Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
be2d3ae6
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
be2d3ae6
编写于
1月 21, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add debug info
上级
a21f4e38
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
282 addition
and
46 deletion
+282
-46
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+2
-0
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+280
-46
未找到文件。
python/paddle/fluid/layer_helper.py
浏览文件 @
be2d3ae6
...
@@ -437,8 +437,10 @@ class LayerHelper(object):
...
@@ -437,8 +437,10 @@ class LayerHelper(object):
# NOTE(dzhwinter): some activation support inplace compution.
# NOTE(dzhwinter): some activation support inplace compution.
# NOTE(minqiyang): currently, we don't support inplace in imperative mode
# NOTE(minqiyang): currently, we don't support inplace in imperative mode
if
not
force_no_inplace
and
core
.
IsInplace
(
act_type
):
if
not
force_no_inplace
and
core
.
IsInplace
(
act_type
):
print
(
"inplace"
)
tmp
=
input_var
tmp
=
input_var
else
:
else
:
print
(
"not inplace"
)
tmp
=
self
.
create_variable_for_type_inference
(
dtype
=
input_var
.
dtype
)
tmp
=
self
.
create_variable_for_type_inference
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
self
.
append_op
(
type
=
act_type
,
type
=
act_type
,
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
be2d3ae6
...
@@ -20,12 +20,13 @@ import six
...
@@ -20,12 +20,13 @@ import six
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.imperative.base
import
to_variable
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
from
test_imperative_base
import
new_program_scope
batch_size
=
8
batch_size
=
1
train_parameters
=
{
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
...
@@ -88,11 +89,11 @@ class ConvBNLayer(fluid.imperative.Layer):
...
@@ -88,11 +89,11 @@ class ConvBNLayer(fluid.imperative.Layer):
act
=
None
,
act
=
None
,
bias_attr
=
None
)
bias_attr
=
None
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
#
self._batch_norm = BatchNorm(num_filters, act=act)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
#
y = self._batch_norm(y)
return
y
return
y
...
@@ -139,7 +140,10 @@ class BottleneckBlock(fluid.imperative.Layer):
...
@@ -139,7 +140,10 @@ class BottleneckBlock(fluid.imperative.Layer):
else
:
else
:
short
=
self
.
short
(
inputs
)
short
=
self
.
short
(
inputs
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
)
y
=
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
)
layer_helper
=
LayerHelper
(
'elementwise_add_activation'
,
act
=
'relu'
)
return
layer_helper
.
append_activation
(
y
,
force_no_inplace
=
True
)
class
ResNet
(
fluid
.
imperative
.
Layer
):
class
ResNet
(
fluid
.
imperative
.
Layer
):
...
@@ -200,16 +204,233 @@ class ResNet(fluid.imperative.Layer):
...
@@ -200,16 +204,233 @@ class ResNet(fluid.imperative.Layer):
class
TestImperativeResnet
(
unittest
.
TestCase
):
class
TestImperativeResnet
(
unittest
.
TestCase
):
def
test_resnet_gpu_float32
(
self
):
# def test_resnet_gpu_float32(self):
# seed = 90
# batch_size = train_parameters["batch_size"]
# with fluid.imperative.guard():
# fluid.default_startup_program().random_seed = seed
# fluid.default_main_program().random_seed = seed
# resnet = ResNet()
# optimizer = optimizer_setting(train_parameters)
# np.random.seed(seed)
# import random
# random.seed = seed
# train_reader = paddle.batch(
# paddle.dataset.flowers.train(use_xmap=False),
# batch_size=batch_size)
# dy_param_init_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# dy_param_init_value[param.name] = param._numpy()
# for batch_id, data in enumerate(train_reader()):
# if batch_id >= 1:
# break
# dy_x_data = np.array(
# [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
# batch_size, 1)
# img = to_variable(dy_x_data)
# label = to_variable(y_data)
# label._stop_gradient = True
# out = resnet(img)
# loss = fluid.layers.cross_entropy(input=out, label=label)
# avg_loss = fluid.layers.mean(x=loss)
# dy_out = avg_loss._numpy()
# if batch_id == 0:
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# if param.name not in dy_param_init_value:
# dy_param_init_value[param.name] = param._numpy()
# avg_loss._backward()
# dy_grad_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# if not param.stop_gradient:
# np_array = np.array(param._ivar._grad_ivar().value()
# .get_tensor())
# dy_grad_value[param.name + core.grad_var_suffix(
# )] = np_array
# optimizer.minimize(avg_loss)
# dy_param_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# dy_param_value[param.name] = param._numpy()
# with new_program_scope():
# fluid.default_startup_program().random_seed = seed
# fluid.default_main_program().random_seed = seed
# exe = fluid.Executor(fluid.CUDAPlace(0))
# resnet = ResNet()
# optimizer = optimizer_setting(train_parameters)
# np.random.seed(seed)
# import random
# random.seed = seed
# train_reader = paddle.batch(
# paddle.dataset.flowers.train(use_xmap=False),
# batch_size=batch_size)
# img = fluid.layers.data(
# name='pixel', shape=[3, 224, 224], dtype='float32')
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# out = resnet(img)
# loss = fluid.layers.cross_entropy(input=out, label=label)
# avg_loss = fluid.layers.mean(x=loss)
# optimizer.minimize(avg_loss)
# # initialize params and fetch them
# static_param_init_value = {}
# static_param_name_list = []
# static_grad_name_list = []
# for param in fluid.default_startup_program().global_block(
# ).all_parameters():
# static_param_name_list.append(param.name)
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# if not param.stop_gradient:
# static_grad_name_list.append(param.name +
# core.grad_var_suffix())
# out = exe.run(fluid.default_startup_program(),
# fetch_list=static_param_name_list)
# for i in range(len(static_param_name_list)):
# static_param_init_value[static_param_name_list[i]] = out[i]
# for batch_id, data in enumerate(train_reader()):
# if batch_id >= 1:
# break
# static_x_data = np.array(
# [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
# [batch_size, 1])
# fetch_list = [avg_loss.name]
# fetch_list.extend(static_param_name_list)
# fetch_list.extend(static_grad_name_list)
# out = exe.run(fluid.default_main_program(),
# feed={"pixel": static_x_data,
# "label": y_data},
# fetch_list=fetch_list)
# static_param_value = {}
# static_grad_value = {}
# static_out = out[0]
# param_start_pos = 1
# grad_start_pos = len(static_param_name_list) + param_start_pos
# for i in range(param_start_pos,
# len(static_param_name_list) + param_start_pos):
# static_param_value[static_param_name_list[
# i - param_start_pos]] = out[i]
# for i in range(grad_start_pos,
# len(static_grad_name_list) + grad_start_pos):
# static_grad_value[static_grad_name_list[
# i - grad_start_pos]] = out[i]
# self.assertTrue(np.allclose(static_out, dy_out))
# self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
# for key, value in six.iteritems(static_param_init_value):
# self.assertTrue(np.allclose(value, dy_param_init_value[key]))
# self.assertEqual(len(dy_grad_value), len(static_grad_value))
# # TODO(minqiyang): find a way to align the gradient
# # for key, value in six.iteritems(static_grad_value):
# # self.assertTrue(
# # np.allclose(value, dy_grad_value[key]))
# self.assertEqual(len(dy_param_value), len(static_param_value))
# # for key, value in six.iteritems(static_param_value):
# # self.assertTrue(np.allclose(value, dy_param_value[key]))
def
test_resnet_cpu_float32
(
self
):
seed
=
90
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
batch_size
=
train_parameters
[
"batch_size"
]
with
fluid
.
imperative
.
guard
():
# with fluid.imperative.guard(device=None):
# fluid.default_startup_program().random_seed = seed
# fluid.default_main_program().random_seed = seed
# resnet = ResNet()
# optimizer = optimizer_setting(train_parameters)
# np.random.seed(seed)
# import random
# random.seed = seed
# train_reader = paddle.batch(
# paddle.dataset.flowers.train(use_xmap=False),
# batch_size=batch_size)
# dy_param_init_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# dy_param_init_value[param.name] = param._numpy()
# for batch_id, data in enumerate(train_reader()):
# if batch_id >= 1:
# break
# dy_x_data = np.array(
# [x[0].reshape(3, 224, 224) for x in data]).astype('float32')
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
# batch_size, 1)
# img = to_variable(dy_x_data)
# label = to_variable(y_data)
# label._stop_gradient = True
# out = resnet(img)
# loss = fluid.layers.cross_entropy(input=out, label=label)
# avg_loss = fluid.layers.mean(x=loss)
# dy_out = avg_loss._numpy()
# if batch_id == 0:
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# if param.name not in dy_param_init_value:
# dy_param_init_value[param.name] = param._numpy()
# avg_loss._backward()
# dy_grad_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# if not param.stop_gradient:
# np_array = np.array(param._ivar._grad_ivar().value()
# .get_tensor())
# dy_grad_value[param.name + core.grad_var_suffix(
# )] = np_array
# optimizer.minimize(avg_loss)
# dy_param_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# dy_param_value[param.name] = param._numpy()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
resnet
=
ResNet
()
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
np
.
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
import
random
import
random
random
.
seed
=
seed
random
.
seed
=
seed
...
@@ -217,10 +438,32 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -217,10 +438,32 @@ class TestImperativeResnet(unittest.TestCase):
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
paddle
.
dataset
.
flowers
.
train
(
use_xmap
=
False
),
batch_size
=
batch_size
)
batch_size
=
batch_size
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
out
=
resnet
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
optimizer
.
minimize
(
avg_loss
)
# initialize params and fetch them
dy_param_init_value
=
{}
dy_param_init_value
=
{}
dy_param_name_list
=
[]
dy_grad_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
dy_param_name_list
.
append
(
param
.
name
)
for
param
in
fluid
.
default_main_program
().
global_block
(
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
if
not
param
.
stop_gradient
:
dy_grad_name_list
.
append
(
param
.
name
+
core
.
grad_var_suffix
(
))
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
dy_param_name_list
)
for
i
in
range
(
len
(
dy_param_name_list
)):
dy_param_init_value
[
dy_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
1
:
if
batch_id
>=
1
:
...
@@ -229,46 +472,35 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -229,46 +472,35 @@ class TestImperativeResnet(unittest.TestCase):
dy_x_data
=
np
.
array
(
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
[
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
[
batch_size
,
1
])
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
out
=
resnet
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
if
param
.
name
not
in
dy_param_init_value
:
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
dy_grad_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
if
not
param
.
stop_gradient
:
np_array
=
np
.
array
(
param
.
_ivar
.
_grad_ivar
().
value
()
.
get_tensor
())
dy_grad_value
[
param
.
name
+
core
.
grad_var_suffix
(
)]
=
np_array
optimizer
.
minimize
(
avg_loss
)
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
dy_param_name_list
)
fetch_list
.
extend
(
dy_grad_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
dy_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
dy_param_value
=
{}
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
dy_grad_value
=
{}
).
all_parameters
():
dy_out
=
out
[
0
]
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
param_start_pos
=
1
grad_start_pos
=
len
(
dy_param_name_list
)
+
param_start_pos
for
i
in
range
(
param_start_pos
,
len
(
dy_param_name_list
)
+
param_start_pos
):
dy_param_value
[
dy_param_name_list
[
i
-
param_start_pos
]]
=
out
[
i
]
for
i
in
range
(
grad_start_pos
,
len
(
dy_grad_name_list
)
+
grad_start_pos
):
dy_grad_value
[
dy_grad_name_list
[
i
-
grad_start_pos
]]
=
out
[
i
]
with
new_program_scope
():
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
C
UDAPlace
(
0
))
exe
=
fluid
.
Executor
(
fluid
.
C
PUPlace
(
))
resnet
=
ResNet
()
resnet
=
ResNet
()
optimizer
=
optimizer_setting
(
train_parameters
)
optimizer
=
optimizer_setting
(
train_parameters
)
...
@@ -345,14 +577,16 @@ class TestImperativeResnet(unittest.TestCase):
...
@@ -345,14 +577,16 @@ class TestImperativeResnet(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertEqual
(
len
(
dy_grad_value
),
len
(
static_grad_value
))
self
.
assertEqual
(
len
(
dy_grad_value
),
len
(
static_grad_value
))
# TODO(minqiyang): find a way to align the gradient
for
key
,
value
in
six
.
iteritems
(
static_grad_value
):
# for key, value in six.iteritems(static_grad_value):
if
not
np
.
allclose
(
value
,
dy_grad_value
[
key
]):
# print(key, value, dy_grad_value[key])
print
(
key
)
# self.assertTrue(
# self.assertTrue(
# np.allclose(value, dy_grad_value[key]))
# np.allclose(value, dy_grad_value[key]))
self
.
assertEqual
(
len
(
dy_param_value
),
len
(
static_param_value
))
self
.
assertEqual
(
len
(
dy_param_value
),
len
(
static_param_value
))
#
for key, value in six.iteritems(static_param_value):
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
print
(
key
)
# self.assertTrue(np.allclose(value, dy_param_value[key]))
# self.assertTrue(np.allclose(value, dy_param_value[key]))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录