未验证 提交 bd0527b8 编写于 作者: C CHENSONG 提交者: GitHub

Swin faster rcnn v1 (#4050)

* add faster rcnn with swin_transformer tiny
上级 18a1f730
architecture: FasterRCNN
FasterRCNN:
backbone: SwinTransformer
neck: FPN
rpn_head: RPNHead
bbox_head: BBoxHead
bbox_post_process: BBoxPostProcess
SwinTransformer:
embed_dim: 96
depths: [2, 2, 6, 2]
num_heads: [3, 6, 12, 24]
window_size: 7
ape: false
drop_path_rate: 0.1
patch_norm: true
out_indices: [0,1,2,3]
drop_path_rate: 0.1
pretrained: https://paddledet.bj.bcebos.com/models/pretrained/swin_tiny_patch4_window7_224.pdparams
FPN:
out_channel: 256
RPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
anchor_sizes: [[32], [64], [128], [256], [512]]
strides: [4, 8, 16, 32, 64]
rpn_target_assign:
batch_size_per_im: 256
fg_fraction: 0.5
negative_overlap: 0.3
positive_overlap: 0.7
use_random: True
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 1000
topk_after_collect: True
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
BBoxHead:
head: TwoFCHead
roi_extractor:
resolution: 7
sampling_ratio: 0
aligned: True
bbox_assigner: BBoxAssigner
BBoxAssigner:
batch_size_per_im: 512
bg_thresh: 0.5
fg_thresh: 0.5
fg_fraction: 0.25
use_random: True
TwoFCHead:
out_channel: 1024
BBoxPostProcess:
decode: RCNNBox
nms:
name: MultiClassNMS
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.5
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RandomResizeCrop: {resizes: [400, 500, 600], cropsizes: [[384, 600], ], prob: 0.5}
- RandomResize: {target_size: [[480, 1333], [512, 1333], [544, 1333], [576, 1333], [608, 1333], [640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 2}
- RandomFlip: {prob: 0.5}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 2
shuffle: true
drop_last: true
collate_batch: false
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
drop_last: false
drop_empty: false
TestReader:
sample_transforms:
- Decode: {}
- Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
shuffle: false
drop_last: false
epoch: 12
LearningRate:
base_lr: 0.0001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [8, 11]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
clip_grad_by_norm: 1.0
optimizer:
type: AdamW
weight_decay: 0.05
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_swin_transformer_1x.yml',
'_base_/faster_rcnn_swin_transformer.yml',
'_base_/faster_rcnn_swin_transformer_reader.yml',
]
weights: output/faster_swin_transformer_tiny_1x/model_final
_BASE_: [
'faster_rcnn_swin_transformer_tiny_1x_coco.yml',
]
weights: output/faster_swin_transformer_tiny_2x/model_final
epoch: 24
LearningRate:
base_lr: 0.0001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
clip_grad_by_norm: 1.0
optimizer:
type: AdamW
weight_decay: 0.05
_BASE_: [
'faster_rcnn_swin_transformer_tiny_1x_coco.yml',
]
weights: output/faster_swin_transformer_tiny_3x/model_final
epoch: 36
LearningRate:
base_lr: 0.0001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [24, 33]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
clip_grad_by_norm: 1.0
optimizer:
type: AdamW
weight_decay: 0.05
......@@ -25,6 +25,7 @@ from . import senet
from . import res2net
from . import dla
from . import shufflenet_v2
from . import swin_transformer
from .vgg import *
from .resnet import *
......@@ -39,3 +40,4 @@ from .senet import *
from .res2net import *
from .dla import *
from .shufflenet_v2 import *
from .swin_transformer import *
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import TruncatedNormal, Constant, Assign
from ppdet.modeling.shape_spec import ShapeSpec
from ppdet.core.workspace import register, serializable
import numpy as np
# Common initializations
ones_ = Constant(value=1.)
zeros_ = Constant(value=0.)
trunc_normal_ = TruncatedNormal(std=.02)
# Common Functions
def to_2tuple(x):
return tuple([x] * 2)
def add_parameter(layer, datas, name=None):
parameter = layer.create_parameter(
shape=(datas.shape), default_initializer=Assign(datas))
if name:
layer.add_parameter(name, parameter)
return parameter
# Common Layers
def drop_path(x, drop_prob=0., training=False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if drop_prob == 0. or not training:
return x
keep_prob = paddle.to_tensor(1 - drop_prob)
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
random_tensor = paddle.floor(random_tensor) # binarize
output = x.divide(keep_prob) * random_tensor
return output
class DropPath(nn.Layer):
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Identity(nn.Layer):
def __init__(self):
super(Identity, self).__init__()
def forward(self, input):
return input
class Mlp(nn.Layer):
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.reshape(
[B, H // window_size, window_size, W // window_size, window_size, C])
windows = x.transpose([0, 1, 3, 2, 4, 5]).reshape(
[-1, window_size, window_size, C])
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.reshape(
[B, H // window_size, W // window_size, window_size, window_size, -1])
x = x.transpose([0, 1, 3, 2, 4, 5]).reshape([B, H, W, -1])
return x
class WindowAttention(nn.Layer):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = add_parameter(
self,
paddle.zeros(((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads))) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = paddle.arange(self.window_size[0])
coords_w = paddle.arange(self.window_size[1])
coords = paddle.stack(paddle.meshgrid(
[coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
coords_flatten_1 = coords_flatten.unsqueeze(axis=2)
coords_flatten_2 = coords_flatten.unsqueeze(axis=1)
relative_coords = coords_flatten_1 - coords_flatten_2
relative_coords = relative_coords.transpose(
[1, 2, 0]) # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[
0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
self.relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index",
self.relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table)
self.softmax = nn.Softmax(axis=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(
[B_, N, 3, self.num_heads, C // self.num_heads]).transpose(
[2, 0, 3, 1, 4])
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = paddle.mm(q, k.transpose([0, 1, 3, 2]))
index = self.relative_position_index.reshape([-1])
relative_position_bias = paddle.index_select(
self.relative_position_bias_table, index)
relative_position_bias = relative_position_bias.reshape([
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1], -1
]) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.transpose(
[2, 0, 1]) # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N
]) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.reshape([-1, self.num_heads, N, N])
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
# x = (attn @ v).transpose(1, 2).reshape([B_, N, C])
x = paddle.mm(attn, v).transpose([0, 2, 1, 3]).reshape([B_, N, C])
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Layer):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Layer, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self,
dim,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.H = None
self.W = None
def forward(self, x, mask_matrix):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.reshape([B, H, W, C])
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, [0, pad_l, 0, pad_b, 0, pad_r, 0, pad_t])
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = paddle.roll(
x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(
shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.reshape(
[-1, self.window_size * self.window_size,
C]) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.reshape(
[-1, self.window_size, self.window_size, C])
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = paddle.roll(
shifted_x,
shifts=(self.shift_size, self.shift_size),
axis=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :]
x = x.reshape([B, H * W, C])
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Layer):
r""" Patch Merging Layer.
Args:
dim (int): Number of input channels.
norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
self.norm = norm_layer(4 * dim)
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.reshape([B, H, W, C])
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, [0, 0, 0, W % 2, 0, H % 2])
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = paddle.concat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.reshape([B, H * W // 4, 4 * C]) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class BasicLayer(nn.Layer):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Layer, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Layer | None, optional): Downsample layer at the end of the layer. Default: None
"""
def __init__(self,
dim,
depth,
num_heads,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
# build blocks
self.blocks = nn.LayerList([
SwinTransformerBlock(
dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i]
if isinstance(drop_path, np.ndarray) else drop_path,
norm_layer=norm_layer) for i in range(depth)
])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = paddle.fluid.layers.zeros(
[1, Hp, Wp, 1], dtype='float32') # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.reshape(
[-1, self.window_size * self.window_size])
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
huns = -100.0 * paddle.ones_like(attn_mask)
attn_mask = huns * (attn_mask != 0).astype("float32")
for blk in self.blocks:
blk.H, blk.W = H, W
x = blk(x, attn_mask)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x, H, W, x_down, Wh, Ww
else:
return x, H, W, x, H, W
class PatchEmbed(nn.Layer):
""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Layer, optional): Normalization layer. Default: None
"""
def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2D(
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
# assert [H, W] == self.img_size[:2], "Input image size ({H}*{W}) doesn't match model ({}*{}).".format(H, W, self.img_size[0], self.img_size[1])
if W % self.patch_size[1] != 0:
x = F.pad(x, [0, self.patch_size[1] - W % self.patch_size[1]])
if H % self.patch_size[0] != 0:
x = F.pad(x, [0, 0, 0, self.patch_size[0] - H % self.patch_size[0]])
x = self.proj(x)
if self.norm is not None:
_, _, Wh, Ww = x.shape
x = x.flatten(2).transpose([0, 2, 1])
x = self.norm(x)
x = x.transpose([0, 2, 1]).reshape([-1, self.embed_dim, Wh, Ww])
return x
@register
@serializable
class SwinTransformer(nn.Layer):
""" Swin Transformer
A PaddlePaddle impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
"""
def __init__(self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
pretrained=None):
super(SwinTransformer, self).__init__()
self.pretrain_img_size = pretrain_img_size
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
pretrain_img_size = to_2tuple(pretrain_img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
pretrain_img_size[0] // patch_size[0],
pretrain_img_size[1] // patch_size[1]
]
self.absolute_pos_embed = add_parameter(
self,
paddle.zeros((1, embed_dim, patches_resolution[0],
patches_resolution[1])))
trunc_normal_(self.absolute_pos_embed)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = np.linspace(0, drop_path_rate,
sum(depths)) # stochastic depth decay rule
# build layers
self.layers = nn.LayerList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging
if (i_layer < self.num_layers - 1) else None)
self.layers.append(layer)
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
self.num_features = num_features
# add a norm layer for each output
for i_layer in out_indices:
layer = norm_layer(num_features[i_layer])
layer_name = f'norm{i_layer}'
self.add_sublayer(layer_name, layer)
self.apply(self._init_weights)
self._freeze_stages()
if pretrained:
if 'http' in pretrained: #URL
path = paddle.utils.download.get_weights_path_from_url(
pretrained)
else: #model in local path
path = pretrained
self.set_state_dict(paddle.load(path))
print('###################################################')
print('###############Success load the mode###############')
print('###################################################')
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1 and self.ape:
self.absolute_pos_embed.requires_grad = False
if self.frozen_stages >= 2:
self.pos_drop.eval()
for i in range(0, self.frozen_stages - 1):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight)
def forward(self, x):
"""Forward function."""
x = self.patch_embed(x['image'])
_, _, Wh, Ww = x.shape
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(
self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
x = (x + absolute_pos_embed).flatten(2).transpose([0, 2, 1])
else:
x = x.flatten(2).transpose([0, 2, 1])
x = self.pos_drop(x)
outs = []
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x_out)
out = x_out.reshape((-1, H, W, self.num_features[i])).transpose(
(0, 3, 1, 2))
outs.append(out)
return tuple(outs)
@property
def out_shape(self):
out_strides = [4, 8, 16, 32]
return [
ShapeSpec(
channels=self.num_features[i], stride=out_strides[i])
for i in self.out_indices
]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册