提交 b9edcc4a 编写于 作者: C chengduoZH

sss

上级 db1bb822
...@@ -31,6 +31,7 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>; ...@@ -31,6 +31,7 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
* a sequence. The i-th row of the output is the concatenation of * a sequence. The i-th row of the output is the concatenation of
* context_length rows of the input. The context_length rows are the * context_length rows of the input. The context_length rows are the
* consecutive rows from the i+shift_start row. * consecutive rows from the i+shift_start row.
* ContextProjectGradFunctor is the inverse process of ContextProjectFunctor.
* \param in Input data. * \param in Input data.
* \param Shape The shape of Input data, * \param Shape The shape of Input data,
...@@ -85,16 +86,126 @@ template <typename Place, typename T> ...@@ -85,16 +86,126 @@ template <typename Place, typename T>
class ContextProjectFunctor { class ContextProjectFunctor {
public: public:
void operator()(const platform::DeviceContext& context, void operator()(const platform::DeviceContext& context,
framework::LoDTensor& in, framework::Tensor& padding_data, const framework::LoDTensor& in,
framework::Tensor& col, bool padding_trainable, const framework::Tensor& padding_data, framework::Tensor& col,
int context_start, int context_length, int context_stride, bool padding_trainable, int context_start, int context_length,
int up_pad, int down_pad, bool gradient, bool input_grad, int context_stride, int up_pad, int down_pad) {
bool pad_grad) {
auto lod_level_0 = in.lod()[0]; auto lod_level_0 = in.lod()[0];
paddle::operators::math::Im2ColFunctor< paddle::operators::math::Im2ColFunctor<
paddle::operators::math::ColFormat::kOCF, Place, float> paddle::operators::math::ColFormat::kOCF, Place, float>
im2col_ocf; im2col_ocf;
int input_row_begin, input_row_end;
int sequence_height, sequence_width;
sequence_width = in.dims()[1];
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
input_row_begin = (context_start > 0)
? static_cast<int>(lod_level_0[i]) + context_start
: static_cast<int>(lod_level_0[i]);
input_row_end = static_cast<int>(lod_level_0[i + 1]);
framework::Tensor out_t = col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));
sequence_height = static_cast<int>(out_t.dims()[0]);
if (input_row_begin < input_row_end) {
framework::Tensor in_t = in.Slice(input_row_begin, input_row_end);
std::vector<int64_t> output_shape(
{sequence_height, 1, 1, context_length,
sequence_width}); // output_height, output_width,
// input_channels, filter_height, filter_width
out_t.Resize(framework::make_ddim(output_shape));
std::vector<int64_t> input_shape(
{1, input_row_end - input_row_begin,
sequence_width}); // input_channels, input_height, input_width
in_t.Resize(framework::make_ddim(input_shape));
im2col_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1, up_pad,
down_pad, 0, 0);
out_t.Resize({sequence_height, context_length * sequence_width});
}
}
if (padding_trainable) {
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
framework::Tensor out_t =
col.Slice(static_cast<int>(lod_level_0[i]),
static_cast<int>(lod_level_0[i + 1]));
sequence_height = static_cast<int>(out_t.dims()[0]);
// add up trainable data
out_t.Resize({sequence_height * context_length, sequence_width});
if (up_pad > 0) { // add up pad
int padding_rows = std::min(
up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));
for (int k = 0; k < padding_rows; ++k) {
int padding_size =
k + context_length < up_pad ? context_length : up_pad - k;
framework::Tensor out_t_sub = out_t.Slice(
k * context_length, k * context_length + padding_size);
framework::Tensor w_sub = padding_data.Slice(k, k + padding_size);
// in this block, using EigenVector<T>::Flatten is ok too.
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub);
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
}
if (down_pad > 0) { // add down pad
int down_pad_begin_row =
std::max(0,
(sequence_height - context_start - context_length) + 1) +
1;
int padding_begin = std::max(0, context_start - sequence_height);
int padding_size =
sequence_height - context_start >= context_length
? 1
: context_length - (sequence_height - context_start);
if (context_start >= sequence_height) padding_size = context_length;
int padding_idx = padding_begin;
for (int t = 0; t + down_pad_begin_row <= sequence_height;
++t, ++padding_size) {
if (context_start >= sequence_height) padding_size = context_length;
if (padding_size > context_length) {
padding_size = context_length;
padding_idx++;
}
if (padding_begin > 0 || sequence_height == context_start)
padding_idx = padding_begin + t;
framework::Tensor out_t_sub = out_t.Slice(
(down_pad_begin_row + t) * context_length - padding_size,
(down_pad_begin_row + t) * context_length);
framework::Tensor w_sub = padding_data.Slice(
up_pad + padding_idx, up_pad + padding_idx + padding_size);
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub);
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
}
out_t.Resize({sequence_height, context_length * sequence_width});
}
}
}
};
template <typename Place, typename T>
class ContextProjectGradFunctor {
public:
void operator()(const platform::DeviceContext& context,
framework::LoDTensor& in, framework::Tensor& padding_data,
framework::Tensor& col, bool padding_trainable,
int context_start, int context_length, int context_stride,
int up_pad, int down_pad, bool input_grad, bool pad_grad) {
auto lod_level_0 = in.lod()[0];
paddle::operators::math::Col2ImFunctor< paddle::operators::math::Col2ImFunctor<
paddle::operators::math::ColFormat::kOCF, Place, float> paddle::operators::math::ColFormat::kOCF, Place, float>
col2im_ocf; col2im_ocf;
...@@ -102,10 +213,8 @@ class ContextProjectFunctor { ...@@ -102,10 +213,8 @@ class ContextProjectFunctor {
int input_row_begin, input_row_end; int input_row_begin, input_row_end;
int sequence_height, sequence_width; int sequence_height, sequence_width;
sequence_width = in.dims()[1]; sequence_width = in.dims()[1];
input_grad = gradient && input_grad;
pad_grad = gradient && pad_grad;
if (!gradient || input_grad) { if (input_grad) {
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) { for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
input_row_begin = (context_start > 0) input_row_begin = (context_start > 0)
? static_cast<int>(lod_level_0[i]) + context_start ? static_cast<int>(lod_level_0[i]) + context_start
...@@ -133,20 +242,14 @@ class ContextProjectFunctor { ...@@ -133,20 +242,14 @@ class ContextProjectFunctor {
sequence_width}); // input_channels, input_height, input_width sequence_width}); // input_channels, input_height, input_width
in_t.Resize(framework::make_ddim(input_shape)); in_t.Resize(framework::make_ddim(input_shape));
if (gradient) {
col2im_ocf(context, in_t, out_t, col2im_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1, /*stride_height*/ context_stride, /*stride_width*/ 1,
up_pad, down_pad, 0, 0); up_pad, down_pad, 0, 0);
} else {
im2col_ocf(context, in_t, out_t,
/*stride_height*/ context_stride, /*stride_width*/ 1,
up_pad, down_pad, 0, 0);
}
out_t.Resize({sequence_height, context_length * sequence_width}); out_t.Resize({sequence_height, context_length * sequence_width});
} }
} }
} }
if (!gradient || pad_grad) { if (pad_grad) {
if (padding_trainable) { if (padding_trainable) {
for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) { for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
framework::Tensor out_t = framework::Tensor out_t =
...@@ -154,11 +257,9 @@ class ContextProjectFunctor { ...@@ -154,11 +257,9 @@ class ContextProjectFunctor {
static_cast<int>(lod_level_0[i + 1])); static_cast<int>(lod_level_0[i + 1]));
sequence_height = static_cast<int>(out_t.dims()[0]); sequence_height = static_cast<int>(out_t.dims()[0]);
// add up trainable data
out_t.Resize({sequence_height * context_length, sequence_width}); out_t.Resize({sequence_height * context_length, sequence_width});
if (up_pad > 0) { // add up pad if (up_pad > 0) {
int padding_rows = std::min( int padding_rows = std::min(
up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i])); up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));
...@@ -171,15 +272,11 @@ class ContextProjectFunctor { ...@@ -171,15 +272,11 @@ class ContextProjectFunctor {
// in this block, using EigenVector<T>::Flatten is ok too. // in this block, using EigenVector<T>::Flatten is ok too.
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub); auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub); auto w_sub_e = EigenMatrix<T>::From(w_sub);
if (gradient) {
w_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e.device(*context.GetEigenDevice<Place>()) =
w_sub_e + out_t_sub_e; w_sub_e + out_t_sub_e;
} else {
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
} }
} }
if (down_pad > 0) { // add down pad if (down_pad > 0) {
int down_pad_begin_row = int down_pad_begin_row =
std::max( std::max(
0, (sequence_height - context_start - context_length) + 1) + 0, (sequence_height - context_start - context_length) + 1) +
...@@ -208,12 +305,8 @@ class ContextProjectFunctor { ...@@ -208,12 +305,8 @@ class ContextProjectFunctor {
up_pad + padding_idx, up_pad + padding_idx + padding_size); up_pad + padding_idx, up_pad + padding_idx + padding_size);
auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub); auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
auto w_sub_e = EigenMatrix<T>::From(w_sub); auto w_sub_e = EigenMatrix<T>::From(w_sub);
if (gradient) {
w_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e.device(*context.GetEigenDevice<Place>()) =
w_sub_e + out_t_sub_e; w_sub_e + out_t_sub_e;
} else {
out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
}
} }
} }
out_t.Resize({sequence_height, context_length * sequence_width}); out_t.Resize({sequence_height, context_length * sequence_width});
......
...@@ -65,12 +65,10 @@ class SequenceConvKernel : public framework::OpKernel<T> { ...@@ -65,12 +65,10 @@ class SequenceConvKernel : public framework::OpKernel<T> {
paddle::operators::math::ContextProjectFunctor<Place, T> paddle::operators::math::ContextProjectFunctor<Place, T>
seq_project_functor; seq_project_functor;
LoDTensor* input = const_cast<LoDTensor*>(in);
Tensor* pad_data = const_cast<Tensor*>(padding_data);
seq_project_functor(context.device_context(), *input, *pad_data, col, seq_project_functor(context.device_context(), *in, *padding_data, col,
padding_trainable, context_start, context_length, padding_trainable, context_start, context_length,
context_stride, up_pad, down_pad, false, false, false); context_stride, up_pad, down_pad);
math::matmul<Place, T>(context.device_context(), col, false, filter, false, math::matmul<Place, T>(context.device_context(), col, false, filter, false,
static_cast<T>(1.0), out, static_cast<T>(0.0)); static_cast<T>(1.0), out, static_cast<T>(0.0));
...@@ -117,15 +115,18 @@ class SequenceConvGradKernel : public framework::OpKernel<T> { ...@@ -117,15 +115,18 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
} }
paddle::operators::math::ContextProjectFunctor<Place, T> paddle::operators::math::ContextProjectFunctor<Place, T>
seq_project_functor; seq_project_functor;
paddle::operators::math::ContextProjectGradFunctor<Place, T>
seq_project_grad_functor;
if (in_g) { if (in_g) {
in_g->mutable_data<T>(context.GetPlace()); in_g->mutable_data<T>(context.GetPlace());
in_g->set_lod(in->lod()); in_g->set_lod(in->lod());
set_zero(context.device_context(), in_g, static_cast<T>(0)); set_zero(context.device_context(), in_g, static_cast<T>(0));
seq_project_functor(context.device_context(), *in_g, *padding_data_g, col, seq_project_grad_functor(context.device_context(), *in_g, *padding_data_g,
padding_trainable, context_start, context_length, col, padding_trainable, context_start,
context_stride, up_pad, down_pad, true, true, false); context_length, context_stride, up_pad, down_pad,
true, false);
} }
if (padding_trainable && padding_data_g) { if (padding_trainable && padding_data_g) {
...@@ -133,9 +134,10 @@ class SequenceConvGradKernel : public framework::OpKernel<T> { ...@@ -133,9 +134,10 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
set_zero(context.device_context(), padding_data_g, static_cast<T>(0)); set_zero(context.device_context(), padding_data_g, static_cast<T>(0));
LoDTensor* input = const_cast<LoDTensor*>(in); LoDTensor* input = const_cast<LoDTensor*>(in);
seq_project_functor(context.device_context(), *input, *padding_data_g, seq_project_grad_functor(context.device_context(), *input,
col, padding_trainable, context_start, context_length, *padding_data_g, col, padding_trainable,
context_stride, up_pad, down_pad, true, false, true); context_start, context_length, context_stride,
up_pad, down_pad, false, true);
} }
if (filter_g) { if (filter_g) {
...@@ -150,15 +152,9 @@ class SequenceConvGradKernel : public framework::OpKernel<T> { ...@@ -150,15 +152,9 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
padding_data = context.Input<Tensor>("PaddingData"); padding_data = context.Input<Tensor>("PaddingData");
} }
sequence_width = static_cast<int>(in->dims()[1]); seq_project_functor(context.device_context(), *in, *padding_data, col,
LoDTensor* input = const_cast<LoDTensor*>(in);
Tensor* pad_data = const_cast<Tensor*>(padding_data);
seq_project_functor(context.device_context(), *input, *pad_data, col,
padding_trainable, context_start, context_length, padding_trainable, context_start, context_length,
context_stride, up_pad, down_pad, false, false, context_stride, up_pad, down_pad);
false);
math::matmul<Place, T>(context.device_context(), col, true, out_grad, math::matmul<Place, T>(context.device_context(), col, true, out_grad,
false, T(1.0), &filter_grad, T(1.0)); false, T(1.0), &filter_grad, T(1.0));
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册