVar
(
out_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
&
ids
=
scope
.
FindVar
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
original_value
=
original
->
data
<
T
>
();
auto
*
out_value
=
out
.
data
<
T
>
();
size_t
original_width
=
original
->
numel
()
/
original
->
dims
()[
0
];
for
(
int64_t
i
=
0
;
i
<
ids
.
numel
();
i
++
)
{
const
T
*
out_rows
=
out_value
+
original_width
*
i
;
T
*
original_row
=
original_value
+
original_width
*
ids
.
data
<
int64_t
>
()[
i
];
std
::
memcpy
(
original_row
,
out_rows
,
original_width
*
sizeof
(
T
));
}
}
};
// namespace distributed
};
// namespace distributed
};
// namespace operators
};
// namespace operators
};
// namespace paddle
};
// namespace paddle
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
c2e851f7
...
@@ -67,6 +67,11 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
...
@@ -67,6 +67,11 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PreOut"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PreOut"
),
"Output(PreOut) should not be null."
);
"Output(PreOut) should not be null."
);
auto
with_prefetch
=
ctx
->
Attrs
().
Get
<
bool
>
(
"remote_prefetch"
);
if
(
with_prefetch
)
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"W_Out"
),
"Output(W_Out) should not be null."
);
}
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
...
@@ -96,7 +101,7 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -96,7 +101,7 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
AddInput
(
"Label"
,
"(LoDTensor, required), The labels of training data. It's a"
"(LoDTensor, required), The labels of training data. It's a"
"tensor with shape [N, 1]."
);
"tensor with shape [N, 1]."
);
AddInput
(
"PTable"
,
AddInput
(
"P
ath
Table"
,
"(LoDTensor, optional), The Path Table from root to current word"
"(LoDTensor, optional), The Path Table from root to current word"
"it should have shape like [N, L], L is the length of the Path"
)
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
.
AsDispensable
();
...
@@ -120,8 +125,30 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -120,8 +125,30 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
"[batch_size, code_length], where code_length represents the "
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
.
AsIntermediate
();
AddOutput
(
"W_Out"
,
"(LoDTensor, optinal) using input 'W' as Output to make it mutable"
"When we are using prefetch"
)
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int, optional), The number of classes"
)
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int, optional), The number of classes"
)
.
SetDefault
(
2
);
.
SetDefault
(
2
);
// for parameter prefetch
AddAttr
<
bool
>
(
"remote_prefetch"
,
""
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"trainer_id"
,
"trainer id from 0 ~ worker_num."
).
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
.
SetDefault
(
std
::
vector
<
int
>
({}));
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
,
"(string vector, the splited table names that will be fetched from "
"parameter server)"
"in the order of input variables for mapping"
)
.
SetDefault
({});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
The hierarchical sigmoid operator organize the classes into a binary tree.
At each node, a sigmoid function is used to calculate the probability of
At each node, a sigmoid function is used to calculate the probability of
...
@@ -191,24 +218,18 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
...
@@ -191,24 +218,18 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
<<
" is set to SelectedRows"
;
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
else
{
}
else
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
if
(
hasBias
)
{
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
}
};
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
c2e851f7
...
@@ -14,7 +14,9 @@ limitations under the License. */
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#pragma once
#include <iostream>
#include <iostream>
#include <iterator>
#include <set>
#include <set>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -24,6 +26,10 @@ limitations under the License. */
...
@@ -24,6 +26,10 @@ limitations under the License. */
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
#include "paddle/fluid/platform/transform.h"
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -49,13 +55,55 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
...
@@ -49,13 +55,55 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"P
ath
Table"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"PreOut"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"PreOut"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
// for remote prefetch
auto
epmap
=
ctx
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
if
(
!
epmap
.
empty
())
{
// if epmap is not empty, then the parameter will be fetched from remote
// parameter
// server
auto
height_sections
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"height_sections"
);
auto
table_names
=
ctx
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
);
VLOG
(
3
)
<<
"path type is "
<<
path
->
type
().
name
();
std
::
vector
<
int64_t
>
real_rows
=
PathToRows
(
*
path
);
framework
::
Scope
&
local_scope
=
ctx
.
scope
().
NewScope
();
auto
*
ids
=
local_scope
.
Var
(
"Ids@Prefetch"
);
auto
*
x_tensor
=
ids
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
real_rows
.
size
()),
1
}),
ctx
.
GetPlace
());
// copy.
std
::
memcpy
(
x_tensor
->
data
<
int64_t
>
(),
real_rows
.
data
(),
real_rows
.
size
()
*
sizeof
(
int64_t
));
framework
::
DDim
w_dims
=
ctx
.
Input
<
Tensor
>
(
"W"
)
->
dims
();
w_dims
[
0
]
=
x_tensor
->
dims
()[
0
];
auto
*
w_tensor
=
local_scope
.
Var
(
"W@Prefetch"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
w_tensor
->
Resize
(
w_dims
);
#ifdef PADDLE_WITH_DISTRIBUTE
// w_Out is set to used by prefetch, never change it in other cases
auto
*
w_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"W_Out"
);
operators
::
distributed
::
prefetch_with_reconstruct
<
T
>
(
"Ids@Prefetch"
,
"W@Prefetch"
,
table_names
,
epmap
,
height_sections
,
ctx
,
local_scope
,
w_out
);
#else
PADDLE_THROW
(
"paddle is not compiled with distribute support, can not do "
"parameter prefetch!"
);
#endif
}
bool
is_custom
=
false
;
bool
is_custom
=
false
;
if
(
path
)
{
if
(
path
)
{
is_custom
=
true
;
is_custom
=
true
;
...
@@ -116,9 +164,8 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -116,9 +164,8 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"P
ath
Table"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
in_grad
=
auto
*
in_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
...
@@ -165,8 +212,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -165,8 +212,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
// be consistent with the clipping in forward.
if
(
!
is_sparse
)
{
auto
*
bias_grad
=
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
if
(
bias_grad
)
{
...
@@ -174,6 +219,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -174,6 +219,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
}
if
(
!
is_sparse
)
{
auto
*
w_grad
=
auto
*
w_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
@@ -192,21 +238,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
...
@@ -192,21 +238,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
bias_grad
->
SyncIndex
();
bias_grad
->
set_height
(
bias
->
dims
()[
0
]);
auto
*
bias_grad_value
=
bias_grad
->
mutable_value
();
std
::
vector
<
int64_t
>
dims
=
{
static_cast
<
int64_t
>
(
real_rows
.
size
()),
bias
->
dims
()[
1
]};
bias_grad_value
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad_value
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
}
}
bit_code
->
MulGradError
(
pre_out_grad
,
w
,
in_grad
);
bit_code
->
MulGradError
(
pre_out_grad
,
w
,
in_grad
);
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
c2e851f7
...
@@ -48,23 +48,6 @@ void MatrixBitCodeFunctor<T>::AddGrad(const framework::Tensor& tmat,
...
@@ -48,23 +48,6 @@ void MatrixBitCodeFunctor<T>::AddGrad(const framework::Tensor& tmat,
}
}
}
}
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
)
{
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table_
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
->
calc_index
(
j
);
int64_t
row_index
=
vec
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
vec
->
mutable_value
()
->
data
<
T
>
()[
row_index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
}
template
<
typename
T
>
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
c2e851f7
...
@@ -139,11 +139,11 @@ class SimpleCode : public Code {
...
@@ -139,11 +139,11 @@ class SimpleCode : public Code {
template
<
typename
T
>
template
<
typename
T
>
class
CustomCode
:
public
Code
{
class
CustomCode
:
public
Code
{
public:
public:
CustomCode
(
const
framework
::
Tensor
&
p
table
,
const
framework
::
Tensor
&
pcod
e
,
CustomCode
(
const
framework
::
Tensor
&
p
ath_tabl
e
,
const
int64_t
*
ids
,
int
index
)
const
framework
::
Tensor
&
path_code
,
const
int64_t
*
ids
,
int
index
)
:
ids_
(
ids
),
index_
(
index
)
{
:
ids_
(
ids
),
index_
(
index
)
{
ptable_
=
ptable
.
Slice
(
index
,
index
+
1
);
ptable_
=
p
ath_
table
.
Slice
(
index
,
index
+
1
);
pcode_
=
pcode
.
Slice
(
index
,
index
+
1
);
pcode_
=
p
ath_
code
.
Slice
(
index
,
index
+
1
);
}
}
/**
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
...
@@ -195,9 +195,9 @@ class SimpleCodeTable : public CodeTable {
...
@@ -195,9 +195,9 @@ class SimpleCodeTable : public CodeTable {
template
<
typename
T
>
template
<
typename
T
>
class
CustomCodeTable
:
public
CodeTable
{
class
CustomCodeTable
:
public
CodeTable
{
public:
public:
CustomCodeTable
(
const
framework
::
Tensor
&
ptable
,
CustomCodeTable
(
const
framework
::
Tensor
&
p
ath_
table
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
const
framework
::
Tensor
&
p
ath_
code
,
const
int64_t
*
ids
)
:
ptable_
(
p
table
),
pcode_
(
p
code
),
ids_
(
ids
)
{}
:
ptable_
(
p
ath_table
),
pcode_
(
path_
code
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
CustomCode
<
T
>
(
ptable_
,
pcode_
,
ids_
,
code
));
std
::
unique_ptr
<
Code
>
coder
(
new
CustomCode
<
T
>
(
ptable_
,
pcode_
,
ids_
,
code
));
...
@@ -223,11 +223,11 @@ class MatrixBitCodeFunctor {
...
@@ -223,11 +223,11 @@ class MatrixBitCodeFunctor {
ids_
(
ids
),
ids_
(
ids
),
code_table_
(
new
SimpleCodeTable
(
num_classes
,
ids
))
{}
code_table_
(
new
SimpleCodeTable
(
num_classes
,
ids
))
{}
MatrixBitCodeFunctor
(
const
framework
::
Tensor
&
ptable
,
MatrixBitCodeFunctor
(
const
framework
::
Tensor
&
p
ath_
table
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
const
framework
::
Tensor
&
p
ath_
code
,
const
int64_t
*
ids
)
:
num_classes_
(
static_cast
<
size_t
>
(
ptable
.
dims
()[
1
])),
:
num_classes_
(
static_cast
<
size_t
>
(
p
ath_
table
.
dims
()[
1
])),
ids_
(
ids
),
ids_
(
ids
),
code_table_
(
new
CustomCodeTable
<
int64_t
>
(
p
table
,
p
code
,
ids
))
{}
code_table_
(
new
CustomCodeTable
<
int64_t
>
(
p
ath_table
,
path_
code
,
ids
))
{}
/* For j < code_length
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
tmat(i, j) += vec(0, index(i, j))
*/
*/
...
@@ -238,11 +238,6 @@ class MatrixBitCodeFunctor {
...
@@ -238,11 +238,6 @@ class MatrixBitCodeFunctor {
*/
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
/* For selected rows For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
);
/* For j < code_length
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
*/
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c2e851f7
...
@@ -4931,6 +4931,9 @@ def hsigmoid(input,
...
@@ -4931,6 +4931,9 @@ def hsigmoid(input,
pass
pass
weights
=
None
weights
=
None
remote_prefetch
=
False
if
os
.
environ
.
get
(
'PADDLE_ENABLE_REMOTE_PREFETCH'
):
remote_prefetch
=
True
if
not
is_custom
:
if
not
is_custom
:
weights
=
helper
.
create_parameter
(
weights
=
helper
.
create_parameter
(
...
@@ -4947,7 +4950,7 @@ def hsigmoid(input,
...
@@ -4947,7 +4950,7 @@ def hsigmoid(input,
inputs
=
{
inputs
=
{
"X"
:
input
,
"X"
:
input
,
"W"
:
weights
,
"W"
:
weights
,
"PTable"
:
path_table
,
"P
ath
Table"
:
path_table
,
"PathCode"
:
path_code
,
"PathCode"
:
path_code
,
"Label"
:
label
"Label"
:
label
}
}
...
@@ -4970,9 +4973,13 @@ def hsigmoid(input,
...
@@ -4970,9 +4973,13 @@ def hsigmoid(input,
type
=
"hierarchical_sigmoid"
,
type
=
"hierarchical_sigmoid"
,
inputs
=
inputs
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
outputs
=
{
"Out"
:
out
,
"PreOut"
:
pre_out
},
"PreOut"
:
pre_out
,
attrs
=
{
"num_classes"
:
num_classes
,
"W_Out"
:
weights
},
"is_sparse"
:
is_sparse
})
attrs
=
{
"num_classes"
:
num_classes
,
"is_sparse"
:
is_sparse
,
"remote_prefetch"
:
remote_prefetch
})
return
out
return
out
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
c2e851f7
...
@@ -185,7 +185,7 @@ class TestHSigmoidOpSparse(OpTest):
...
@@ -185,7 +185,7 @@ class TestHSigmoidOpSparse(OpTest):
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
x
,
'X'
:
x
,
'W'
:
w
,
'W'
:
w
,
'PTable'
:
path_table
,
'P
ath
Table'
:
path_table
,
'PathCode'
:
path_code
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Label'
:
label
,
'Bias'
:
bias
'Bias'
:
bias
...
@@ -287,7 +287,7 @@ class TestHSigmoidOpWithCostumTree(OpTest):
...
@@ -287,7 +287,7 @@ class TestHSigmoidOpWithCostumTree(OpTest):
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
x
,
'X'
:
x
,
'W'
:
w
,
'W'
:
w
,
'PTable'
:
path_table
,
'P
ath
Table'
:
path_table
,
'PathCode'
:
path_code
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Label'
:
label
,
'Bias'
:
bias
'Bias'
:
bias
...
@@ -324,7 +324,7 @@ class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
...
@@ -324,7 +324,7 @@ class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
x
,
'X'
:
x
,
'W'
:
w
,
'W'
:
w
,
'PTable'
:
path_table
,
'P
ath
Table'
:
path_table
,
'PathCode'
:
path_code
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Label'
:
label
,
}
}
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_remote_table_op.py
0 → 100644
浏览文件 @
c2e851f7
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
signal
import
time
import
unittest
from
multiprocessing
import
Process
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid.framework
import
Program
,
program_guard
def
run_pserver
(
pserver_id
,
use_cuda
,
sync_mode
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
# create table parameter in scope
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
# create and initialize Param Variable
param
=
scope
.
var
(
'table'
).
get_tensor
()
param_array
=
np
.
ones
((
5
,
8
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
param_array
)):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
pserver_id
*
10
+
1
param
.
set
(
param_array
,
place
)
optimize_block
=
program
.
_create_block
(
program
.
global_block
().
idx
)
program
.
global_block
().
append_op
(
type
=
"listen_and_serv"
,
inputs
=
{
'X'
:
[]},
outputs
=
{},
attrs
=
{
"optimize_blocks"
:
[
optimize_block
],
"endpoint"
:
'127.0.0.1:0'
,
"Fanin"
:
1
,
"sync_mode"
:
True
,
"grad_to_block_id"
:
[]
})
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
program
)
class
TestListenAndServOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
ps_timeout
=
5
def
_start_pserver
(
self
,
pserver_id
,
use_cuda
,
sync_mode
,
pserver_func
):
p
=
Process
(
target
=
pserver_func
,
args
=
(
pserver_id
,
use_cuda
,
sync_mode
))
p
.
daemon
=
True
p
.
start
()
return
p
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
sleep_time
=
0.5
while
True
:
assert
start_left_time
>=
0
,
"wait ps ready failed"
time
.
sleep
(
sleep_time
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
start_left_time
-=
sleep_time
def
_get_pserver_port
(
self
,
pid
):
with
open
(
"/tmp/paddle.%d.port"
%
pid
,
'r'
)
as
f
:
port
=
int
(
f
.
read
().
strip
())
return
port
def
_run_hsigmoid_op_one_pserver
(
self
,
place
,
port
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'X'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'W'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param
.
set
(
param_array
,
place
)
path_table
=
scope
.
var
(
'PathTable'
).
get_tensor
()
path_table_array
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
2
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_table
.
set
(
path_table_array
,
place
)
path_code
=
scope
.
var
(
'PathCode'
).
get_tensor
()
path_code_array
=
np
.
array
(
[(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store
path_code
.
set
(
path_code_array
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label
.
set
(
label_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
out
=
scope
.
var
(
'Out'
).
get_tensor
()
pre_out
=
scope
.
var
(
'PreOut'
).
get_tensor
w_out
=
scope
.
var
(
'W_Out'
).
get_tensor
()
w_out
.
set
(
param_array
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port
)]
table_names
=
[
'table'
]
height_sections
=
[
2
]
# create and run sgd operator
hsigmoid_op
=
Operator
(
"hierarchical_sigmoid"
,
X
=
'X'
,
W
=
'W'
,
PathTable
=
'PathTable'
,
PathCode
=
'PathCode'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Out
=
'Out'
,
PreOut
=
'PreOut'
,
W_Out
=
'W_Out'
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
hsigmoid_op
.
run
(
scope
,
place
)
# get and compare result
result_array
=
np
.
array
(
w_out
)
self
.
assertEqual
(
list
(
result_array
.
shape
),
[
5
,
8
])
correct
=
None
for
i
in
range
(
5
):
if
i
!=
3
:
correct
=
np
.
full
((
1
,
8
),
i
+
1
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
else
:
correct
=
np
.
full
((
1
,
8
),
0
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
def
_run_hsigmoid_op_two_pserver
(
self
,
place
,
port0
,
port1
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'X'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'W'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param
.
set
(
param_array
,
place
)
path_table
=
scope
.
var
(
'PathTable'
).
get_tensor
()
path_table_array
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_table
.
set
(
path_table_array
,
place
)
path_code
=
scope
.
var
(
'PathCode'
).
get_tensor
()
path_code_array
=
np
.
array
(
[(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store
path_code
.
set
(
path_code_array
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label
.
set
(
label_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
out
=
scope
.
var
(
'Out'
).
get_tensor
()
pre_out
=
scope
.
var
(
'PreOut'
).
get_tensor
w_out
=
scope
.
var
(
'W_Out'
).
get_tensor
()
w_out
.
set
(
param_array
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port0
),
'127.0.0.1:'
+
str
(
port1
)]
table_names
=
[
'table'
,
'table'
]
height_sections
=
[
2
,
3
]
# create and run sgd operator
hsigmoid_op
=
Operator
(
"hierarchical_sigmoid"
,
X
=
'X'
,
W
=
'W'
,
PathTable
=
'PathTable'
,
PathCode
=
'PathCode'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Out
=
'Out'
,
PreOut
=
'PreOut'
,
W_Out
=
'W_Out'
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
hsigmoid_op
.
run
(
scope
,
place
)
# get and compare result
result_array
=
np
.
array
(
w_out
)
self
.
assertEqual
(
list
(
result_array
.
shape
),
[
5
,
8
])
correct
=
None
for
i
in
range
(
5
):
if
i
<
2
:
correct
=
np
.
full
((
1
,
8
),
i
+
1
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
else
:
correct
=
np
.
full
((
1
,
8
),
i
+
9
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
def
test_hsigmoid_op_remote
(
self
):
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
# run pserver on CPU in sync mode
p0
=
self
.
_start_pserver
(
0
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p0
.
pid
)
port0
=
self
.
_get_pserver_port
(
p0
.
pid
)
p1
=
self
.
_start_pserver
(
1
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p1
.
pid
)
port1
=
self
.
_get_pserver_port
(
p1
.
pid
)
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
_run_hsigmoid_op_one_pserver
(
place
,
port0
)
self
.
_run_hsigmoid_op_two_pserver
(
place
,
port0
,
port1
)
# raise SIGTERM to pserver
os
.
kill
(
p0
.
pid
,
signal
.
SIGINT
)
p0
.
join
()
os
.
kill
(
p1
.
pid
,
signal
.
SIGINT
)
p1
.
join
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录