Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
baef1124
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
baef1124
编写于
3月 14, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ParallelExecutor And dependency engine
上级
8f061e43
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
433 addition
and
23 deletion
+433
-23
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+337
-1
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+23
-22
paddle/fluid/platform/place.h
paddle/fluid/platform/place.h
+11
-0
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+14
-0
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+47
-0
未找到文件。
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
baef1124
...
...
@@ -13,7 +13,343 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "lod_tensor.h"
#include "op_registry.h"
namespace
paddle
{
namespace
framework
{}
// namespace framework
namespace
framework
{
struct
OpHandle
;
struct
VarHandle
{
size_t
version_
;
std
::
string
name_
;
platform
::
Place
place_
;
OpHandle
*
generated_op_
;
std
::
vector
<
OpHandle
*>
deps_ops_
;
};
struct
OpHandle
{
std
::
vector
<
VarHandle
*>
inputs_
;
std
::
vector
<
VarHandle
*>
outputs_
;
platform
::
DeviceContext
*
dev_ctx_
;
std
::
string
DebugString
()
{
std
::
stringstream
ss
;
ss
<<
"("
;
for
(
auto
*
var
:
inputs_
)
{
ss
<<
var
->
name_
<<
":"
<<
var
->
place_
<<
", "
;
}
ss
<<
") --> ("
;
for
(
auto
*
var
:
outputs_
)
{
ss
<<
var
->
name_
<<
":"
<<
var
->
place_
<<
", "
;
}
ss
<<
")
\n
"
;
return
ss
.
str
();
}
virtual
~
OpHandle
()
{}
};
struct
ComputationOpHandle
:
public
OpHandle
{
std
::
unique_ptr
<
OperatorBase
>
op_
;
explicit
ComputationOpHandle
(
const
OpDesc
&
op_desc
)
:
op_
(
framework
::
OpRegistry
::
CreateOp
(
op_desc
))
{}
};
struct
ScaleLossGradOpHandle
:
public
OpHandle
{};
struct
NCCLAllReduceOpHandle
:
public
OpHandle
{};
class
ParallelExecutorPrivate
{
public:
std
::
unordered_map
<
platform
::
Place
,
Scope
*
,
platform
::
PlaceHash
>
local_scopes_
;
std
::
unordered_map
<
platform
::
Place
,
platform
::
CUDADeviceContext
,
platform
::
PlaceHash
>
dev_ctxs_
;
platform
::
Place
main_place_
;
std
::
unordered_map
<
platform
::
Place
,
std
::
unordered_map
<
std
::
string
,
std
::
map
<
int
,
VarHandle
>>
,
platform
::
PlaceHash
>
vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
>>
ops_
;
};
// TODO(yy): Move this function somewhere
ncclDataType_t
ToNCCLDataType
(
std
::
type_index
type
)
{
// FIXME!!
return
ncclFloat
;
}
ParallelExecutor
::
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
ProgramDesc
&
startup_program
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
)
:
member_
(
new
ParallelExecutorPrivate
())
{
// Step 1. RunStartupProgram and Bcast the params to devs.
Executor
exe
(
places
[
0
]);
exe
.
Run
(
startup_program
,
scope
,
0
);
// Create local scopes
for
(
auto
&
place
:
places
)
{
member_
->
local_scopes_
[
place
]
=
&
scope
->
NewScope
();
}
member_
->
main_place_
=
places
[
0
];
// Bcast Parameters to all GPUs
if
(
platform
::
is_gpu_place
(
member_
->
main_place_
))
{
// Is CUDA
// BCastParamsToGPUs(startup_program);
}
// Startup Program has been run. All local scopes has correct parameters.
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
ConstructDependencyGraph
(
params
,
main_program
,
loss_var_name
);
}
void
ParallelExecutor
::
ConstructDependencyGraph
(
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
)
const
{
std
::
unordered_set
<
std
::
__cxx11
::
string
>
grads
;
for
(
auto
&
each_param
:
params
)
{
grads
.
insert
(
each_param
+
"@GRAD"
);
}
bool
is_forwarding
=
true
;
for
(
auto
*
op
:
main_program
.
Block
(
0
).
AllOps
())
{
bool
change_forward
=
false
;
if
(
!
is_forwarding
)
{
// FIXME(yy): Do not hard code like this
if
(
op
->
OutputArgumentNames
().
size
()
==
1
&&
op
->
OutputArgumentNames
()[
0
]
==
loss_var_name
+
"@GRAD"
)
{
continue
;
// Drop fill 1. for backward coeff;
}
}
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
member_
->
ops_
.
emplace_back
(
new
ComputationOpHandle
(
*
op
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
auto
var_names
=
op
->
InputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
auto
&
place
=
pair
.
first
;
VarHandle
*
var
=
GetVarHandle
(
each_var_name
,
place
);
op_handle
->
inputs_
.
emplace_back
(
var
);
var
->
deps_ops_
.
emplace_back
(
op_handle
);
}
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
auto
&
place
=
pair
.
first
;
GenerateVar
(
op_handle
,
each_var_name
,
place
);
}
if
(
is_forwarding
)
{
if
(
var_names
.
size
()
==
1
&&
var_names
[
0
]
==
loss_var_name
)
{
// Insert ScaleCost OpHandle
member_
->
ops_
.
emplace_back
(
new
ScaleLossGradOpHandle
());
op_handle
=
member_
->
ops_
.
back
().
get
();
auto
&
place
=
pair
.
first
;
VarHandle
*
loss
=
GetVarHandle
(
loss_var_name
,
place
);
loss
->
deps_ops_
.
emplace_back
(
op_handle
);
op_handle
->
inputs_
.
emplace_back
(
loss
);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
place
);
change_forward
=
true
;
LOG
(
INFO
)
<<
"Scale Loss "
<<
op_handle
->
DebugString
();
}
}
}
if
(
change_forward
)
{
is_forwarding
=
false
;
}
if
(
!
is_forwarding
)
{
auto
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
og
:
var_names
)
{
if
(
grads
.
count
(
og
)
!=
0
)
{
// is param grad
// Insert NCCL AllReduce Op
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
());
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
auto
&
place
=
pair
.
first
;
auto
&
vars
=
member_
->
vars_
[
place
][
og
];
if
(
vars
.
empty
())
{
// This device has no data. continue.
continue
;
}
auto
*
prev_grad
=
&
vars
[
vars
.
size
()
-
1
];
op_handle
->
inputs_
.
emplace_back
(
prev_grad
);
prev_grad
->
deps_ops_
.
emplace_back
(
op_handle
);
auto
&
var
=
vars
[
vars
.
size
()];
var
.
place_
=
place
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
og
;
var
.
version_
=
vars
.
size
()
-
1
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
}
}
}
}
}
void
ParallelExecutor
::
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
vars
=
member_
->
vars_
[
place
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
VarHandle
*
ParallelExecutor
::
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
var_holders
=
member_
->
vars_
[
place
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
void
ParallelExecutor
::
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
{
auto
*
main_scope
=
member_
->
local_scopes_
[
member_
->
main_place_
];
for
(
auto
*
var_desc
:
startup_program
.
Block
(
0
).
AllVars
())
{
if
(
var_desc
->
GetType
()
==
proto
::
VarType
::
LOD_TENSOR
)
{
auto
&
main_tensor
=
main_scope
->
FindVar
(
var_desc
->
Name
())
->
Get
<
LoDTensor
>
();
ncclDataType_t
data_type
=
ToNCCLDataType
(
main_tensor
.
type
());
auto
&
dims
=
main_tensor
.
dims
();
size_t
numel
=
main_tensor
.
numel
();
std
::
vector
<
std
::
pair
<
void
*
,
const
platform
::
DeviceContext
*>>
mems
;
mems
.
emplace_back
(
const_cast
<
void
*>
(
main_tensor
.
data
<
void
>
()),
new
platform
::
CUDADeviceContext
(
boost
::
get
<
platform
::
CUDAPlace
>
(
member_
->
main_place_
)));
for
(
auto
&
pair
:
member_
->
local_scopes_
)
{
if
(
pair
.
first
==
member_
->
main_place_
)
{
continue
;
}
auto
local_scope
=
pair
.
second
;
auto
*
t
=
local_scope
->
Var
(
var_desc
->
Name
())
->
GetMutable
<
LoDTensor
>
();
t
->
Resize
(
dims
);
mems
.
emplace_back
(
t
->
mutable_data
(
pair
.
first
,
main_tensor
.
type
()),
new
platform
::
CUDADeviceContext
(
boost
::
get
<
platform
::
CUDAPlace
>
(
pair
.
first
)));
}
// TODO(yy): Invoke ncclBCast here. mems, numel, data_type. The mems[0]
// is the src, rests are dests.
(
void
)(
data_type
);
(
void
)(
numel
);
// Free Communication Ctx
for
(
auto
&
pair
:
mems
)
{
// Release Communication Ctx
// FIXME: Store CUDA DevCtx to member. Since NCCL All Reduce will use
// this
delete
pair
.
second
;
}
}
}
}
std
::
vector
<
LoDTensor
>
ParallelExecutor
::
Run
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
)
{
// Version --> VarHandle
std
::
unordered_set
<
VarHandle
*>
pending_vars
;
std
::
unordered_map
<
OpHandle
*
,
size_t
>
pending_ops
;
for
(
auto
&
place_pair
:
member_
->
vars_
)
{
for
(
auto
&
name_pair
:
place_pair
.
second
)
{
for
(
auto
&
version_pair
:
name_pair
.
second
)
{
pending_vars
.
insert
(
&
version_pair
.
second
);
}
}
}
for
(
auto
&
op
:
member_
->
ops_
)
{
pending_ops
.
insert
({
op
.
get
(),
op
->
inputs_
.
size
()});
}
std
::
unordered_set
<
OpHandle
*>
complete_op
;
size_t
num_op
=
pending_ops
.
size
();
while
(
complete_op
.
size
()
!=
num_op
)
{
std
::
vector
<
VarHandle
*>
to_remove
;
for
(
auto
&
var
:
pending_vars
)
{
if
(
var
->
generated_op_
==
nullptr
||
complete_op
.
count
(
var
->
generated_op_
)
!=
0
)
{
to_remove
.
push_back
(
var
);
}
}
for
(
auto
*
var
:
to_remove
)
{
pending_vars
.
erase
(
var
);
}
std
::
vector
<
OpHandle
*>
to_run
;
for
(
auto
*
var
:
to_remove
)
{
for
(
auto
*
op
:
var
->
deps_ops_
)
{
if
(
var
->
name_
==
"mean_0.tmp_0@GRAD"
)
{
LOG
(
INFO
)
<<
op
->
DebugString
();
}
auto
&
num
=
pending_ops
[
op
];
--
num
;
if
(
num
==
0
)
{
to_run
.
emplace_back
(
op
);
}
}
}
for
(
auto
*
op
:
to_run
)
{
pending_ops
.
erase
(
op
);
complete_op
.
insert
(
op
);
}
if
(
to_run
.
empty
())
break
;
// TODO(yy): Use thead pool to run OpHandle. Operators in ToRun can be
// paralleled. We can also use another schedule method. Just a demo here.
std
::
stringstream
ss
;
ss
<<
"
\n
"
;
for
(
auto
*
op
:
to_run
)
{
ss
<<
op
->
DebugString
()
<<
"
\n
"
;
}
ss
<<
std
::
endl
;
LOG
(
INFO
)
<<
ss
.
str
();
}
PADDLE_ENFORCE_EQ
(
complete_op
.
size
(),
num_op
);
return
std
::
vector
<
LoDTensor
>
();
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.h
浏览文件 @
baef1124
...
...
@@ -28,32 +28,33 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
AllReduceCallBack
{
void
operator
()(
framework
::
OperatorBase
*
op
);
std
::
unordered_set
<
std
::
string
>
param_grad_names_
;
platform
::
DeviceContext
dev_ctx
;
};
class
ParallelExecutorPrivate
;
class
VarHandle
;
class
OpHandle
;
class
ParallelExecutor
{
public:
explicit
ParallelExecutor
(
const
std
::
vector
<
platform
::
Place
>&
places
,
const
std
::
unordered_set
&
params
);
/* @Brief
* Runtime evaluation of the given ProgramDesc under certain Scope
*
* @param
* ProgramDesc
* Scope
*/
void
Run
(
const
ProgramDesc
&
prog
,
Scope
*
scope
,
int
block_id
,
bool
create_local_scope
=
true
,
bool
create_vars
=
true
);
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
ProgramDesc
&
startup_program
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
);
std
::
vector
<
LoDTensor
>
Run
(
const
std
::
vector
<
std
::
string
>&
fetch_tensors
);
private:
std
::
vector
<
framework
::
Executor
>
exes_
;
std
::
vector
<
framework
::
Scope
*>
scopes_
;
std
::
vector
<
AllReduceCallBack
>
all_reduce_callbacks_
;
platform
::
Communicator
nccl_com_
;
ParallelExecutorPrivate
*
member_
;
void
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
ConstructDependencyGraph
(
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
)
const
;
};
}
// namespace framework
...
...
paddle/fluid/platform/place.h
浏览文件 @
baef1124
...
...
@@ -65,6 +65,17 @@ bool is_cpu_place(const Place &);
bool
places_are_same_class
(
const
Place
&
,
const
Place
&
);
bool
is_same_place
(
const
Place
&
,
const
Place
&
);
struct
PlaceHash
{
std
::
size_t
operator
()(
const
Place
&
p
)
const
{
std
::
hash
<
int
>
ihash
;
size_t
dev_id
=
0
;
if
(
is_gpu_place
(
p
))
{
dev_id
=
boost
::
get
<
CUDAPlace
>
(
p
).
device
;
}
return
ihash
(
dev_id
<<
2
|
p
.
which
());
}
};
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
const
Place
&
);
template
<
typename
Visitor
>
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
baef1124
...
...
@@ -2,6 +2,7 @@ if(WITH_PYTHON)
cc_library
(
paddle_pybind SHARED
SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
DEPS pybind python backward proto_desc paddle_memory executor prune init profiler feed_fetch_method
parallel_executor
${
GLOB_OP_LIB
}
)
if
(
NOT APPLE AND NOT ANDROID
)
target_link_libraries
(
paddle_pybind rt
)
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
baef1124
...
...
@@ -25,6 +25,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/parallel_executor.h"
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
...
...
@@ -488,6 +489,19 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"disable_profiler"
,
platform
::
DisableProfiler
);
m
.
def
(
"reset_profiler"
,
platform
::
ResetProfiler
);
py
::
class_
<
ParallelExecutor
>
(
m
,
"ParallelExecutor"
)
.
def
(
"__init__"
,
[](
ParallelExecutor
&
self
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
ProgramDesc
&
startup_program
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
)
{
new
(
&
self
)
ParallelExecutor
(
places
,
params
,
startup_program
,
main_program
,
loss_var_name
,
scope
);
})
.
def
(
"run"
,
[](
ParallelExecutor
&
self
)
{
self
.
Run
({});
});
BindRecordIOWriter
(
m
);
return
m
.
ptr
();
}
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
0 → 100644
浏览文件 @
baef1124
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.fluid
as
fluid
class
ParallelExecutor
(
unittest
.
TestCase
):
def
test_main
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
reader
=
fluid
.
layers
.
open_recordio_file
(
filename
=
'tmp'
,
shapes
=
[[
-
1
,
784
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
])
img
,
label
=
fluid
.
layers
.
read_file
(
reader
)
hidden
=
fluid
.
layers
.
fc
(
img
,
size
=
200
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
adam
=
fluid
.
optimizer
.
Adam
()
adam
.
minimize
(
loss
)
act_places
=
[]
for
each
in
[
fluid
.
CUDAPlace
(
0
),
fluid
.
CUDAPlace
(
1
)]:
p
=
fluid
.
core
.
Place
()
p
.
set_place
(
each
)
act_places
.
append
(
p
)
exe
=
fluid
.
core
.
ParallelExecutor
(
act_places
,
set
([
p
.
name
for
p
in
main
.
global_block
().
iter_parameters
()]),
startup
.
desc
,
main
.
desc
,
loss
.
name
,
fluid
.
global_scope
())
exe
.
run
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录