Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
ba868854
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ba868854
编写于
11月 17, 2017
作者:
T
Tao Luo
提交者:
GitHub
11月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5345 from luotao1/ProtoDataProvider
remove usused ProtoDataProvider related codes
上级
3375e3e2
e01b0941
变更
24
展开全部
显示空白变更内容
内联
并排
Showing
24 changed file
with
220 addition
and
2690 deletion
+220
-2690
paddle/gserver/CMakeLists.txt
paddle/gserver/CMakeLists.txt
+0
-1
paddle/gserver/dataproviders/DataProvider.cpp
paddle/gserver/dataproviders/DataProvider.cpp
+1
-3
paddle/gserver/dataproviders/ProtoDataProvider.cpp
paddle/gserver/dataproviders/ProtoDataProvider.cpp
+0
-932
paddle/gserver/dataproviders/ProtoDataProvider.h
paddle/gserver/dataproviders/ProtoDataProvider.h
+0
-179
paddle/gserver/tests/CMakeLists.txt
paddle/gserver/tests/CMakeLists.txt
+21
-11
paddle/gserver/tests/proto_files.txt
paddle/gserver/tests/proto_files.txt
+0
-2
paddle/gserver/tests/proto_files_compressed.txt
paddle/gserver/tests/proto_files_compressed.txt
+0
-2
paddle/gserver/tests/sequence_lstm.conf
paddle/gserver/tests/sequence_lstm.conf
+64
-0
paddle/gserver/tests/sequence_recurrent.py
paddle/gserver/tests/sequence_recurrent.py
+56
-0
paddle/gserver/tests/sequence_recurrent_group.py
paddle/gserver/tests/sequence_recurrent_group.py
+70
-0
paddle/gserver/tests/test_CompareSparse.cpp
paddle/gserver/tests/test_CompareSparse.cpp
+1
-2
paddle/gserver/tests/test_CompareTwoNets.cpp
paddle/gserver/tests/test_CompareTwoNets.cpp
+7
-4
paddle/gserver/tests/test_ProtoDataProvider.cpp
paddle/gserver/tests/test_ProtoDataProvider.cpp
+0
-732
paddle/trainer/tests/CMakeLists.txt
paddle/trainer/tests/CMakeLists.txt
+0
-28
paddle/trainer/tests/mnist.list
paddle/trainer/tests/mnist.list
+0
-1
paddle/trainer/tests/mnist_bin_part
paddle/trainer/tests/mnist_bin_part
+0
-0
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data
...vider_wrapper_dir/test_pydata_provider_wrapper.proto_data
+0
-0
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist
...ovider_wrapper_dir/test_pydata_provider_wrapper.protolist
+0
-1
paddle/trainer/tests/sample_trainer_config_compare_sparse.conf
...e/trainer/tests/sample_trainer_config_compare_sparse.conf
+0
-154
paddle/trainer/tests/sample_trainer_config_qb_rnn.conf
paddle/trainer/tests/sample_trainer_config_qb_rnn.conf
+0
-154
paddle/trainer/tests/sample_trainer_config_rnn.conf
paddle/trainer/tests/sample_trainer_config_rnn.conf
+0
-180
paddle/trainer/tests/testPyDataWrapper.py
paddle/trainer/tests/testPyDataWrapper.py
+0
-24
paddle/trainer/tests/test_CompareTwoOpts.cpp
paddle/trainer/tests/test_CompareTwoOpts.cpp
+0
-184
paddle/trainer/tests/test_PyDataProviderWrapper.cpp
paddle/trainer/tests/test_PyDataProviderWrapper.cpp
+0
-96
未找到文件。
paddle/gserver/CMakeLists.txt
浏览文件 @
ba868854
...
...
@@ -73,7 +73,6 @@ if(MOBILE_INFERENCE)
list
(
REMOVE_ITEM GSERVER_SOURCES
dataproviders/DataProvider.cpp
dataproviders/MultiDataProvider.cpp
dataproviders/ProtoDataProvider.cpp
dataproviders/PyDataProvider2.cpp
dataproviders/PyDataProvider.cpp
)
...
...
paddle/gserver/dataproviders/DataProvider.cpp
浏览文件 @
ba868854
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include <unistd.h>
#include <algorithm>
#include "ProtoDataProvider.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/StringUtil.h"
#include "paddle/utils/Util.h"
...
...
@@ -164,8 +164,6 @@ DataProvider* DataProvider::create(const DataConfig& config,
REGISTER_DATA_PROVIDER
(
simple
,
SimpleDataProvider
);
REGISTER_DATA_PROVIDER
(
dummy
,
DummyDataProvider
);
REGISTER_DATA_PROVIDER
(
proto
,
ProtoDataProvider
);
REGISTER_DATA_PROVIDER
(
proto_sequence
,
ProtoSequenceDataProvider
);
int64_t
DataProvider
::
getNextBatch
(
int64_t
size
,
DataBatch
*
batch
)
{
int64_t
batchSize
=
doubleBuffer_
?
getNextBatchFromBuffer
(
size
,
batch
)
...
...
paddle/gserver/dataproviders/ProtoDataProvider.cpp
已删除
100644 → 0
浏览文件 @
3375e3e2
此差异已折叠。
点击以展开。
paddle/gserver/dataproviders/ProtoDataProvider.h
已删除
100644 → 0
浏览文件 @
3375e3e2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "DataFormat.pb.h"
#include "paddle/utils/Stat.h"
#include "DataProvider.h"
#include "ProtoReader.h"
namespace
paddle
{
/**
* @brief Provider data from protobuf data file with each sample
* specified by proto message
*
* DataSample defined in DataFormat.proto.
*
* The file format is
*
* header
*
* sample1
*
* sample2
*
* ...
*
* sampleN
*
* @note: In the data file, each message is prefixed with its length.
* The read/write of the protbuf are implemented in ProtoReader.h
*/
class
ProtoDataProvider
:
public
DataProvider
{
public:
ProtoDataProvider
(
const
DataConfig
&
config
,
bool
useGpu
,
bool
loadDataAll
=
true
);
virtual
void
reset
();
/**
* @note this size includes the sequences which are skipped because they
* are longer than the batch size.
*/
virtual
int64_t
getSize
()
{
int64_t
size
=
sampleNums_
;
if
(
usageRatio_
<
1.0
f
)
{
size
=
static_cast
<
int64_t
>
(
size
*
usageRatio_
);
}
return
size
;
}
virtual
void
shuffle
();
void
loadData
(
const
std
::
vector
<
std
::
string
>&
fileList
);
virtual
int64_t
getNextBatchInternal
(
int64_t
size
,
DataBatch
*
batch
);
protected:
/**
* @brief load protobuf data from a list of file
* @param[in] fileName file name of a file which contains
* a list of file names
*/
void
loadData
(
const
std
::
string
&
fileName
);
/**
* @brief load protobuf data from file
* @param[in] fileName data file name
*/
void
loadDataFile
(
const
std
::
string
&
fileName
);
/** @brief check data header of each data sample
* @param[in] header data header read from protobuf data
*/
void
checkDataHeader
(
const
DataHeader
&
header
);
/**
* @brief fill protobuf data into slot_,
* slot_ is a vector of ProtoSlot in memory.
* @param[in] sample data sample read from protobuf data
*/
void
fillSlots
(
const
DataSample
&
sample
);
/**
* @brief return true if each sample is one sequence, i.e., independent
* of other samples.
*/
inline
bool
iidData
()
const
{
return
sequenceStartPositions_
.
empty
();
}
/**
* @brief check that sample is consistent with header_
*/
void
checkSample
(
const
DataSample
&
sample
);
template
<
class
Op
>
int64_t
sequenceLoop
(
Op
op
,
int64_t
size
);
template
<
class
Op
>
int64_t
sampleLoop
(
Op
op
,
int64_t
size
);
template
<
class
Op
>
int64_t
subSampleLoop
(
Op
op
,
int64_t
size
,
int
slot
);
void
showDataStats
();
protected:
struct
ProtoVarSlot
{
std
::
vector
<
real
>
data
;
std
::
vector
<
int
>
dims
;
};
struct
ProtoSlot
{
SlotDef
::
SlotType
type
;
int
dim
;
std
::
vector
<
int
>
indexData
;
std
::
vector
<
real
>
denseData
;
std
::
vector
<
sparse_non_value_t
>
sparseNonValueData
;
std
::
vector
<
sparse_float_value_t
>
sparseFloatValueData
;
std
::
vector
<
int64_t
>
indices
;
std
::
vector
<
int64_t
>
subIndices
;
std
::
vector
<
ProtoVarSlot
>
varDenseData
;
std
::
vector
<
std
::
vector
<
int
>>
varIndices
;
std
::
vector
<
std
::
string
>
strData
;
};
DataHeader
header_
;
int
numVecSlots_
;
std
::
vector
<
ProtoSlot
>
slots_
;
size_t
sampleNums_
;
/**
* The starting position of each sequence in samples.
* The last element should be num of samples.
* If empty, each sample is one sequence.
*/
std
::
vector
<
size_t
>
sequenceStartPositions_
;
int64_t
currentSequenceIndex_
;
// The size should be the number of sequences.
std
::
vector
<
size_t
>
shuffledSequenceIds_
;
ThreadLocalD
<
DataBatch
>
cpuBatch_
;
ThreadLocalD
<
DataBatch
>
gpuBatch_
;
RWLock
lock_
;
std
::
vector
<
StatPtr
>
nnzStats_
;
// stats for number of none-zeros entries
};
/**
* @brief Special use for Proto data: instances should contain sparse-non-value
* slots
* and label.
*
* @note ProtoSequenceDataProvider treats each SPARSE SLOT as a SEQUENCE
*/
class
ProtoSequenceDataProvider
:
public
ProtoDataProvider
{
public:
ProtoSequenceDataProvider
(
const
DataConfig
&
config
,
bool
useGpu
,
bool
loadDataAll
=
true
);
~
ProtoSequenceDataProvider
()
{}
virtual
int64_t
getNextBatchInternal
(
int64_t
size
,
DataBatch
*
batch
);
};
}
// namespace paddle
paddle/gserver/tests/CMakeLists.txt
浏览文件 @
ba868854
...
...
@@ -62,17 +62,6 @@ if(NOT WITH_DOUBLE AND NOT MOBILE_INFERENCE)
endif
()
if
(
NOT MOBILE_INFERENCE
)
################### test_ProtoDataProvider ############
add_unittest_without_exec
(
test_ProtoDataProvider
test_ProtoDataProvider.cpp
)
# test_ProtoDataProvider will mkdir as same name,
# so if WORKING_DIRECTORY is default directory, then
# mkdir will get error.
add_test
(
NAME test_ProtoDataProvider
COMMAND
${
CMAKE_CURRENT_BINARY_DIR
}
/test_ProtoDataProvider
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle
)
################## test_Evaluator #######################
add_unittest
(
test_Evaluator
test_Evaluator.cpp
)
...
...
@@ -110,3 +99,24 @@ add_test(NAME test_PyDataProvider2
COMMAND .set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/paddle/gserver/tests:
${
PADDLE_SOURCE_DIR
}
/python
${
CMAKE_CURRENT_BINARY_DIR
}
/test_PyDataProvider2
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle
)
################# test_CompareSparse ##################
add_unittest_without_exec
(
test_CompareSparse
test_CompareSparse.cpp
)
if
(
NOT ON_TRAVIS
)
add_test
(
NAME test_CompareSparse
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python:
${
PADDLE_SOURCE_DIR
}
/paddle/gserver/tests
./.set_port.sh -p port -n 6
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareSparse
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
endif
()
################ test_CompareTwoNets ######################
add_unittest_without_exec
(
test_CompareTwoNets
test_CompareTwoNets.cpp
)
add_test
(
NAME test_CompareTwoNets
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python:
${
PADDLE_SOURCE_DIR
}
/paddle/gserver/tests
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareTwoNets
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
paddle/gserver/tests/proto_files.txt
已删除
100644 → 0
浏览文件 @
3375e3e2
./test_ProtoDataProvider/data1.bin
./test_ProtoDataProvider/data2.bin
paddle/gserver/tests/proto_files_compressed.txt
已删除
100644 → 0
浏览文件 @
3375e3e2
./test_ProtoDataProvider/data1.bin.gz
./test_ProtoDataProvider/data2.bin.gz
paddle/
trainer/tests/sample_trainer_config_opt_b
.conf
→
paddle/
gserver/tests/sequence_lstm
.conf
浏览文件 @
ba868854
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -14,27 +15,50 @@
from
paddle
.
trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
1000
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
######################## data source ################################
dict_path
=
'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file
=
dict
()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()] =
line_count
fc1
=
fc_layer
(
input
=
data
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
define_py_data_sources2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
={
"dict_file"
:
dict_file
})
fc2
=
fc_layer
(
input
=
fc1
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
settings
(
batch_size
=
5
)
######################## network configure ################################
dict_dim
=
len
(
open
(
dict_path
,
'r'
).
readlines
())
word_dim
=
128
hidden_dim
=
256
label_dim
=
3
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
output
=
fc_layer
(
input
=[
fc1
,
fc2
],
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
data
=
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
1
)
emb
=
embedding_layer
(
input
=
data
,
size
=
word_dim
,
param_attr
=
ParamAttr
(
sparse_update
=
sparse_update
))
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
with
mixed_layer
(
size
=
hidden_dim
*
4
)
as
lstm_input
:
lstm_input
+=
full_matrix_projection
(
input
=
emb
)
lstm
=
lstmemory
(
input
=
lstm_input
,
act
=
TanhActivation
(),
gate_act
=
SigmoidActivation
(),
state_act
=
TanhActivation
())
lstm_last
=
last_seq
(
input
=
lstm
)
with
mixed_layer
(
size
=
label_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
True
)
as
output
:
output
+=
full_matrix_projection
(
input
=
lstm_last
)
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
name
=
"label"
,
size
=
1
)))
paddle/
trainer/tests/sample_trainer_config_opt_a.conf
→
paddle/
gserver/tests/sequence_recurrent.py
浏览文件 @
ba868854
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
...
...
@@ -14,27 +15,42 @@
from
paddle.trainer_config_helpers
import
*
################################### Data Configuration ###################################
TrainData
(
ProtoData
(
files
=
"trainer/tests/mnist.list"
))
################################### Algorithm Configuration ###################################
settings
(
batch_size
=
1000
,
learning_method
=
MomentumOptimizer
(
momentum
=
0
.
5
,
sparse
=
False
))
################################### Network Configuration ###################################
data
=
data_layer
(
name
=
"input"
,
size
=
784
)
######################## data source ################################
dict_path
=
'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file
=
dict
()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()]
=
line_count
fc1
=
fc_layer
(
input
=
data
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
define_py_data_sources2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
=
{
"dict_file"
:
dict_file
})
fc2
=
fc_layer
(
input
=
fc1
,
size
=
800
,
bias_attr
=
True
,
act
=
SigmoidActivation
())
settings
(
batch_size
=
5
)
######################## network configure ################################
dict_dim
=
len
(
open
(
dict_path
,
'r'
).
readlines
())
word_dim
=
128
hidden_dim
=
128
label_dim
=
3
output
=
fc_layer
(
input
=[
fc1
,
fc2
],
size
=
10
,
bias_attr
=
True
,
act
=
SoftmaxActivation
())
# This config is designed to be equivalent with sequence_recurrent_group.py
lbl
=
data_layer
(
name
=
"label"
,
size
=
1
)
data
=
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
cost
=
classification_cost
(
input
=
output
,
label
=
lbl
)
outputs
(
cost
)
emb
=
embedding_layer
(
input
=
data
,
size
=
word_dim
,
param_attr
=
ParamAttr
(
name
=
"emb"
))
recurrent
=
recurrent_layer
(
input
=
emb
,
bias_attr
=
False
,
act
=
SoftmaxActivation
())
recurrent_last
=
last_seq
(
input
=
recurrent
)
with
mixed_layer
(
size
=
label_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
True
)
as
output
:
output
+=
full_matrix_projection
(
input
=
recurrent_last
)
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
name
=
"label"
,
size
=
1
)))
paddle/gserver/tests/sequence_recurrent_group.py
0 → 100644
浏览文件 @
ba868854
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
######################## data source ################################
dict_path
=
'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file
=
dict
()
for
line_count
,
line
in
enumerate
(
open
(
dict_path
,
"r"
)):
dict_file
[
line
.
strip
()]
=
line_count
define_py_data_sources2
(
train_list
=
'gserver/tests/Sequence/train.list'
,
test_list
=
None
,
module
=
'sequenceGen'
,
obj
=
'process'
,
args
=
{
"dict_file"
:
dict_file
})
settings
(
batch_size
=
5
)
######################## network configure ################################
dict_dim
=
len
(
open
(
dict_path
,
'r'
).
readlines
())
word_dim
=
128
hidden_dim
=
128
label_dim
=
3
# This config is designed to be equivalent with sequence_recurrent.py
data
=
data_layer
(
name
=
"word"
,
size
=
dict_dim
)
emb
=
embedding_layer
(
input
=
data
,
size
=
word_dim
,
param_attr
=
ParamAttr
(
name
=
"emb"
))
def
step
(
y
):
mem
=
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
with
mixed_layer
(
name
=
"rnn_state"
,
size
=
hidden_dim
,
bias_attr
=
False
,
act
=
SoftmaxActivation
())
as
out
:
out
+=
identity_projection
(
input
=
y
)
out
+=
full_matrix_projection
(
input
=
mem
,
param_attr
=
ParamAttr
(
name
=
"___recurrent_layer_0__"
))
return
out
recurrent
=
recurrent_group
(
name
=
"rnn"
,
step
=
step
,
input
=
emb
)
recurrent_last
=
last_seq
(
input
=
recurrent
)
with
mixed_layer
(
size
=
label_dim
,
act
=
SoftmaxActivation
(),
bias_attr
=
True
)
as
output
:
output
+=
full_matrix_projection
(
input
=
recurrent_last
)
outputs
(
classification_cost
(
input
=
output
,
label
=
data_layer
(
name
=
"label"
,
size
=
1
)))
paddle/
train
er/tests/test_CompareSparse.cpp
→
paddle/
gserv
er/tests/test_CompareSparse.cpp
浏览文件 @
ba868854
...
...
@@ -22,8 +22,7 @@ limitations under the License. */
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
static
const
string
&
configFile1
=
"trainer/tests/sample_trainer_config_compare_sparse.conf"
;
static
const
string
&
configFile1
=
"gserver/tests/sequence_lstm.conf"
;
DECLARE_bool
(
use_gpu
);
DECLARE_string
(
config
);
...
...
paddle/
train
er/tests/test_CompareTwoNets.cpp
→
paddle/
gserv
er/tests/test_CompareTwoNets.cpp
浏览文件 @
ba868854
...
...
@@ -30,8 +30,6 @@ DECLARE_bool(use_gpu);
DECLARE_string
(
config
);
DECLARE_string
(
nics
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_bool
(
need_high_accuracy
,
false
,
"whether need to run in double accuracy"
);
...
...
@@ -42,6 +40,10 @@ DEFINE_double(
DECLARE_bool
(
thread_local_rand_use_global_seed
);
DECLARE_int32
(
seed
);
static
const
string
&
config_file_a
=
"gserver/tests/sequence_recurrent.py"
;
static
const
string
&
config_file_b
=
"gserver/tests/sequence_recurrent_group.py"
;
struct
ComData
{
vector
<
Argument
>
outArgs
;
vector
<
ParameterPtr
>
parameters
;
...
...
@@ -66,6 +68,7 @@ void calcGradient(ComData& data, const string configFile) {
DataBatch
dataBatch
;
int32_t
batchSize
=
trainer
.
getConfig
().
opt_config
().
batch_size
();
trainer
.
getDataProvider
()
->
reset
();
trainer
.
getDataProvider
()
->
setSkipShuffle
();
trainer
.
getDataProvider
()
->
getNextBatch
(
batchSize
,
&
dataBatch
);
...
...
@@ -167,11 +170,11 @@ void compareGradient(ComData& comDataA, ComData& comDataB) {
TEST
(
Trainer
,
create
)
{
ComData
dataA
;
calcGradient
(
dataA
,
FLAGS_
config_file_a
);
calcGradient
(
dataA
,
config_file_a
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of Network A is finished
\n\n
"
;
ComData
dataB
;
calcGradient
(
dataB
,
FLAGS_
config_file_b
);
calcGradient
(
dataB
,
config_file_b
);
LOG
(
INFO
)
<<
"
\n\n
forwardBackward of the Network B is finished
\n\n
"
;
compareGradient
(
dataA
,
dataB
);
...
...
paddle/gserver/tests/test_ProtoDataProvider.cpp
已删除
100644 → 0
浏览文件 @
3375e3e2
此差异已折叠。
点击以展开。
paddle/trainer/tests/CMakeLists.txt
浏览文件 @
ba868854
...
...
@@ -28,35 +28,7 @@ if(WITH_PYTHON)
${
PADDLE_SOURCE_DIR
}
/paddle/.set_port.sh -p port
${
CMAKE_CURRENT_BINARY_DIR
}
/test_TrainerOnePass
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
endif
()
################ test_CompareTwoNets ######################
add_unittest_without_exec
(
test_CompareTwoNets
test_CompareTwoNets.cpp
)
add_test
(
NAME test_CompareTwoNets
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python/
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
############### test_CompareTwoOpts ###################
add_unittest_without_exec
(
test_CompareTwoOpts
test_CompareTwoOpts.cpp
)
add_test
(
NAME test_CompareTwoOpts
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python/
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareTwoOpts
--config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf
--num_passes=1 --need_high_accuracy=0
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
################# test_CompareSparse ##################
add_unittest_without_exec
(
test_CompareSparse
test_CompareSparse.cpp
)
if
(
NOT ON_TRAVIS
)
add_test
(
NAME test_CompareSparse
COMMAND
${
PADDLE_SOURCE_DIR
}
/paddle/.set_python_path.sh -d
${
PADDLE_SOURCE_DIR
}
/python/
./.set_port.sh -p port -n 6
${
CMAKE_CURRENT_BINARY_DIR
}
/test_CompareSparse
WORKING_DIRECTORY
${
PADDLE_SOURCE_DIR
}
/paddle/
)
endif
()
################# test_recurrent_machine_generation ###############
add_unittest_without_exec
(
test_recurrent_machine_generation
test_recurrent_machine_generation.cpp
)
...
...
paddle/trainer/tests/mnist.list
已删除
100644 → 0
浏览文件 @
3375e3e2
trainer/tests/mnist_bin_part
paddle/trainer/tests/mnist_bin_part
已删除
100644 → 0
浏览文件 @
3375e3e2
文件已删除
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data
已删除
100644 → 0
浏览文件 @
3375e3e2
文件已删除
paddle/trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.protolist
已删除
100644 → 0
浏览文件 @
3375e3e2
./trainer/tests/pydata_provider_wrapper_dir/test_pydata_provider_wrapper.proto_data
paddle/trainer/tests/sample_trainer_config_compare_sparse.conf
已删除
100644 → 0
浏览文件 @
3375e3e2
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
# Note: when making change to this file, please make sure
# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)
default_initial_std
(
0
.
1
)
default_device
(
0
)
word_dim
=
999
l1
=
0
l2
=
0
model_type
(
"nn"
)
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
TrainData
(
ProtoData
(
type
=
"proto_sequence"
,
files
= (
'trainer/tests/train_sparse.list'
),
))
Settings
(
algorithm
=
'sgd'
,
batch_size
=
100
,
learning_rate
=
0
.
0001
,
learning_rate_decay_a
=
4
e
-
08
,
learning_rate_decay_b
=
0
.
0
,
learning_rate_schedule
=
'poly'
,
)
wordvec_dim
=
32
layer2_dim
=
16
layer3_dim
=
16
hidden_dim
=
32
slot_names
= [
"qb"
,
"qw"
,
"tb"
,
"tw"
]
def
ltr_network
(
network_name
,
word_dim
=
word_dim
,
wordvec_dim
=
wordvec_dim
,
layer2_dim
=
layer2_dim
,
layer3_dim
=
layer3_dim
,
hidden_dim
=
hidden_dim
,
slot_names
=
slot_names
,
l1
=
l1
,
l2
=
l2
):
slotnum
=
len
(
slot_names
)
for
i
in
xrange
(
slotnum
):
Inputs
(
slot_names
[
i
] +
network_name
)
for
i
in
xrange
(
slotnum
):
Layer
(
name
=
slot_names
[
i
] +
network_name
,
type
=
"data"
,
size
=
word_dim
,
device
= -
1
,
)
Layer
(
name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
type
=
"mixed"
,
size
=
wordvec_dim
,
bias
=
False
,
device
= -
1
,
inputs
=
TableProjection
(
slot_names
[
i
] +
network_name
,
parameter_name
=
"embedding.w0"
,
decay_rate_l1
=
l1
,
sparse_remote_update
=
True
,
sparse_update
=
sparse_update
,
),
)
Layer
(
name
=
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
type
=
"recurrent"
,
active_type
=
"tanh"
,
bias
=
Bias
(
initial_std
=
0
,
parameter_name
=
"rnn1.bias"
),
inputs
=
Input
(
slot_names
[
i
] +
"_embedding_"
+
network_name
,
parameter_name
=
"rnn1.w0"
)
)
Layer
(
name
=
slot_names
[
i
] +
"_rnnlast_"
+
network_name
,
type
=
"seqlastins"
,
inputs
= [
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
],
)
Layer
(
name
=
"layer2_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer2_dim
,
bias
=
Bias
(
parameter_name
=
"layer2.bias"
),
inputs
= [
Input
(
slot_name
+
"_rnnlast_"
+
network_name
,
parameter_name
=
"_layer2_"
+
slot_name
+
".w"
,
decay_rate
=
l2
,
initial_smart
=
True
)
for
slot_name
in
slot_names
]
)
Layer
(
name
=
"layer3_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer3_dim
,
bias
=
Bias
(
parameter_name
=
"layer3.bias"
),
inputs
= [
Input
(
"layer2_"
+
network_name
,
parameter_name
=
"_layer3.w"
,
decay_rate
=
l2
,
initial_smart
=
True
),
]
)
Layer
(
name
=
"output_"
+
network_name
,
type
=
"fc"
,
size
=
1
,
bias
=
False
,
inputs
= [
Input
(
"layer3_"
+
network_name
,
parameter_name
=
"_layerO.w"
),
],
)
ltr_network
(
"left"
)
ltr_network
(
"right"
)
Inputs
(
"label"
)
Layer
(
name
=
"label"
,
type
=
"data"
,
size
=
1
,
)
Outputs
(
"cost"
,
"qb_rnnlast_left"
)
Layer
(
name
=
"cost"
,
type
=
"rank-cost"
,
inputs
= [
"output_left"
,
"output_right"
,
"label"
],
)
paddle/trainer/tests/sample_trainer_config_qb_rnn.conf
已删除
100644 → 0
浏览文件 @
3375e3e2
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
# Note: when making change to this file, please make sure
# sample_trainer_config_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)
default_initial_std
(
0
.
1
)
default_device
(
0
)
word_dim
=
1451594
l1
=
0
l2
=
0
model_type
(
"nn"
)
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
TrainData
(
ProtoData
(
type
=
"proto_sequence"
,
files
= (
'trainer/tests/train.list'
),
))
Settings
(
algorithm
=
'sgd'
,
batch_size
=
100
,
learning_rate
=
0
.
0001
,
learning_rate_decay_a
=
4
e
-
08
,
learning_rate_decay_b
=
0
.
0
,
learning_rate_schedule
=
'poly'
,
)
wordvec_dim
=
128
layer2_dim
=
96
layer3_dim
=
96
hidden_dim
=
128
slot_names
= [
"qb"
,
"qw"
,
"tb"
,
"tw"
]
def
ltr_network
(
network_name
,
word_dim
=
word_dim
,
wordvec_dim
=
wordvec_dim
,
layer2_dim
=
layer2_dim
,
layer3_dim
=
layer3_dim
,
hidden_dim
=
hidden_dim
,
slot_names
=
slot_names
,
l1
=
l1
,
l2
=
l2
):
slotnum
=
len
(
slot_names
)
for
i
in
xrange
(
slotnum
):
Inputs
(
slot_names
[
i
] +
network_name
)
for
i
in
xrange
(
slotnum
):
Layer
(
name
=
slot_names
[
i
] +
network_name
,
type
=
"data"
,
size
=
word_dim
,
device
= -
1
,
)
Layer
(
name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
type
=
"mixed"
,
size
=
wordvec_dim
,
bias
=
False
,
device
= -
1
,
inputs
=
TableProjection
(
slot_names
[
i
] +
network_name
,
parameter_name
=
"embedding.w0"
,
decay_rate_l1
=
l1
,
sparse_remote_update
=
True
,
sparse_update
=
sparse_update
,
),
)
Layer
(
name
=
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
type
=
"recurrent"
,
active_type
=
"tanh"
,
bias
=
Bias
(
initial_std
=
0
,
parameter_name
=
"rnn1.bias"
),
inputs
=
Input
(
slot_names
[
i
] +
"_embedding_"
+
network_name
,
parameter_name
=
"rnn1.w0"
)
)
Layer
(
name
=
slot_names
[
i
] +
"_rnnlast_"
+
network_name
,
type
=
"seqlastins"
,
inputs
= [
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
],
)
Layer
(
name
=
"layer2_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer2_dim
,
bias
=
Bias
(
parameter_name
=
"layer2.bias"
),
inputs
= [
Input
(
slot_name
+
"_rnnlast_"
+
network_name
,
parameter_name
=
"_layer2_"
+
slot_name
+
".w"
,
decay_rate
=
l2
,
initial_smart
=
True
)
for
slot_name
in
slot_names
]
)
Layer
(
name
=
"layer3_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer3_dim
,
bias
=
Bias
(
parameter_name
=
"layer3.bias"
),
inputs
= [
Input
(
"layer2_"
+
network_name
,
parameter_name
=
"_layer3.w"
,
decay_rate
=
l2
,
initial_smart
=
True
),
]
)
Layer
(
name
=
"output_"
+
network_name
,
type
=
"fc"
,
size
=
1
,
bias
=
False
,
inputs
= [
Input
(
"layer3_"
+
network_name
,
parameter_name
=
"_layerO.w"
),
],
)
ltr_network
(
"left"
)
ltr_network
(
"right"
)
Inputs
(
"label"
)
Layer
(
name
=
"label"
,
type
=
"data"
,
size
=
1
,
)
Outputs
(
"cost"
,
"qb_rnnlast_left"
)
Layer
(
name
=
"cost"
,
type
=
"rank-cost"
,
inputs
= [
"output_left"
,
"output_right"
,
"label"
],
)
paddle/trainer/tests/sample_trainer_config_rnn.conf
已删除
100644 → 0
浏览文件 @
3375e3e2
#edit-mode: -*- python -*-
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later.
# Note: when making change to this file, please make sure
# sample_trainer_config_qb_rnn.conf is changed accordingly so that the uniitest
# for comparing these two nets can pass (test_CompareTwoNets)
default_initial_std
(
0
.
1
)
default_device
(
0
)
word_dim
=
1451594
l1
=
0
l2
=
0
model_type
(
"recurrent_nn"
)
sparse_update
=
get_config_arg
(
"sparse_update"
,
bool
,
False
)
TrainData
(
ProtoData
(
type
=
"proto_sequence"
,
files
= (
'trainer/tests/train.list'
),
))
Settings
(
algorithm
=
'sgd'
,
batch_size
=
100
,
learning_rate
=
0
.
0001
,
learning_rate_decay_a
=
4
e
-
08
,
learning_rate_decay_b
=
0
.
0
,
learning_rate_schedule
=
'poly'
,
)
wordvec_dim
=
128
layer2_dim
=
96
layer3_dim
=
96
hidden_dim
=
128
slot_names
= [
"qb"
,
"qw"
,
"tb"
,
"tw"
]
def
SimpleRecurrentLayer
(
name
,
size
,
active_type
,
bias
,
input_layer_name
,
parameter_name
,
seq_reversed
=
False
):
RecurrentLayerGroupBegin
(
name
+
"_layer_group"
,
in_links
=[
input_layer_name
],
out_links
=[
name
],
seq_reversed
=
seq_reversed
)
memory_name
=
Memory
(
name
=
name
,
size
=
size
)
Layer
(
name
=
name
,
type
=
"mixed"
,
size
=
size
,
active_type
=
active_type
,
bias
=
bias
,
inputs
= [
IdentityProjection
(
input_layer_name
),
FullMatrixProjection
(
memory_name
,
parameter_name
=
parameter_name
,
),
]
)
RecurrentLayerGroupEnd
(
name
+
"_layer_group"
)
def
ltr_network
(
network_name
,
word_dim
=
word_dim
,
wordvec_dim
=
wordvec_dim
,
layer2_dim
=
layer2_dim
,
layer3_dim
=
layer3_dim
,
hidden_dim
=
hidden_dim
,
slot_names
=
slot_names
,
l1
=
l1
,
l2
=
l2
):
slotnum
=
len
(
slot_names
)
for
i
in
xrange
(
slotnum
):
Inputs
(
slot_names
[
i
] +
network_name
)
for
i
in
xrange
(
slotnum
):
Layer
(
name
=
slot_names
[
i
] +
network_name
,
type
=
"data"
,
size
=
word_dim
,
device
= -
1
,
)
Layer
(
name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
type
=
"mixed"
,
size
=
wordvec_dim
,
bias
=
False
,
device
= -
1
,
inputs
=
TableProjection
(
slot_names
[
i
] +
network_name
,
parameter_name
=
"embedding.w0"
,
decay_rate_l1
=
l1
,
sparse_remote_update
=
True
,
sparse_update
=
sparse_update
,
),
)
SimpleRecurrentLayer
(
name
=
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
size
=
hidden_dim
,
active_type
=
"tanh"
,
bias
=
Bias
(
initial_std
=
0
,
parameter_name
=
"rnn1.bias"
),
input_layer_name
=
slot_names
[
i
] +
"_embedding_"
+
network_name
,
parameter_name
=
"rnn1.w0"
,
)
Layer
(
name
=
slot_names
[
i
] +
"_rnnlast_"
+
network_name
,
type
=
"seqlastins"
,
inputs
= [
slot_names
[
i
] +
"_rnn1_"
+
network_name
,
],
)
Layer
(
name
=
"layer2_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer2_dim
,
bias
=
Bias
(
parameter_name
=
"layer2.bias"
),
inputs
= [
Input
(
slot_name
+
"_rnnlast_"
+
network_name
,
parameter_name
=
"_layer2_"
+
slot_name
+
".w"
,
decay_rate
=
l2
,
initial_smart
=
True
)
for
slot_name
in
slot_names
]
)
Layer
(
name
=
"layer3_"
+
network_name
,
type
=
"fc"
,
active_type
=
"tanh"
,
size
=
layer3_dim
,
bias
=
Bias
(
parameter_name
=
"layer3.bias"
),
inputs
= [
Input
(
"layer2_"
+
network_name
,
parameter_name
=
"_layer3.w"
,
decay_rate
=
l2
,
initial_smart
=
True
),
]
)
Layer
(
name
=
"output_"
+
network_name
,
type
=
"fc"
,
size
=
1
,
bias
=
False
,
inputs
= [
Input
(
"layer3_"
+
network_name
,
parameter_name
=
"_layerO.w"
),
],
)
ltr_network
(
"left"
)
ltr_network
(
"right"
)
Inputs
(
"label"
)
Layer
(
name
=
"label"
,
type
=
"data"
,
size
=
1
,
)
Outputs
(
"cost"
,
"qb_rnnlast_left"
)
Layer
(
name
=
"cost"
,
type
=
"rank-cost"
,
inputs
= [
"output_left"
,
"output_right"
,
"label"
],
)
paddle/trainer/tests/testPyDataWrapper.py
浏览文件 @
ba868854
...
...
@@ -20,28 +20,6 @@ import random
import
json
import
string
@
provider
(
slots
=
[
SparseNonValueSlot
(
10
),
DenseSlot
(
2
),
SparseValueSlot
(
10
),
StringSlot
(
1
),
IndexSlot
(
3
)
])
def
processNonSequenceData
(
obj
,
filename
):
with
open
(
filename
,
"rb"
)
as
f
:
for
line
in
f
:
slots_str
=
line
.
split
(
';'
)
index
=
int
(
slots_str
[
0
])
non_values
=
map
(
int
,
slots_str
[
1
].
split
()[
1
:])
dense
=
map
(
float
,
slots_str
[
2
].
split
()[
1
:])
strs
=
slots_str
[
4
].
strip
().
split
(
' '
,
1
)[
1
]
def
__values_mapper__
(
s
):
s
=
s
.
split
(
":"
)
return
int
(
s
[
0
]),
float
(
s
[
1
])
values
=
map
(
__values_mapper__
,
slots_str
[
3
].
split
()[
1
:])
yield
[
non_values
,
dense
,
values
,
strs
,
index
]
SPARSE_ID_LIMIT
=
1000
SPARSE_ID_COUNT
=
100
SEQUENCE_LIMIT
=
50
...
...
@@ -146,8 +124,6 @@ def processSubSeqAndGenerateData(obj, name):
if
__name__
==
"__main__"
:
pvd
=
processNonSequenceData
(
"test.txt"
)
print
pvd
.
getNextBatch
(
100
)
pvd
=
processSeqAndGenerateData
(
"_"
)
print
pvd
.
getNextBatch
(
100
)
pvd
=
processSubSeqAndGenerateData
(
"_"
)
...
...
paddle/trainer/tests/test_CompareTwoOpts.cpp
已删除
100644 → 0
浏览文件 @
3375e3e2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <paddle/utils/PythonUtil.h>
#include <algorithm>
#include <cstdlib>
#include "paddle/trainer/Trainer.h"
using
namespace
paddle
;
// NOLINT
using
namespace
std
;
// NOLINT
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
local
);
DECLARE_bool
(
use_gpu
);
DECLARE_string
(
config
);
DECLARE_string
(
nics
);
DEFINE_string
(
config_file_a
,
""
,
"config of one network to compare"
);
DEFINE_string
(
config_file_b
,
""
,
"config of another network to compare"
);
DEFINE_bool
(
need_high_accuracy
,
true
,
"whether need to run in double accuracy (recommended)"
);
DEFINE_double
(
max_diff_ratio
,
0.0
f
,
"max diff ratio allowed for outputs and parameters (value/gradient)"
);
struct
ComData
{
vector
<
Argument
>
outArgs
;
vector
<
ParameterPtr
>
parameters
;
};
void
calcGradient
(
ComData
&
data
,
const
string
configFile
)
{
FLAGS_config
=
configFile
;
FLAGS_local
=
true
;
FLAGS_use_gpu
=
false
;
FLAGS_nics
=
""
;
*
ThreadLocalRand
::
getSeed
()
=
0
;
srand
(
0
);
Trainer
trainer
;
trainer
.
init
(
TrainerConfigHelper
::
createFromFlagConfig
(),
false
);
data
.
parameters
=
trainer
.
getGradientMachine
()
->
getParameters
();
trainer
.
getDataProvider
()
->
setSkipShuffle
();
trainer
.
train
();
}
void
checkBuffer
(
real
*
A
,
const
char
*
desA
,
real
*
B
,
const
char
*
desB
,
size_t
len
,
size_t
width
=
1
)
{
int
nNum
=
0
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
{
real
diff
=
fabs
(
A
[
i
]
-
B
[
i
]);
if
(
diff
>
0.0
f
&&
diff
/
std
::
max
(
fabs
(
A
[
i
]),
fabs
(
B
[
i
]))
>
FLAGS_max_diff_ratio
)
{
nNum
++
;
LOG
(
INFO
)
<<
"Row: "
<<
i
/
width
<<
", "
<<
desA
<<
" : "
<<
A
[
i
]
<<
" "
<<
desB
<<
" : "
<<
B
[
i
];
}
}
EXPECT_EQ
(
0
,
nNum
);
LOG
(
INFO
)
<<
"
\n\n
"
;
}
void
compareGradient
(
ComData
&
comDataA
,
ComData
&
comDataB
)
{
vector
<
Argument
>
outArgsA
=
comDataA
.
outArgs
;
vector
<
Argument
>
outArgsB
=
comDataB
.
outArgs
;
for
(
size_t
i
=
0
;
i
<
outArgsA
.
size
();
++
i
)
{
CpuMatrix
matA
(
outArgsA
[
i
].
value
->
getHeight
(),
outArgsA
[
i
].
value
->
getWidth
());
CpuMatrix
matB
(
outArgsB
[
i
].
value
->
getHeight
(),
outArgsB
[
i
].
value
->
getWidth
());
matA
.
copyFrom
(
*
outArgsA
[
i
].
value
);
matB
.
copyFrom
(
*
outArgsB
[
i
].
value
);
LOG
(
INFO
)
<<
"
\n
--------------------------------"
<<
" Check Network Output_"
<<
i
<<
":"
<<
" -------------------------------------
\n
"
;
checkBuffer
(
matA
.
getData
(),
"network A output"
,
matB
.
getData
(),
"network B output"
,
matA
.
getElementCnt
(),
matA
.
getWidth
());
}
vector
<
ParameterPtr
>&
parametersA
=
comDataA
.
parameters
;
vector
<
ParameterPtr
>&
parametersB
=
comDataB
.
parameters
;
LOG
(
INFO
)
<<
"
\n\n
--------------------------------"
<<
" Check Gradient Machine Parameters:"
<<
" -------------------------------------
\n
"
;
for
(
size_t
i
=
0
;
i
<
parametersA
.
size
();
++
i
)
{
ParameterPtr
parameterA
,
parameterB
;
parameterA
=
parametersA
[
i
];
parameterB
=
parametersB
[
i
];
CpuVector
paraA
(
parameterA
->
getSize
());
CpuVector
paraB
(
parameterB
->
getSize
());
paraA
.
copyFrom
(
*
parameterA
->
getBuf
(
PARAMETER_VALUE
));
paraB
.
copyFrom
(
*
parameterB
->
getBuf
(
PARAMETER_VALUE
));
LOG
(
INFO
)
<<
"
\n\n
----------- PARAMETER_VALUE: "
<<
parameterA
->
getName
()
<<
" ; size : "
<<
paraA
.
getSize
()
<<
" ------------"
;
checkBuffer
(
paraA
.
getData
(),
"Network A"
,
paraB
.
getData
(),
"Network B"
,
paraA
.
getSize
());
CpuVector
gradA
(
*
parameterA
->
getBuf
(
PARAMETER_GRADIENT
));
CpuVector
gradB
(
*
parameterB
->
getBuf
(
PARAMETER_GRADIENT
));
LOG
(
INFO
)
<<
"
\n\n
----------- PARAMETER_GRADIENT: "
<<
parameterA
->
getName
()
<<
" ; size : "
<<
gradA
.
getSize
()
<<
" -----------"
;
checkBuffer
(
gradA
.
getData
(),
"Network A"
,
gradB
.
getData
(),
"Network B"
,
gradA
.
getSize
());
}
}
TEST
(
Trainer
,
create
)
{
ComData
dataA
;
calcGradient
(
dataA
,
FLAGS_config_file_a
);
LOG
(
INFO
)
<<
"
\n\n
training of Network A is finished
\n\n
"
;
ComData
dataB
;
calcGradient
(
dataB
,
FLAGS_config_file_b
);
LOG
(
INFO
)
<<
"
\n\n
training of the Network B is finished
\n\n
"
;
compareGradient
(
dataA
,
dataB
);
}
int
main
(
int
argc
,
char
**
argv
)
{
paddle
::
initMain
(
argc
,
argv
);
testing
::
InitGoogleTest
(
&
argc
,
argv
);
initPython
(
argc
,
argv
);
#ifndef PADDLE_TYPE_DOUBLE
if
(
FLAGS_need_high_accuracy
)
{
LOG
(
INFO
)
<<
"skip test due to it's need high accuracy"
;
return
0
;
}
if
(
FLAGS_max_diff_ratio
==
0.0
f
)
{
FLAGS_max_diff_ratio
=
2e-4
;
LOG
(
INFO
)
<<
"auto set max_diff_ratio "
<<
FLAGS_max_diff_ratio
<<
" in low accuracy mode"
;
}
#else
if
(
FLAGS_max_diff_ratio
==
0.0
f
)
{
FLAGS_max_diff_ratio
=
2e-7
;
LOG
(
INFO
)
<<
"auto set max_diff_ratio "
<<
FLAGS_max_diff_ratio
<<
" in high accuracy mode"
;
}
#endif
int
ret
=
RUN_ALL_TESTS
();
return
ret
;
}
paddle/trainer/tests/test_PyDataProviderWrapper.cpp
浏览文件 @
ba868854
...
...
@@ -25,45 +25,9 @@ limitations under the License. */
#include <unordered_set>
#include "picojson.h"
void
checkEqual
(
const
paddle
::
Argument
&
expect
,
const
paddle
::
Argument
&
actual
);
void
checkValue
(
std
::
vector
<
paddle
::
Argument
>&
arguments
,
picojson
::
array
&
arr
);
const
std
::
string
kDir
=
"./trainer/tests/pydata_provider_wrapper_dir/"
;
TEST
(
PyDataProviderWrapper
,
NoSequenceData
)
{
paddle
::
DataConfig
conf
;
conf
.
set_type
(
"py"
);
conf
.
set_load_data_module
(
std
::
string
(
"testPyDataWrapper"
));
conf
.
set_load_data_object
(
std
::
string
(
"processNonSequenceData"
));
conf
.
set_async_load_data
(
false
);
conf
.
clear_files
();
conf
.
set_files
(
kDir
+
"test_pydata_provider_wrapper.list"
);
paddle
::
DataProviderPtr
provider
(
paddle
::
DataProvider
::
create
(
conf
,
false
));
provider
->
setSkipShuffle
();
provider
->
reset
();
paddle
::
DataBatch
batchFromPy
;
provider
->
getNextBatch
(
100
,
&
batchFromPy
);
paddle
::
DataConfig
conf2
;
conf2
.
set_type
(
"proto"
);
conf2
.
set_async_load_data
(
false
);
conf2
.
clear_files
();
conf2
.
set_files
(
kDir
+
"test_pydata_provider_wrapper.protolist"
);
provider
.
reset
(
paddle
::
DataProvider
::
create
(
conf2
,
false
));
provider
->
setSkipShuffle
();
provider
->
reset
();
paddle
::
DataBatch
batchFromProto
;
provider
->
getNextBatch
(
100
,
&
batchFromProto
);
std
::
vector
<
paddle
::
Argument
>&
pyArguments
=
batchFromPy
.
getStreams
();
std
::
vector
<
paddle
::
Argument
>&
protoArguments
=
batchFromProto
.
getStreams
();
EXPECT_EQ
(
pyArguments
.
size
(),
protoArguments
.
size
());
for
(
size_t
i
=
0
;
i
<
pyArguments
.
size
();
++
i
)
{
checkEqual
(
protoArguments
[
i
],
pyArguments
[
i
]);
}
}
TEST
(
PyDataProviderWrapper
,
SequenceData
)
{
paddle
::
DataConfig
conf
;
conf
.
set_type
(
"py"
);
...
...
@@ -148,66 +112,6 @@ int main(int argc, char** argv) {
return
RUN_ALL_TESTS
();
}
void
checkEqual
(
const
paddle
::
Argument
&
expect
,
const
paddle
::
Argument
&
actual
)
{
if
(
expect
.
value
)
{
EXPECT_TRUE
(
actual
.
value
!=
nullptr
);
paddle
::
Matrix
*
e
=
expect
.
value
.
get
();
paddle
::
Matrix
*
a
=
actual
.
value
.
get
();
EXPECT_EQ
(
e
->
getWidth
(),
a
->
getWidth
());
EXPECT_EQ
(
e
->
getHeight
(),
a
->
getHeight
());
if
(
dynamic_cast
<
paddle
::
CpuSparseMatrix
*>
(
e
))
{
paddle
::
CpuSparseMatrix
*
se
=
dynamic_cast
<
paddle
::
CpuSparseMatrix
*>
(
e
);
paddle
::
CpuSparseMatrix
*
sa
=
dynamic_cast
<
paddle
::
CpuSparseMatrix
*>
(
a
);
EXPECT_EQ
(
se
->
getFormat
(),
sa
->
getFormat
());
EXPECT_EQ
(
se
->
getElementCnt
(),
sa
->
getElementCnt
());
size_t
rowSize
=
se
->
getFormat
()
==
paddle
::
SPARSE_CSC
?
se
->
getElementCnt
()
:
se
->
getHeight
()
+
1
;
size_t
colSize
=
se
->
getFormat
()
==
paddle
::
SPARSE_CSC
?
se
->
getWidth
()
+
1
:
se
->
getElementCnt
();
for
(
size_t
i
=
0
;
i
<
rowSize
;
++
i
)
{
EXPECT_EQ
(
se
->
getRows
()[
i
],
sa
->
getRows
()[
i
]);
}
for
(
size_t
i
=
0
;
i
<
colSize
;
++
i
)
{
EXPECT_EQ
(
se
->
getCols
()[
i
],
sa
->
getCols
()[
i
]);
}
if
(
se
->
getValueType
()
==
paddle
::
FLOAT_VALUE
)
{
EXPECT_EQ
(
paddle
::
FLOAT_VALUE
,
sa
->
getValueType
());
for
(
size_t
i
=
0
;
i
<
se
->
getElementCnt
();
++
i
)
{
EXPECT_EQ
(
se
->
getValue
()[
i
],
sa
->
getValue
()[
i
]);
}
}
}
else
if
(
dynamic_cast
<
paddle
::
CpuMatrix
*>
(
e
))
{
EXPECT_EQ
(
e
->
getElementCnt
(),
a
->
getElementCnt
());
for
(
size_t
i
=
0
;
i
<
e
->
getElementCnt
();
++
i
)
{
EXPECT_EQ
(
e
->
getData
()[
i
],
a
->
getData
()[
i
]);
}
}
}
if
(
expect
.
ids
)
{
EXPECT_TRUE
(
actual
.
ids
!=
nullptr
);
paddle
::
VectorT
<
int
>*
e
=
expect
.
ids
.
get
();
paddle
::
VectorT
<
int
>*
a
=
actual
.
ids
.
get
();
EXPECT_EQ
(
e
->
getSize
(),
a
->
getSize
());
for
(
size_t
i
=
0
;
i
<
e
->
getSize
();
++
i
)
{
EXPECT_EQ
(
e
->
getData
()[
i
],
a
->
getData
()[
i
]);
}
}
if
(
expect
.
strs
)
{
EXPECT_TRUE
(
actual
.
strs
!=
nullptr
);
std
::
vector
<
std
::
string
>*
e
=
expect
.
strs
.
get
();
std
::
vector
<
std
::
string
>*
a
=
actual
.
strs
.
get
();
EXPECT_EQ
(
e
->
size
(),
a
->
size
());
for
(
size_t
i
=
0
;
i
<
e
->
size
();
++
i
)
{
EXPECT_EQ
((
*
e
)[
i
],
(
*
a
)[
i
]);
}
}
}
void
checkValue
(
std
::
vector
<
paddle
::
Argument
>&
arguments
,
picojson
::
array
&
arr
)
{
// CHECK SLOT 0, Sparse Value.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录