Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
c0e34eeb
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c0e34eeb
编写于
10月 15, 2018
作者:
J
jerrywgz
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add roi align
上级
5fc30522
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
664 addition
and
0 deletion
+664
-0
paddle/fluid/operators/roi_align_op.cc
paddle/fluid/operators/roi_align_op.cc
+153
-0
paddle/fluid/operators/roi_align_op.h
paddle/fluid/operators/roi_align_op.h
+342
-0
python/paddle/fluid/tests/unittests/test_roi_align_op.py
python/paddle/fluid/tests/unittests/test_roi_align_op.py
+169
-0
未找到文件。
paddle/fluid/operators/roi_align_op.cc
0 → 100644
浏览文件 @
c0e34eeb
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/roi_align_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
class
ROIAlignOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of ROIAlignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ROIs"
),
"Input(ROIs) of ROIAlignOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of ROIAlignOp should not be null."
);
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
rois_dims
=
ctx
->
GetInputDim
(
"ROIs"
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The format of input tensor is NCHW."
);
PADDLE_ENFORCE
(
rois_dims
.
size
()
==
2
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]."
);
PADDLE_ENFORCE
(
rois_dims
[
1
]
==
4
,
"ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]."
);
int
pooled_height
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_height"
);
int
pooled_width
=
ctx
->
Attrs
().
Get
<
int
>
(
"pooled_width"
);
float
spatial_scale
=
ctx
->
Attrs
().
Get
<
float
>
(
"spatial_scale"
);
PADDLE_ENFORCE_GT
(
pooled_height
,
0
,
"The pooled output height must greater than 0"
);
PADDLE_ENFORCE_GT
(
pooled_width
,
0
,
"The pooled output width must greater than 0"
);
PADDLE_ENFORCE_GT
(
spatial_scale
,
0.0
f
,
"The spatial scale must greater than 0"
);
auto
out_dims
=
input_dims
;
out_dims
[
0
]
=
rois_dims
[
0
];
out_dims
[
1
]
=
input_dims
[
1
];
out_dims
[
2
]
=
pooled_height
;
out_dims
[
3
]
=
pooled_width
;
ctx
->
SetOutputDim
(
"Out"
,
out_dims
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
ROIAlignGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"The GRAD@Out of ROIAlignGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutputs
(
framework
::
GradVarName
(
"X"
)),
"The GRAD@X of ROIAlignGradOp should not be null."
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputsDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
ROIAlignOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor), "
"the input of ROIAlignOp. "
"The format of input tensor is NCHW. Where N is batch size, "
"C is the number of input channels, "
"H is the height of the feature, and "
"W is the width of the feature."
);
AddInput
(
"ROIs"
,
"(LoDTensor), "
"ROIs (Regions of Interest) to pool over. "
"should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[x1, y1, x2, y2], …]. "
"Where batch_id is the id of the data, "
"(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."
);
AddOutput
(
"Out"
,
"(Tensor), "
"The output of ROIAlignOp is a 4-D tensor with shape "
"(num_rois, channels, pooled_h, pooled_w)."
);
AddAttr
<
float
>
(
"spatial_scale"
,
"(float, default 1.0), "
"Multiplicative spatial scale factor "
"to translate ROI coords from their input scale "
"to the scale used when pooling."
)
.
SetDefault
(
1.0
);
AddAttr
<
int
>
(
"pooled_height"
,
"(int, default 1), "
"The pooled output height."
)
.
SetDefault
(
1
);
AddAttr
<
int
>
(
"pooled_width"
,
"(int, default 1), "
"The pooled output width."
)
.
SetDefault
(
1
);
AddAttr
<
int
>
(
"sampling_ratio"
,
"(int,default -1),"
"number of sampling points in the interpolation grid"
"If <=0, then grid points are adaptive to roi_width "
"and pooled_w, likewise for height"
)
.
SetDefault
(
-
1
);
AddComment
(
R"DOC(
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
roi_align
,
ops
::
ROIAlignOp
,
ops
::
ROIAlignOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
roi_align_grad
,
ops
::
ROIAlignGradOp
);
REGISTER_OP_CPU_KERNEL
(
roi_align
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUROIAlignOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
roi_align_grad
,
ops
::
CPUROIAlignGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUROIAlignGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/roi_align_op.h
0 → 100644
浏览文件 @
c0e34eeb
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <limits>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
class
T
>
void
pre_calc_for_bilinear_interpolate
(
const
platform
::
DeviceContext
&
ctx
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
iy_upper
,
const
int
ix_upper
,
T
roi_ymin
,
T
roi_xmin
,
T
bin_size_h
,
T
bin_size_w
,
int
roi_bin_grid_h
,
int
roi_bin_grid_w
,
Tensor
*
pre_pos
,
Tensor
*
pre_w
)
{
int
pre_calc_index
=
0
;
int
*
pre_pos_data
=
pre_pos
->
mutable_data
<
int
>
(
ctx
.
GetPlace
());
T
*
pre_w_data
=
pre_w
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
int
ph
=
0
;
ph
<
pooled_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
pw
++
)
{
for
(
int
iy
=
0
;
iy
<
iy_upper
;
iy
++
)
{
// calculate y of sample points
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
// calculate x of samle points
for
(
int
ix
=
0
;
ix
<
ix_upper
;
ix
++
)
{
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
// deal with elements out of map
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
pre_pos_data
[
i
+
pre_calc_index
*
4
]
=
0
;
pre_w_data
[
i
+
pre_calc_index
*
4
]
=
0
;
}
pre_calc_index
+=
1
;
continue
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
int
y_low
=
static_cast
<
int
>
(
y
);
int
x_low
=
static_cast
<
int
>
(
x
);
int
y_high
;
int
x_high
;
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
pre_pos_data
[
pre_calc_index
*
4
]
=
y_low
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
4
+
1
]
=
y_low
*
width
+
x_high
;
pre_pos_data
[
pre_calc_index
*
4
+
2
]
=
y_high
*
width
+
x_low
;
pre_pos_data
[
pre_calc_index
*
4
+
3
]
=
y_high
*
width
+
x_high
;
pre_w_data
[
pre_calc_index
*
4
]
=
hy
*
hx
;
pre_w_data
[
pre_calc_index
*
4
+
1
]
=
hy
*
lx
;
pre_w_data
[
pre_calc_index
*
4
+
2
]
=
ly
*
hx
;
pre_w_data
[
pre_calc_index
*
4
+
3
]
=
ly
*
lx
;
pre_calc_index
+=
1
;
}
}
}
}
}
template
<
class
T
>
void
bilinear_interpolate_gradient
(
const
int
height
,
const
int
width
,
T
y
,
T
x
,
const
T
out_grad_this_bin
,
const
T
count
,
T
*
batch_grad_data
)
{
int
x_low
,
y_low
,
x_high
,
y_high
;
T
w1
,
w2
,
w3
,
w4
;
if
(
y
<
-
1.0
||
y
>
height
||
x
<
-
1.0
||
x
>
width
)
{
w1
=
w2
=
w3
=
w4
=
0
;
x_low
=
x_high
=
y_low
=
y_high
=
-
1
;
return
;
}
if
(
y
<=
0
)
{
y
=
0
;
}
if
(
x
<=
0
)
{
x
=
0
;
}
y_low
=
static_cast
<
int
>
(
y
);
x_low
=
static_cast
<
int
>
(
x
);
if
(
y_low
>=
height
-
1
)
{
y_high
=
y_low
=
height
-
1
;
y
=
static_cast
<
T
>
(
y_low
);
}
else
{
y_high
=
y_low
+
1
;
}
if
(
x_low
>=
width
-
1
)
{
x_high
=
x_low
=
width
-
1
;
x
=
static_cast
<
T
>
(
x_low
);
}
else
{
x_high
=
x_low
+
1
;
}
T
ly
=
y
-
y_low
,
lx
=
x
-
x_low
;
T
hy
=
1.
-
ly
,
hx
=
1.
-
lx
;
w1
=
hy
*
hx
,
w2
=
hy
*
lx
,
w3
=
ly
*
hx
,
w4
=
ly
*
lx
;
T
diff1
=
out_grad_this_bin
*
w1
/
count
;
T
diff2
=
out_grad_this_bin
*
w2
/
count
;
T
diff3
=
out_grad_this_bin
*
w3
/
count
;
T
diff4
=
out_grad_this_bin
*
w4
/
count
;
if
(
x_low
>=
0
&&
x_high
>=
0
&&
y_low
>=
0
&&
y_high
>=
0
)
{
*
(
batch_grad_data
+
y_low
*
width
+
x_low
)
+=
diff1
;
*
(
batch_grad_data
+
y_low
*
width
+
x_high
)
+=
diff2
;
*
(
batch_grad_data
+
y_high
*
width
+
x_low
)
+=
diff3
;
*
(
batch_grad_data
+
y_high
*
width
+
x_high
)
+=
diff4
;
}
return
;
}
template
<
typename
DeviceContext
,
typename
T
>
class
CPUROIAlignOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
in_dims
=
in
->
dims
();
int64_t
batch_size
=
in_dims
[
0
];
int64_t
channels
=
in_dims
[
1
];
int64_t
height
=
in_dims
[
2
];
int64_t
width
=
in_dims
[
3
];
int64_t
rois_num
=
rois
->
dims
()[
0
];
auto
in_stride
=
framework
::
stride
(
in_dims
);
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out
->
dims
());
const
T
*
input_data
=
in
->
data
<
T
>
();
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
PADDLE_ENFORCE_EQ
(
rois_batch_size
,
batch_size
,
"The rois_batch_size and imgs batch_size must be the same."
);
int
rois_num_with_lod
=
rois_lod
[
rois_batch_size
];
PADDLE_ENFORCE_EQ
(
rois_num
,
rois_num_with_lod
,
"The rois_num from input and lod must be the same."
);
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
rois_data
=
rois
->
data
<
T
>
();
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_id
=
roi_batch_id_data
[
n
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
const
T
*
batch_data
=
input_data
+
roi_batch_id
*
in_stride
[
0
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
const
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
Tensor
pre_pos
;
Tensor
pre_w
;
int
pre_size
=
count
*
out_stride
[
1
];
pre_pos
.
Resize
({
pre_size
,
4
});
pre_w
.
Resize
({
pre_size
,
4
});
pre_calc_for_bilinear_interpolate
(
dev_ctx
,
height
,
width
,
pooled_height
,
pooled_width
,
roi_bin_grid_h
,
roi_bin_grid_w
,
roi_ymin
,
roi_xmin
,
bin_size_h
,
bin_size_w
,
roi_bin_grid_h
,
roi_bin_grid_w
,
&
pre_pos
,
&
pre_w
);
const
int
*
pre_pos_data
=
pre_pos
.
data
<
int
>
();
const
T
*
pre_w_data
=
pre_w
.
data
<
T
>
();
for
(
int
c
=
0
;
c
<
channels
;
c
++
)
{
int
pre_calc_index
=
0
;
for
(
int
ph
=
0
;
ph
<
pooled_height
;
ph
++
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
pw
++
)
{
const
int
pool_index
=
ph
*
pooled_width
+
pw
;
T
output_val
=
0
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
int
pos
=
pre_pos_data
[
pre_calc_index
*
4
+
i
];
T
w
=
pre_w_data
[
pre_calc_index
*
4
+
i
];
output_val
+=
w
*
batch_data
[
pos
];
}
pre_calc_index
+=
1
;
}
}
output_val
/=
count
;
output_data
[
pool_index
]
=
output_val
;
}
}
batch_data
+=
in_stride
[
1
];
output_data
+=
out_stride
[
1
];
}
rois_data
+=
roi_stride
[
0
];
}
return
;
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
CPUROIAlignGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
rois
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"ROIs"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
pooled_height
=
ctx
.
Attr
<
int
>
(
"pooled_height"
);
auto
pooled_width
=
ctx
.
Attr
<
int
>
(
"pooled_width"
);
auto
spatial_scale
=
ctx
.
Attr
<
float
>
(
"spatial_scale"
);
auto
sampling_ratio
=
ctx
.
Attr
<
int
>
(
"sampling_ratio"
);
auto
in_dims
=
in
->
dims
();
if
(
in_grad
)
{
int64_t
channels
=
in_dims
[
1
];
int64_t
height
=
in_dims
[
2
];
int64_t
width
=
in_dims
[
3
];
int
rois_num
=
rois
->
dims
()[
0
];
framework
::
Tensor
roi_batch_id_list
;
roi_batch_id_list
.
Resize
({
rois_num
});
int
*
roi_batch_id_data
=
roi_batch_id_list
.
mutable_data
<
int
>
(
ctx
.
GetPlace
());
auto
rois_lod
=
rois
->
lod
().
back
();
int
rois_batch_size
=
rois_lod
.
size
()
-
1
;
for
(
int
n
=
0
;
n
<
rois_batch_size
;
++
n
)
{
for
(
size_t
i
=
rois_lod
[
n
];
i
<
rois_lod
[
n
+
1
];
++
i
)
{
roi_batch_id_data
[
i
]
=
n
;
}
}
const
T
*
rois_data
=
rois
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
T
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
in_stride
=
framework
::
stride
(
in
->
dims
());
auto
roi_stride
=
framework
::
stride
(
rois
->
dims
());
auto
out_stride
=
framework
::
stride
(
out_grad
->
dims
());
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_idx
=
roi_batch_id_data
[
n
];
T
*
batch_grad_data
=
in_grad_data
+
roi_batch_idx
*
in_stride
[
0
];
const
T
*
batch_out_grad_data
=
out_grad_data
+
roi_batch_idx
*
out_stride
[
0
];
T
roi_xmin
=
rois_data
[
0
]
*
spatial_scale
;
T
roi_ymin
=
rois_data
[
1
]
*
spatial_scale
;
T
roi_xmax
=
rois_data
[
2
]
*
spatial_scale
;
T
roi_ymax
=
rois_data
[
3
]
*
spatial_scale
;
T
roi_width
=
std
::
max
(
roi_xmax
-
roi_xmin
,
static_cast
<
T
>
(
1.
));
T
roi_height
=
std
::
max
(
roi_ymax
-
roi_ymin
,
static_cast
<
T
>
(
1.
));
T
bin_size_h
=
static_cast
<
T
>
(
roi_height
)
/
static_cast
<
T
>
(
pooled_height
);
T
bin_size_w
=
static_cast
<
T
>
(
roi_width
)
/
static_cast
<
T
>
(
pooled_width
);
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
for
(
int
ph
=
0
;
ph
<
pooled_height
;
++
ph
)
{
for
(
int
pw
=
0
;
pw
<
pooled_width
;
++
pw
)
{
int
pool_index
=
ph
*
pooled_width
+
pw
;
T
out_grad_this_bin
=
batch_out_grad_data
[
pool_index
];
int
roi_bin_grid_h
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_height
/
pooled_height
);
int
roi_bin_grid_w
=
(
sampling_ratio
>
0
)
?
sampling_ratio
:
ceil
(
roi_width
/
pooled_width
);
T
count
=
roi_bin_grid_h
*
roi_bin_grid_w
;
for
(
int
iy
=
0
;
iy
<
roi_bin_grid_h
;
iy
++
)
{
const
T
y
=
roi_ymin
+
ph
*
bin_size_h
+
static_cast
<
T
>
(
iy
+
.5
f
)
*
bin_size_h
/
static_cast
<
T
>
(
roi_bin_grid_h
);
for
(
int
ix
=
0
;
ix
<
roi_bin_grid_w
;
ix
++
)
{
const
T
x
=
roi_xmin
+
pw
*
bin_size_w
+
static_cast
<
T
>
(
ix
+
.5
f
)
*
bin_size_w
/
static_cast
<
T
>
(
roi_bin_grid_w
);
bilinear_interpolate_gradient
(
height
,
width
,
y
,
x
,
out_grad_this_bin
,
count
,
batch_grad_data
);
}
}
}
}
batch_grad_data
+=
in_stride
[
1
];
batch_out_grad_data
+=
out_stride
[
1
];
}
rois_data
+=
roi_stride
[
0
];
}
}
return
;
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_roi_align_op.py
0 → 100644
浏览文件 @
c0e34eeb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
math
import
sys
from
op_test
import
OpTest
class
TestROIAlignOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_case
()
self
.
make_rois
()
self
.
calc_roi_align
()
self
.
inputs
=
{
'X'
:
self
.
x
,
'ROIs'
:
(
self
.
rois
[:,
1
:
5
],
self
.
rois_lod
)}
self
.
attrs
=
{
'spatial_scale'
:
self
.
spatial_scale
,
'pooled_height'
:
self
.
pooled_height
,
'pooled_width'
:
self
.
pooled_width
,
'sampling_ratio'
:
self
.
sampling_ratio
}
self
.
outputs
=
{
'Out'
:
self
.
out_data
}
def
init_test_case
(
self
):
self
.
batch_size
=
3
self
.
channels
=
3
self
.
height
=
8
self
.
width
=
6
# n, c, h, w
self
.
x_dim
=
(
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
)
self
.
spatial_scale
=
1.0
/
1.0
self
.
pooled_height
=
2
self
.
pooled_width
=
2
self
.
sampling_ratio
=
-
1
self
.
x
=
np
.
random
.
random
(
self
.
x_dim
).
astype
(
'float32'
)
def
pre_calc
(
self
,
x_i
,
roi_xmin
,
roi_ymin
,
roi_bin_grid_h
,
roi_bin_grid_w
,
bin_size_h
,
bin_size_w
):
count
=
roi_bin_grid_h
*
roi_bin_grid_w
bilinear_pos
=
np
.
zeros
(
[
self
.
channels
,
self
.
pooled_height
,
self
.
pooled_width
,
count
,
4
],
np
.
float32
)
bilinear_w
=
np
.
zeros
(
[
self
.
pooled_height
,
self
.
pooled_width
,
count
,
4
],
np
.
float32
)
for
ph
in
range
(
self
.
pooled_width
):
for
pw
in
range
(
self
.
pooled_height
):
c
=
0
for
iy
in
range
(
roi_bin_grid_h
):
y
=
roi_ymin
+
ph
*
bin_size_h
+
(
iy
+
0.5
)
*
\
bin_size_h
/
roi_bin_grid_h
for
ix
in
range
(
roi_bin_grid_w
):
x
=
roi_xmin
+
pw
*
bin_size_w
+
(
ix
+
0.5
)
*
\
bin_size_w
/
roi_bin_grid_w
if
y
<
-
1.0
or
y
>
self
.
height
or
\
x
<
-
1.0
or
x
>
self
.
width
:
continue
if
y
<=
0
:
y
=
0
if
x
<=
0
:
x
=
0
y_low
=
int
(
y
)
x_low
=
int
(
x
)
if
y_low
>=
self
.
height
-
1
:
y
=
y_high
=
y_low
=
self
.
height
-
1
else
:
y_high
=
y_low
+
1
if
x_low
>=
self
.
width
-
1
:
x
=
x_high
=
x_low
=
self
.
width
-
1
else
:
x_high
=
x_low
+
1
ly
=
y
-
y_low
lx
=
x
-
x_low
hy
=
1
-
ly
hx
=
1
-
lx
for
ch
in
range
(
self
.
channels
):
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
0
]
=
x_i
[
ch
,
y_low
,
x_low
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
1
]
=
x_i
[
ch
,
y_low
,
x_high
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
2
]
=
x_i
[
ch
,
y_high
,
x_low
]
bilinear_pos
[
ch
,
ph
,
pw
,
c
,
3
]
=
x_i
[
ch
,
y_high
,
x_high
]
bilinear_w
[
ph
,
pw
,
c
,
0
]
=
hy
*
hx
bilinear_w
[
ph
,
pw
,
c
,
1
]
=
hy
*
lx
bilinear_w
[
ph
,
pw
,
c
,
2
]
=
ly
*
hx
bilinear_w
[
ph
,
pw
,
c
,
3
]
=
ly
*
lx
c
=
c
+
1
return
bilinear_pos
,
bilinear_w
def
calc_roi_align
(
self
):
self
.
out_data
=
np
.
zeros
(
(
self
.
rois_num
,
self
.
channels
,
self
.
pooled_height
,
self
.
pooled_width
)).
astype
(
'float32'
)
for
i
in
range
(
self
.
rois_num
):
roi
=
self
.
rois
[
i
]
roi_batch_id
=
int
(
roi
[
0
])
x_i
=
self
.
x
[
roi_batch_id
]
roi_xmin
=
roi
[
1
]
*
self
.
spatial_scale
roi_ymin
=
roi
[
2
]
*
self
.
spatial_scale
roi_xmax
=
roi
[
3
]
*
self
.
spatial_scale
roi_ymax
=
roi
[
4
]
*
self
.
spatial_scale
roi_width
=
int
(
max
(
roi_xmax
-
roi_xmin
,
1
))
roi_height
=
int
(
max
(
roi_ymax
-
roi_ymin
,
1
))
bin_size_h
=
float
(
roi_height
)
/
float
(
self
.
pooled_height
)
bin_size_w
=
float
(
roi_width
)
/
float
(
self
.
pooled_width
)
roi_bin_grid_h
=
self
.
sampling_ratio
if
self
.
sampling_ratio
>
0
else
\
math
.
ceil
(
float
(
roi_height
)
/
self
.
pooled_height
)
roi_bin_grid_w
=
self
.
sampling_ratio
if
self
.
sampling_ratio
>
0
else
\
math
.
ceil
(
float
(
roi_width
)
/
self
.
pooled_width
)
count
=
int
(
roi_bin_grid_h
*
roi_bin_grid_w
)
pre_size
=
count
*
self
.
pooled_width
*
self
.
pooled_height
bilinear_pos
,
bilinear_w
=
self
.
pre_calc
(
x_i
,
roi_xmin
,
roi_ymin
,
int
(
roi_bin_grid_h
),
int
(
roi_bin_grid_w
),
bin_size_h
,
bin_size_w
)
for
ch
in
range
(
self
.
channels
):
align_per_bin
=
(
bilinear_pos
[
ch
]
*
bilinear_w
).
sum
(
axis
=-
1
)
output_val
=
align_per_bin
.
mean
(
axis
=-
1
)
self
.
out_data
[
i
,
ch
,
:,
:]
=
output_val
def
make_rois
(
self
):
rois
=
[]
self
.
rois_lod
=
[[]]
for
bno
in
range
(
self
.
batch_size
):
self
.
rois_lod
[
0
].
append
(
bno
+
1
)
for
i
in
range
(
bno
+
1
):
x1
=
np
.
random
.
random_integers
(
0
,
self
.
width
//
self
.
spatial_scale
-
self
.
pooled_width
)
y1
=
np
.
random
.
random_integers
(
0
,
self
.
height
//
self
.
spatial_scale
-
self
.
pooled_height
)
x2
=
np
.
random
.
random_integers
(
x1
+
self
.
pooled_width
,
self
.
width
//
self
.
spatial_scale
)
y2
=
np
.
random
.
random_integers
(
y1
+
self
.
pooled_height
,
self
.
height
//
self
.
spatial_scale
)
roi
=
[
bno
,
x1
,
y1
,
x2
,
y2
]
rois
.
append
(
roi
)
self
.
rois_num
=
len
(
rois
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
"float32"
)
def
setUp
(
self
):
self
.
op_type
=
"roi_align"
self
.
set_data
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录