Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
b95b80bc
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b95b80bc
编写于
3月 25, 2019
作者:
D
dongdaxiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add doc string for executor and update API.spec
test=develop
上级
d52586a9
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
241 addition
and
376 deletion
+241
-376
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-2
paddle/fluid/framework/device_worker.h
paddle/fluid/framework/device_worker.h
+2
-0
paddle/fluid/framework/downpour_worker.cc
paddle/fluid/framework/downpour_worker.cc
+66
-58
paddle/fluid/framework/trainer_desc.proto
paddle/fluid/framework/trainer_desc.proto
+2
-0
python/paddle/dataset/dataset_generator.py
python/paddle/dataset/dataset_generator.py
+0
-286
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+3
-0
python/paddle/fluid/device_worker.py
python/paddle/fluid/device_worker.py
+9
-4
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+149
-26
python/paddle/fluid/trainer_desc.py
python/paddle/fluid/trainer_desc.py
+6
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
b95b80bc
...
...
@@ -16,6 +16,8 @@ paddle.fluid.cuda_pinned_places (ArgSpec(args=['device_count'], varargs=None, ke
paddle.fluid.Executor.__init__ (ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.Executor.close (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'f5369953dd0c443961cf79f7a00e1a03'))
paddle.fluid.Executor.run (ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)), ('document', 'f482e93b38b4018796969a2e1dde479d'))
paddle.fluid.Executor.infer_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'fetch_list', 'scope', 'thread', 'opt_info'], varargs=None, keywords=None, defaults=(None, None, None, None, 0, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.Executor.train_from_dataset (ArgSpec(args=['self', 'program', 'dataset', 'scope', 'thread', 'debug', 'fetch_list', 'fetch_info', 'print_period'], varargs=None, keywords=None, defaults=(None, None, None, 0, False, None, None, 100)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.global_scope (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'e148d3ab1ed8edf3e928212a375959c0'))
paddle.fluid.scope_guard (ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None), ('document', 'b94d1f6bcc29c4fb58fc0058561250c2'))
paddle.fluid.DistributeTranspiler.__init__ (ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
@@ -43,7 +45,7 @@ paddle.fluid.AsyncExecutor.get_instance (ArgSpec(args=['self'], varargs=None, ke
paddle.fluid.AsyncExecutor.init_model (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '504f39be2007404a17e5cabea1256c7d'))
paddle.fluid.AsyncExecutor.init_server (ArgSpec(args=['self', 'dist_desc'], varargs=None, keywords=None, defaults=None), ('document', 'c403ab46c5d3ef25c0f7e94ae75dcb68'))
paddle.fluid.AsyncExecutor.init_worker (ArgSpec(args=['self', 'dist_desc', 'startup_program'], varargs=None, keywords=None, defaults=None), ('document', 'dcf08f4bf2f3282acf11391f5d39c536'))
paddle.fluid.AsyncExecutor.run (ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', '
mode', 'debug'], varargs=None, keywords=None, defaults=('', False)), ('document', '848fc53484e8326f6325feea87fe955c
'))
paddle.fluid.AsyncExecutor.run (ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', '
debug'], varargs=None, keywords=None, defaults=(False,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754
'))
paddle.fluid.AsyncExecutor.save_model (ArgSpec(args=['self', 'save_path'], varargs=None, keywords=None, defaults=None), ('document', 'c8ac0dfcb3b187aba25d03af7fea56b2'))
paddle.fluid.AsyncExecutor.stop (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '5f23d043607bb5d55e466ec3f578e093'))
paddle.fluid.CompiledProgram.__init__ (ArgSpec(args=['self', 'program_or_graph'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
@@ -495,7 +497,7 @@ paddle.fluid.LoDTensor.__init__ 1. __init__(self: paddle.fluid.core.LoDTensor, a
paddle.fluid.LoDTensor.has_valid_recursive_sequence_lengths has_valid_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) -> bool
paddle.fluid.LoDTensor.lod lod(self: paddle.fluid.core.LoDTensor) -> List[List[int]]
paddle.fluid.LoDTensor.recursive_sequence_lengths recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor) -> List[List[int]]
paddle.fluid.LoDTensor.set 1. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CPUPlace) -> None 2. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CPUPlace) -> None 3. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CPUPlace) -> None 4. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CPUPlace) -> None 5. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CPUPlace) -> None 6. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CPUPlace) -> None 7. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CPUPlace) -> None 8. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int8], arg1: paddle::platform::CPUPlace) -> None
9. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CUDAPlace) -> None 10. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CUDAPlace) -> None 11. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CUDAPlace) -> None 12. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CUDAPlace) -> None 13. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CUDAPlace) -> None 14. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CUDAPlace) -> None 15. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CUDAPlace) -> None 16. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int8], arg1: paddle::platform::CUDAPlace) -> None 17. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CUDAPinnedPlace) -> None 18. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CUDAPinnedPlace) -> None 19. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CUDAPinnedPlace) -> None 20. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CUDAPinnedPlace) -> None 21. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CUDAPinnedPlace) -> None 22. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CUDAPinnedPlace) -> None 23. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CUDAPinnedPlace) -> None 24. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int8], arg1: paddle::platform::CUDAPinnedPlace) -> None
paddle.fluid.LoDTensor.set 1. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float32], arg1: paddle::platform::CPUPlace) -> None 2. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int32], arg1: paddle::platform::CPUPlace) -> None 3. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[float64], arg1: paddle::platform::CPUPlace) -> None 4. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int64], arg1: paddle::platform::CPUPlace) -> None 5. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[bool], arg1: paddle::platform::CPUPlace) -> None 6. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint16], arg1: paddle::platform::CPUPlace) -> None 7. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[uint8], arg1: paddle::platform::CPUPlace) -> None 8. set(self: paddle.fluid.core.Tensor, arg0: numpy.ndarray[int8], arg1: paddle::platform::CPUPlace) -> None
paddle.fluid.LoDTensor.set_lod set_lod(self: paddle.fluid.core.LoDTensor, lod: List[List[int]]) -> None
paddle.fluid.LoDTensor.set_recursive_sequence_lengths set_recursive_sequence_lengths(self: paddle.fluid.core.LoDTensor, recursive_sequence_lengths: List[List[int]]) -> None
paddle.fluid.LoDTensor.shape shape(self: paddle.fluid.core.Tensor) -> List[int]
...
...
paddle/fluid/framework/device_worker.h
浏览文件 @
b95b80bc
...
...
@@ -164,6 +164,8 @@ class DownpourWorker : public HogwildWorker {
void
CollectLabelInfo
(
size_t
table_id
);
private:
bool
need_to_push_dense_
;
bool
need_to_push_sparse_
;
DownpourWorkerParameter
param_
;
// just save the value in param_ for easy access
std
::
map
<
uint64_t
,
std
::
string
>
label_var_name_
;
...
...
paddle/fluid/framework/downpour_worker.cc
浏览文件 @
b95b80bc
...
...
@@ -58,6 +58,9 @@ void DownpourWorker::Initialize(const TrainerDesc& desc) {
skip_ops_
[
i
]
=
param_
.
skip_ops
(
i
);
}
need_to_push_sparse_
=
param_
.
push_sparse
();
need_to_push_dense_
=
param_
.
push_dense
();
fleet_ptr_
=
FleetWrapper
::
GetInstance
();
fetch_config_
=
desc
.
fetch_config
();
}
...
...
@@ -239,8 +242,9 @@ void DownpourWorker::TrainFilesWithProfiler() {
}
}
for
(
size_t
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_sparse_table_id_size
();
++
i
)
{
if
(
need_to_push_sparse_
)
{
for
(
size_t
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_sparse_table_id_size
();
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_sparse_table_id
(
i
));
TableParameter
table
;
...
...
@@ -259,10 +263,12 @@ void DownpourWorker::TrainFilesWithProfiler() {
push_sparse_time
+=
timeline
.
ElapsedSec
();
total_time
+=
timeline
.
ElapsedSec
();
}
}
if
(
need_to_push_dense_
)
{
timeline
.
Start
();
for
(
size_t
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
()
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
fleet_ptr_
->
PushDenseVarsAsync
(
...
...
@@ -288,7 +294,9 @@ void DownpourWorker::TrainFilesWithProfiler() {
if
(
tmp_push_dense_wait_times
==
-
1
)
{
push_dense_status_
.
resize
(
0
);
}
}
if
(
need_to_push_sparse_
)
{
if
(
push_sparse_status_
.
size
()
>=
push_sparse_wait_times
)
{
for
(
auto
&
t
:
push_sparse_status_
)
{
t
.
wait
();
...
...
@@ -299,17 +307,17 @@ void DownpourWorker::TrainFilesWithProfiler() {
if
(
tmp_push_sparse_wait_times
==
-
1
)
{
push_sparse_status_
.
resize
(
0
);
}
VLOG
(
3
)
<<
"going to increase thread version"
;
VLOG
(
3
)
<<
"going to increase thread version"
;
VLOG
(
3
)
<<
"push dense table id size: "
<<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
for
(
size_t
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
param_
.
program_config
(
0
).
push_dense_table_id_size
();
++
i
)
{
uint64_t
tid
=
static_cast
<
uint64_t
>
(
param_
.
program_config
(
0
).
push_dense_table_id
(
i
));
pull_dense_worker_
->
IncreaseThreadVersion
(
thread_id_
,
tid
);
}
}
PrintFetchVars
();
thread_scope_
->
DropKids
();
...
...
paddle/fluid/framework/trainer_desc.proto
浏览文件 @
b95b80bc
...
...
@@ -46,6 +46,8 @@ message DownpourWorkerParameter {
repeated
TableParameter
dense_table
=
2
;
repeated
string
skip_ops
=
3
;
repeated
ProgramConfig
program_config
=
4
;
bool
push_sparse
=
5
[
default
=
true
];
bool
push_dense
=
6
[
default
=
true
];
}
message
FetchConfig
{
...
...
python/paddle/dataset/dataset_generator.py
已删除
100644 → 0
浏览文件 @
d52586a9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
__all__
=
[
'MultiSlotDataset'
]
class
DatasetGenerator
(
object
):
def
__init__
(
self
):
self
.
_proto_info
=
None
self
.
_hadoop_host
=
None
self
.
_batch_size
=
32
self
.
_hadoop_ugi
=
None
self
.
_hadoop_path
=
None
def
_set_proto_filename
(
self
,
proto_filename
):
if
not
isinstance
(
proto_filename
,
str
):
raise
ValueError
(
"proto_filename%s must be in str type"
%
type
(
proto_filename
))
if
not
proto_filename
:
raise
ValueError
(
"proto_filename can not be empty"
)
self
.
_proto_filename
=
proto_filename
def
generate_sample
(
self
,
line
):
'''
This function needs to be overridden by the user to process the
original data row into a list or tuple
Args:
line(str): the original data row
Returns:
Returns the data processed by the user.
The data format is list or tuple:
[(name, [feasign, ...]), ...]
or ((name, [feasign, ...]), ...)
For example:
[("words", [1926, 08, 17])], ("label", [1])]
or (("words", [1926, 08, 17]), ("label", [1]))
Note:
The type of feasigns must be in int or float. Once the float
element appears in the feasign, the type of that slot will be
processed into a float.
'''
raise
NotImplementedError
(
"please rewrite this function to return a list"
+
"[(name, [int, int ...]), ...]"
)
def
set_batch
(
self
,
batch
):
self
.
batch
=
batch
def
generate_batch
(
self
,
samples
):
'''
This function can be overridden by the user to process batch
data, a user can define how to generate batch with this function
Args:
samples(list of results from generate_samples)
Returns:
Returns the processed batch by the user
[[(name, [int, ...]), ...],
[(name, [int, ...]), ...],
[(name, [int, ...])]]
Default:
Do nothing about current batch
'''
def
batch_iter
():
for
sample
in
samples
:
yield
sample
return
batch_iter
def
_gen_str
(
self
,
line
):
raise
NotImplementedError
(
"Please inherit this class and implement _gen_str"
)
def
_upload_proto_file
(
self
):
if
self
.
proto_output_path
==
None
:
raise
ValueError
(
"If you are running data generation on hadoop, "
"please set proto output path first"
)
if
self
.
_hadoop_host
==
None
or
self
.
_hadoop_ugi
==
None
or
\
self
.
_hadoop_path
==
None
:
raise
ValueError
(
"If you are running data generation on hadoop, "
"please set hadoop_host, hadoop_path, hadoop_ugi first"
)
cmd
=
"$HADOOP_HOME/bin/hadoop fs"
\
+
" -Dhadoop.job.ugi="
+
self
.
hadoop_ugi
\
+
" -Dfs.default.name="
+
self
.
hadoop_host
\
+
" -put "
+
self
.
_proto_filename
+
" "
+
self
.
_proto_output_path
os
.
system
(
cmd
)
def
set_hadoop_config
(
self
,
hadoop_host
=
None
,
hadoop_ugi
=
None
,
proto_path
=
None
):
'''
This function set hadoop configuration for map-reduce based data
generation.
Args:
hadoop_host(str): The host name of the hadoop. It should be
in this format: "hdfs://${HOST}:${PORT}".
hadoop_ugi(str): The ugi of the hadoop. It should be in this
format: "${USERNAME},${PASSWORD}".
proto_path(str): The hadoop path you want to upload the
protofile to.
'''
self
.
hadoop_host
=
hadoop_host
self
.
hadoop_ugi
=
hadoop_ugi
self
.
proto_output_path
=
proto_path
def
run_from_memory
(
self
,
is_local
=
True
,
proto_filename
=
'data_feed.proto'
):
'''
This function generates data from memory, user needs to
define how to generate samples by define generate_sample
and generate_batch
'''
self
.
_set_proto_filename
(
proto_filename
)
batch_data
=
[]
line_iter
=
self
.
generate_sample
(
None
)
for
user_parsed_line
in
line_iter
():
if
user_parsed_line
==
None
:
continue
batch_data
.
append
(
user_parsed_line
)
if
len
(
batch_data
)
==
self
.
_batch_size
:
batched_iter
=
self
.
generate_batch
(
batch_data
)
for
batched_line
in
batched_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
batched_line
))
batch_data
=
[]
if
len
(
batch_data
)
>
0
:
batched_iter
=
self
.
generate_batch
(
batch_data
)
for
batched_line
in
batched_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
batched_line
))
if
self
.
proto_info
is
not
None
:
with
open
(
self
.
_proto_filename
,
"w"
)
as
f
:
f
.
write
(
self
.
_get_proto_desc
(
self
.
_proto_info
))
if
is_local
==
False
:
self
.
_upload_proto_file
()
def
run_from_stdin
(
self
,
is_local
=
True
,
proto_filename
=
'data_feed.proto'
):
'''
This function reads the data row from stdin, parses it with the
process function, and further parses the return value of the
process function with the _gen_str function. The parsed data will
be wrote to stdout and the corresponding protofile will be
generated. If local is set to False, the protofile will be
uploaded to hadoop.
Args:
is_local(bool): Whether user wants to run this function from local
proto_filename(str): The name of protofile. The default value
is "data_feed.proto". It is not
recommended to modify it.
'''
self
.
_set_proto_filename
(
proto_filename
)
batch_data
=
[]
for
line
in
sys
.
stdin
:
line_iter
=
self
.
generate_sample
(
line
)
for
user_parsed_line
in
line_iter
():
if
user_parsed_line
==
None
:
continue
batch_data
.
append
(
user_parsed_line
)
if
len
(
batch_data
)
==
self
.
_batch_size
:
batched_iter
=
self
.
generate_batch
(
batch_data
)
for
batched_line
in
batched_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
batched_line
))
batch_data
=
[]
if
len
(
batch_data
)
>
0
:
batched_iter
=
self
.
generate_batch
(
batch_data
)
for
batched_line
in
batched_iter
():
sys
.
stdout
.
write
(
self
.
_gen_str
(
batched_line
))
if
self
.
_proto_info
is
not
None
:
with
open
(
self
.
_proto_filename
,
"w"
)
as
f
:
f
.
write
(
self
.
_get_proto_desc
(
self
.
_proto_info
))
if
is_local
==
False
:
self
.
_upload_proto_file
()
class
MultiSlotDataset
(
DatasetGenerator
):
def
_get_proto_desc
(
self
,
proto_info
):
proto_str
=
"name:
\"
MultiSlotDataFeed
\"\n
"
\
+
"batch_size: 32
\n
multi_slot_desc {
\n
"
for
elem
in
proto_info
:
proto_str
+=
" slots {
\n
"
\
+
" name:
\"
%s
\"\n
"
%
elem
[
0
]
\
+
" type:
\"
%s
\"\n
"
%
elem
[
1
]
\
+
" is_dense: false
\n
"
\
+
" is_used: false
\n
"
\
+
" }
\n
"
proto_str
+=
"}"
return
proto_str
def
generate_batch
(
self
,
samples
):
super
(
MultiSlotDataset
,
self
).
generate_batch
(
samples
)
def
batch_iter
():
for
sample
in
samples
:
yield
sample
return
batch_iter
def
_gen_str
(
self
,
line
):
if
not
isinstance
(
line
,
list
)
and
not
isinstance
(
line
,
tuple
):
raise
ValueError
(
"the output of process() must be in list or tuple type"
)
output
=
""
if
self
.
_proto_info
is
None
:
self
.
_proto_info
=
[]
for
item
in
line
:
name
,
elements
=
item
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name%s must be in str type"
%
type
(
name
))
if
not
isinstance
(
elements
,
list
):
raise
ValueError
(
"elements%s must be in list type"
%
type
(
elements
))
if
not
elements
:
raise
ValueError
(
"the elements of each field can not be empty, you need padding it in process()."
)
self
.
_proto_info
.
append
((
name
,
"uint64"
))
if
output
:
output
+=
" "
output
+=
str
(
len
(
elements
))
for
elem
in
elements
:
if
isinstance
(
elem
,
float
):
self
.
_proto_info
[
-
1
]
=
(
name
,
"float"
)
elif
not
isinstance
(
elem
,
int
)
and
not
isinstance
(
elem
,
long
):
raise
ValueError
(
"the type of element%s must be in int or float"
%
type
(
elem
))
output
+=
" "
+
str
(
elem
)
else
:
if
len
(
line
)
!=
len
(
self
.
_proto_info
):
raise
ValueError
(
"the complete field set of two given line are inconsistent."
)
for
index
,
item
in
enumerate
(
line
):
name
,
elements
=
item
if
not
isinstance
(
name
,
str
):
raise
ValueError
(
"name%s must be in str type"
%
type
(
name
))
if
not
isinstance
(
elements
,
list
):
raise
ValueError
(
"elements%s must be in list type"
%
type
(
elements
))
if
not
elements
:
raise
ValueError
(
"the elements of each field can not be empty, you need padding it in process()."
)
if
name
!=
self
.
_proto_info
[
index
][
0
]:
raise
ValueError
(
"the field name of two given line are not match: require<%s>, get<%d>."
%
(
self
.
_proto_info
[
index
][
0
],
name
))
if
output
:
output
+=
" "
output
+=
str
(
len
(
elements
))
for
elem
in
elements
:
if
self
.
_proto_info
[
index
][
1
]
!=
"float"
:
if
isinstance
(
elem
,
float
):
self
.
_proto_info
[
index
]
=
(
name
,
"float"
)
elif
not
isinstance
(
elem
,
int
)
and
not
isinstance
(
elem
,
long
):
raise
ValueError
(
"the type of element%s must be in int or float"
%
type
(
elem
))
output
+=
" "
+
str
(
elem
)
return
output
+
"
\n
"
python/paddle/fluid/__init__.py
浏览文件 @
b95b80bc
...
...
@@ -46,10 +46,13 @@ from . import regularizer
from
.
import
average
from
.
import
metrics
from
.
import
transpiler
from
.
import
incubate
from
.
import
distribute_lookup_table
from
.param_attr
import
ParamAttr
,
WeightNormParamAttr
from
.data_feeder
import
DataFeeder
from
.core
import
LoDTensor
,
LoDTensorArray
,
CPUPlace
,
CUDAPlace
,
CUDAPinnedPlace
,
Scope
,
_Scope
from
.incubate
import
fleet
from
.incubate
import
data_generator
from
.transpiler
import
DistributeTranspiler
,
\
memory_optimize
,
release_memory
,
DistributeTranspilerConfig
from
.lod_tensor
import
create_lod_tensor
,
create_random_int_lodtensor
...
...
python/paddle/fluid/device_worker.py
浏览文件 @
b95b80bc
...
...
@@ -25,6 +25,10 @@ class DeviceWorker(object):
Init.
"""
self
.
program_
=
None
self
.
infer_
=
None
def
set_infer
(
self
,
infer
=
False
):
self
.
infer_
=
infer
def
set_fleet_desc
(
self
,
fleet_desc
):
"""
...
...
@@ -125,8 +129,7 @@ class DownpourSGD(DeviceWorker):
for
i
in
self
.
fleet_desc_
.
trainer_param
.
dense_table
:
if
i
.
table_id
in
dense_table_set
:
dense_table
=
pull_thread
.
dense_table
.
add
()
dense_table
.
dense_value_name
.
extend
(
i
.
dense_variable_name
)
dense_table
.
dense_value_name
.
extend
(
i
.
dense_variable_name
)
dense_table
.
table_id
=
\
i
.
table_id
sparse_table
=
downpour
.
sparse_table
.
add
()
...
...
@@ -149,11 +152,13 @@ class DownpourSGD(DeviceWorker):
if
i
.
table_id
in
dense_table_set
:
dense_table
=
downpour
.
dense_table
.
add
()
dense_table
.
table_id
=
i
.
table_id
dense_table
.
dense_value_name
.
extend
(
i
.
dense_variable_name
)
dense_table
.
dense_value_name
.
extend
(
i
.
dense_variable_name
)
dense_table
.
dense_grad_name
.
extend
(
i
.
dense_gradient_variable_name
)
downpour
.
skip_ops
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
skip_op
)
if
self
.
infer_
:
downpour
.
push_dense
=
False
downpour
.
push_sparse
=
False
class
DeviceWorkerFactory
(
object
):
...
...
python/paddle/fluid/executor.py
浏览文件 @
b95b80bc
...
...
@@ -612,16 +612,14 @@ class Executor(object):
def
_run_inference
(
self
,
exe
,
feed
):
return
exe
.
run
(
feed
)
def
infer_from_dataset
(
self
,
program
=
None
,
dataset
=
None
,
fetch_list
=
None
,
scope
=
None
,
thread
=
0
,
opt_info
=
None
):
pass
def
_dump_debug_info
(
self
,
program
=
None
,
trainer
=
None
):
with
open
(
str
(
id
(
program
))
+
"_train_desc.prototxt"
,
"w"
)
as
fout
:
fout
.
write
(
trainer
.
_desc
())
if
program
.
_fleet_opt
:
with
open
(
"fleet_desc.prototxt"
,
"w"
)
as
fout
:
fout
.
write
(
str
(
program
.
_fleet_opt
[
"fleet_desc"
]))
def
train_from_dataset
(
self
,
def
_prepare_trainer
(
self
,
program
=
None
,
dataset
=
None
,
scope
=
None
,
...
...
@@ -648,23 +646,148 @@ class Executor(object):
if
thread
<=
0
:
if
dataset
.
thread_num
<=
0
:
raise
RuntimeError
(
"You should set thread num first, either in Dataset
or in Executor.train_from_dataset
"
)
"You should set thread num first, either in Dataset"
"or in Executor.train_from_dataset"
)
else
:
trainer
.
set_thread
(
dataset
.
thread_num
)
else
:
trainer
.
set_thread
(
thread
)
trainer
.
set_debug
(
debug
)
trainer
.
set_fetch_var_and_info
(
fetch_list
,
fetch_info
,
print_period
)
return
trainer
def
infer_from_dataset
(
self
,
program
=
None
,
dataset
=
None
,
fetch_list
=
None
,
scope
=
None
,
thread
=
0
,
opt_info
=
None
):
"""
The document of infer_from_dataset is almost the same as
train_from_dataset, except that in distributed training,
push gradients will be disabled in infer_from_dataset.
infer_from_dataset() can be used for evaluation in multi-thread
very easily.
Args:
program(Program|CompiledProgram): the program that needs to be run,
if not provided, then default_main_program (not compiled) will be used.
dataset(paddle.fluid.Dataset): dataset created outside this function,
a user should provide a well-defined dataset before calling this function.
Please check the document of Dataset if needed.
scope(Scope): the scope used to run this program, you can switch it to different scope
for each run. default is global_scope
thread(int): number of thread a user wants to run in this function. The actual number
of thread will be min(Dataset.thread_num, thread)
debug(bool): whether a user wants to run train_from_dataset
fetch_list(Variable List): fetch variable list, each variable
will be printed during training
fetch_info(String List): print information for each variable
print_period(int): the number of mini-batches for each print
Example:
.. code-block:: python
import paddle.fluid as fluid
place = fluid.CPUPlace()
exe = fluid.Executor(place)
x = fluid.layers.data(name="x", type="int64")
y = fluid.layers.data(name="y", type="int64")
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_use_var([x, y])
filelist = ["dataA.txt", "dataB.txt"]
dataset.set_filelist(filelist)
exe.run(fluid.default_startup_program())
exe.infer_from_dataset(program=fluid.default_main_program(),
dataset=dataset)
"""
trainer
=
self
.
_prepare_trainer
(
program
=
program
,
dataset
=
dataset
,
scope
=
scope
,
thread
=
thread
,
debug
=
debug
,
fetch_list
=
fetch_list
,
fetch_info
=
fetch_info
,
print_period
=
print_period
)
trainer
.
gen_trainer_desc
()
trainer
.
set_infer
(
True
)
dataset
.
_prepare_to_run
()
if
debug
:
#with open("train_desc.prototxt", "w") as fout:
with
open
(
str
(
id
(
program
))
+
"_train_desc.prototxt"
,
"w"
)
as
fout
:
fout
.
write
(
trainer
.
_desc
())
if
program
.
_fleet_opt
:
with
open
(
"fleet_desc.prototxt"
,
"w"
)
as
fout
:
fout
.
write
(
str
(
program
.
_fleet_opt
[
"fleet_desc"
]))
self
.
_dump_debug_info
(
program
=
program
,
trainer
=
trainer
)
self
.
_default_executor
.
run_from_dataset
(
program
.
desc
,
scope
,
dataset
.
dataset
,
trainer
.
_desc
())
def
train_from_dataset
(
self
,
program
=
None
,
dataset
=
None
,
scope
=
None
,
thread
=
0
,
debug
=
False
,
fetch_list
=
None
,
fetch_info
=
None
,
print_period
=
100
):
"""
Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
Given a program, either a program or compiled program, train_from_dataset will
consume all data samples in dataset. Input scope can be given by users. By default,
scope is global_scope(). The total number of thread run in training is `thread`.
Thread number used in training will be minimum value of threadnum in Dataset and
the value of thread in this interface. Debug can be set so that executor will display
Run-Time for all operators and the throughputs of current training task.
Note: train_from_dataset will destroy all resources created within executor for each run.
Args:
program(Program|CompiledProgram): the program that needs to be run,
if not provided, then default_main_program (not compiled) will be used.
dataset(paddle.fluid.Dataset): dataset created outside this function,
a user should provide a well-defined dataset before calling this function.
Please check the document of Dataset if needed.
scope(Scope): the scope used to run this program, you can switch it to different scope
for each run. default is global_scope
thread(int): number of thread a user wants to run in this function. The actual number
of thread will be min(Dataset.thread_num, thread)
debug(bool): whether a user wants to run train_from_dataset
fetch_list(Variable List): fetch variable list, each variable
will be printed during training
fetch_info(String List): print information for each variable
print_period(int): the number of mini-batches for each print
Example:
.. code-block:: python
import paddle.fluid as fluid
place = fluid.CPUPlace()
exe = fluid.Executor(place)
x = fluid.layers.data(name="x", type="int64")
y = fluid.layers.data(name="y", type="int64")
dataset = fluid.DatasetFactory().create_dataset()
dataset.set_use_var([x, y])
dataset.set_thread(2)
filelist = ["dataA.txt", "dataB.txt"]
dataset.set_filelist(filelist)
exe.run(fluid.default_startup_program())
exe.train_from_dataset(program=fluid.default_main_program(),
dataset=dataset)
"""
trainer
=
self
.
_prepare_trainer
(
program
=
program
,
dataset
=
dataset
,
scope
=
scope
,
thread
=
thread
,
debug
=
debug
,
fetch_list
=
fetch_list
,
fetch_info
=
fetch_info
,
print_period
=
print_period
)
trainer
.
gen_trainer_desc
()
dataset
.
_prepare_to_run
()
if
debug
:
self
.
_dump_debug_info
(
program
=
program
,
trainer
=
trainer
)
self
.
_default_executor
.
run_from_dataset
(
program
.
desc
,
scope
,
dataset
.
dataset
,
trainer
.
_desc
())
python/paddle/fluid/trainer_desc.py
浏览文件 @
b95b80bc
...
...
@@ -35,6 +35,7 @@ class TrainerDesc(object):
self
.
fleet_desc_
=
None
self
.
device_worker_
=
None
self
.
program_
=
None
self
.
infer_
=
False
def
set_fetch_var_and_info
(
self
,
fetch_vars
,
fetch_info
,
print_period
):
for
i
,
v
in
enumerate
(
fetch_vars
):
...
...
@@ -52,6 +53,9 @@ class TrainerDesc(object):
def
set_device_worker
(
self
,
device_worker
):
self
.
device_worker_
=
device_worker
def
set_infer
(
self
,
infer
):
self
.
infer_
=
infer
def
set_fleet_desc
(
self
,
fleet_desc
):
self
.
fleet_desc_
=
fleet_desc
...
...
@@ -77,6 +81,7 @@ class MultiTrainer(TrainerDesc):
def
gen_trainer_desc
(
self
):
super
(
MultiTrainer
,
self
).
gen_trainer_desc
()
self
.
proto_desc
.
class_name
=
"MultiTrainer"
self
.
device_worker_
.
set_infer
(
self
.
infer_
)
self
.
device_worker_
.
gen_worker_desc
(
self
.
proto_desc
)
...
...
@@ -94,5 +99,6 @@ class DistMultiTrainer(TrainerDesc):
self
.
proto_desc
.
class_name
=
"DistMultiTrainer"
if
self
.
program_
==
None
:
print
(
"None program"
)
self
.
device_worker_
.
set_infer
(
self
.
infer_
)
self
.
device_worker_
.
set_program
(
self
.
program_
)
self
.
device_worker_
.
gen_worker_desc
(
self
.
proto_desc
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录