diff --git a/benchmark/cluster/vgg16/vgg16_fluid.py b/benchmark/cluster/vgg16/vgg16_fluid.py index 786f224608f7d41c438411de0e09fedbcf2264b8..8b29227cfab2a36d5b9f6d17b837b33da8d2a92e 100644 --- a/benchmark/cluster/vgg16/vgg16_fluid.py +++ b/benchmark/cluster/vgg16/vgg16_fluid.py @@ -18,12 +18,13 @@ import sys import time import numpy as np import paddle.v2 as paddle -import paddle.v2.fluid as fluid -import paddle.v2.fluid.core as core -import paddle.v2.fluid.profiler as profiler +import paddle.fluid as fluid +import paddle.fluid.core as core +import paddle.fluid.profiler as profiler import argparse import functools import os +from paddle.fluid import debuger def str2bool(v): @@ -182,28 +183,27 @@ def main(): start_time = time.time() num_samples = 0 train_pass_acc.reset() - with profiler.profiler("CPU", 'total') as prof: - for batch_id, data in enumerate(train_reader()): - ts = time.time() - img_data = np.array( - map(lambda x: x[0].reshape(data_shape), data)).astype( - "float32") - y_data = np.array(map(lambda x: x[1], data)).astype("int64") - y_data = y_data.reshape([-1, 1]) - - loss, acc, b_size = exe.run( - trainer_prog, - feed={"pixel": img_data, - "label": y_data}, - fetch_list=[avg_cost, batch_acc, batch_size]) - iters += 1 - num_samples += len(data) - train_pass_acc.add(value=acc, weight=b_size) - print( - "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s" - % (pass_id, iters, loss, acc, - len(data) / (time.time() - ts)) - ) # The accuracy is the accumulation of batches, but not the current batch. + for batch_id, data in enumerate(train_reader()): + ts = time.time() + img_data = np.array( + map(lambda x: x[0].reshape(data_shape), data)).astype( + "float32") + y_data = np.array(map(lambda x: x[1], data)).astype("int64") + y_data = y_data.reshape([-1, 1]) + + loss, acc, b_size = exe.run( + trainer_prog, + feed={"pixel": img_data, + "label": y_data}, + fetch_list=[avg_cost, batch_acc, batch_size]) + iters += 1 + num_samples += len(data) + train_pass_acc.add(value=acc, weight=b_size) + print( + "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s" + % (pass_id, iters, loss, acc, + len(data) / (time.time() - ts)) + ) # The accuracy is the accumulation of batches, but not the current batch. pass_elapsed = time.time() - start_time pass_train_acc = train_pass_acc.eval() @@ -254,9 +254,7 @@ def main(): pserver_prog = t.get_pserver_program(current_endpoint) pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) - print("starting server side startup") exe.run(pserver_startup) - print("starting parameter server...") exe.run(pserver_prog) elif training_role == "TRAINER": # Parameter initialization diff --git a/benchmark/cluster/vgg16/vgg16_tf.py b/benchmark/cluster/vgg16/vgg16_tf.py index 996df0e314b867ea8de618dfd3977f490fbe8372..2d220478acae46566760209dbc012cff316946aa 100644 --- a/benchmark/cluster/vgg16/vgg16_tf.py +++ b/benchmark/cluster/vgg16/vgg16_tf.py @@ -292,14 +292,18 @@ def run_benchmark(cluster_spec, server): return np.mean(test_accs) config = tf.ConfigProto( - intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) + intra_op_parallelism_threads=1, + inter_op_parallelism_threads=1, + log_device_placement=True) config.gpu_options.allow_growth = True hooks = [tf.train.StopAtStepHook(last_step=1000000)] with tf.train.MonitoredTrainingSession( - master=server.target, is_chief=(args.task_index == 0), - hooks=hooks) as sess: + master=server.target, + is_chief=(args.task_index == 0), + hooks=hooks, + config=config) as sess: iters, num_samples, start_time = 0, 0, 0.0 for pass_id in range(args.num_passes): # train diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index da67701ec1af57df742dce105990cffa40f45d7c..a9b27933a5307aabeaf150aeb859e869197229f5 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -1 +1,2 @@ add_subdirectory(v2) +add_subdirectory(fluid) diff --git a/doc/fluid/CMakeLists.txt b/doc/fluid/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..cc999f5a8d70a2239ea3b130e9da172d5f681c65 --- /dev/null +++ b/doc/fluid/CMakeLists.txt @@ -0,0 +1,49 @@ +if(NOT DEFINED SPHINX_THEME) + set(SPHINX_THEME default) +endif() + +if(NOT DEFINED SPHINX_THEME_DIR) + set(SPHINX_THEME_DIR) +endif() + +# configured documentation tools and intermediate build results +set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build") + +# Sphinx cache with pickled ReST documents +set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees") + +# HTML output director +set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html") + +configure_file( + "${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in" + "${BINARY_BUILD_DIR_EN}/conf.py" + @ONLY) + +sphinx_add_target(paddle_fluid_docs + html + ${BINARY_BUILD_DIR_EN} + ${SPHINX_CACHE_DIR_EN} + ${CMAKE_CURRENT_SOURCE_DIR} + ${SPHINX_HTML_DIR_EN}) + +# configured documentation tools and intermediate build results +set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build") + +# Sphinx cache with pickled ReST documents +set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees") + +# HTML output directory +set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html") + +configure_file( + "${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.cn.in" + "${BINARY_BUILD_DIR_CN}/conf.py" + @ONLY) + +sphinx_add_target(paddle_fluid_docs_cn + html + ${BINARY_BUILD_DIR_CN} + ${SPHINX_CACHE_DIR_CN} + ${CMAKE_CURRENT_SOURCE_DIR} + ${SPHINX_HTML_DIR_CN}) diff --git a/doc/fluid/build_and_install/index_cn.rst b/doc/fluid/build_and_install/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..9276236f9fd511bde3570a8c88b437119911d60a --- /dev/null +++ b/doc/fluid/build_and_install/index_cn.rst @@ -0,0 +1,2 @@ +安装与使用 +------------ diff --git a/doc/fluid/build_and_install/index_en.rst b/doc/fluid/build_and_install/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..cc1e61a58a026a0f5c3b106875a8a86dc9cba613 --- /dev/null +++ b/doc/fluid/build_and_install/index_en.rst @@ -0,0 +1,2 @@ +Build and Install +------------ diff --git a/doc/fluid/design/index_cn.rst b/doc/fluid/design/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..f1887be6901653d4263d711d78b626d2abfd45c9 --- /dev/null +++ b/doc/fluid/design/index_cn.rst @@ -0,0 +1,2 @@ +设计思想 +------------ diff --git a/doc/fluid/design/index_en.rst b/doc/fluid/design/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..18a4b4122f6e3f0096676f34ffea8a80aa9b6696 --- /dev/null +++ b/doc/fluid/design/index_en.rst @@ -0,0 +1,2 @@ +Design +------------ diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..e1edf079fa0f85eb7f6709fd945fffae88625d01 --- /dev/null +++ b/doc/fluid/dev/index_cn.rst @@ -0,0 +1,2 @@ +开发标准 +------------ diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..faf9dfcd315fddc4774c3717b41086fa6c6bf85a --- /dev/null +++ b/doc/fluid/dev/index_en.rst @@ -0,0 +1,4 @@ +Development +------------ + +This is Development page diff --git a/doc/fluid/faq/index_cn.rst b/doc/fluid/faq/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..395c1109891b5a00eab6f0b44d855658def7fdd6 --- /dev/null +++ b/doc/fluid/faq/index_cn.rst @@ -0,0 +1,2 @@ +FAQ +------------ diff --git a/doc/fluid/faq/index_en.rst b/doc/fluid/faq/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..395c1109891b5a00eab6f0b44d855658def7fdd6 --- /dev/null +++ b/doc/fluid/faq/index_en.rst @@ -0,0 +1,2 @@ +FAQ +------------ diff --git a/doc/fluid/getstarted/index_cn.rst b/doc/fluid/getstarted/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..c4d8525f23ee18cb7f41ab2f0d148fc1dcc852b2 --- /dev/null +++ b/doc/fluid/getstarted/index_cn.rst @@ -0,0 +1,4 @@ +新手入门 +------------ + +新手入门 diff --git a/doc/fluid/getstarted/index_en.rst b/doc/fluid/getstarted/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..a4efd05e2fd94ac0e2cbbc8603e6b0261b7e787f --- /dev/null +++ b/doc/fluid/getstarted/index_en.rst @@ -0,0 +1,4 @@ +GET STARTED +------------ + +This is get started page diff --git a/doc/fluid/howto/cluster/fluid_cluster_train_cn.md b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md new file mode 100644 index 0000000000000000000000000000000000000000..1b6f767869aaa800c122c8e7a06a1413e48e10e0 --- /dev/null +++ b/doc/fluid/howto/cluster/fluid_cluster_train_cn.md @@ -0,0 +1,145 @@ +# Fluid 分布式版本使用指南 +本篇文章将说明如何在PaddlePaddle Fluid版本下进行分布式训练的配置和执行,以及将单机训练脚本改造成支持集群训练的版本 + +## 准备工作 +* 可用的集群 + + 包含一个或多个计算节点的集群,每一个节点都能够执行PaddlePaddle的训练任务且拥有唯一的IP地址,集群内的所有计算节点可以通过网络相互通信。 +* 安装PaddlePaddle Fluid with Distribution版本 + + 所有的计算节点上均需要按照分布式版本的PaddlePaddle, 在用于GPU等设备的机器上还需要额外安装好相应的驱动程序和CUDA的库。 + + **注意:**当前对外提供的PaddlePaddle版本并不支持分布式,需要通过源码重新编译。编译和安装方法参见[编译和安装指南](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html)。 + cmake编译命令中需要将WITH_DISTRIBUTE设置为ON,下面是一个cmake编译指令示例: +``` bash +cmake .. -DWITH_DOC=OFF -DWITH_GPU=OFF -DWITH_DISTRIBUTE=ON -DWITH_SWIG_PY=ON -DWITH_PYTHON=ON +``` + +## 更新训练脚本 +这里,我们以[Deep Learing 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)课程中的第一章 fit a line 为例,描述如何将单机训练脚本改造成支持集群训练的版本。 +### 单机训练脚本示例 +```python +import paddle.v2 as paddle +import paddle.fluid as fluid + +x = fluid.layers.data(name='x', shape=[13], dtype='float32') +y_predict = fluid.layers.fc(input=x, size=1, act=None) +y = fluid.layers.data(name='y', shape=[1], dtype='float32') + +cost = fluid.layers.square_error_cost(input=y_predict, label=y) +avg_cost = fluid.layers.mean(x=cost) + +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +sgd_optimizer.minimize(avg_cost) + +BATCH_SIZE = 20 + +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.uci_housing.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) +exe = fluid.Executor(place) + +exe.run(fluid.default_startup_program()) + +PASS_NUM = 100 +for pass_id in range(PASS_NUM): + fluid.io.save_persistables(exe, "./fit_a_line.model/") + fluid.io.load_persistables(exe, "./fit_a_line.model/") + for data in train_reader(): + avg_loss_value, = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) + + if avg_loss_value[0] < 10.0: + exit(0) # if avg cost less than 10.0, we think our code is good. +exit(1) +``` + +我们创建了一个简单的全连接神经网络程序,并且通过Fluid的Executor执行了100次迭代,现在我们需要将该单机版本的程序更新为分布式版本的程序。 +### 介绍Parameter Server +在非分布式版本的训练脚本中,只存在Trainer一种角色,它不仅处理常规的计算任务,也处理参数相关的计算、保存和优化任务。在分布式版本的训练过程中,由于存在多个Trainer节点进行同样的数据计算任务,因此需要有一个中心化的节点来统一处理参数相关的保存和分配。在PaddlePaddle中,我们称这样的节点为[Parameter Server](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/dist_train/parameter_server.md) + +**因此,在分布式的Fluid环境中,我们有两个角色需要创建,分别是Parameter Server和Trainer。** + +### 分布式训练 +Fliud专门提供了工具[Distributed Transpiler](https://github.com/PaddlePaddle/Paddle/blob/ba65d54d9d3b41cd3c5171b00f476d4e60133ddb/doc/fluid/design/dist_train/distributed_architecture.md#distributed-transpiler)用于将单机版的训练程序转换为分布式版本的训练程序。工具背后的理念是找出程序的优化算子和梯度参数,将他们分隔为两部分,通过send/recv 操作算子进行连接,优化算子和梯度参数可以在优化器的minimize函数的返回值中获取到。 +```python +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) +``` +将Distributed Transpiler、优化算子和梯度函数放在一个代码中如下: +```python +... #define the program, cost, and create sgd optimizer + +optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters + +t = fluid.DistributeTranspiler() # create the transpiler instance +# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2) + +... #create executor + +# in pserver, run this +#current_endpoint here means current pserver IP:PORT you wish to run on +pserver_prog = t.get_pserver_program(current_endpoint) +pserver_startup = t.get_startup_program(current_endpoint, pserver_prog) +exe.run(pserver_startup) +exe.run(pserver_prog) + +# in trainer, run this +... # define data reader +exe.run(fluid.default_startup_program()) +for pass_id in range(100): + for data in train_reader(): + exe.run(t.get_trainer_program()) +``` +### 分布式训练脚本运行说明 +分布式任务的运行需要将表格中说明的多个参数进行赋值: + +| 参数名 | 值类型 | 说明 | 示例 | +|:-------------|:------|:---------------------------------------|:-------------| +| trainer_id | int | 当前训练节点的ID,训练节点ID编号为0 - n-1, n为trainers的值 | 0/1/2/3 | +| pservers | str | parameter server 列表 | 127.0.0.1:6710,127.0.0.1:6711 | +| trainers | int | 训练节点的总个数,>0的数字 | 4 | +| server_endpoint | str | 当前所起的服务节点的IP:PORT | 127.0.0.1:8789 | +| training_role | str | 节点角色, TRAINER/PSERVER | PSERVER | + +**注意:** ```training_role```是用来区分当前所起服务的角色的,用于训练程序中,用户可根据需要自行定义,其他参数为fluid.DistributeTranspiler的transpile函数所需要,需要在调用函数前进行定义,样例如下: + +```python +t = fluid.DistributeTranspiler() +t.transpile( + optimize_ops, + params_grads, + trainer_id, + pservers=pserver, + trainers=trainers) +if training_role == "PSERVER": + pserver_prog = t.get_pserver_program(server_endpoint) + pserver_startup = t.get_startup_program(server_endpoint, pserver_prog) +``` + +### Demo +完整的demo代码位于Fluid的test目录下的[book](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/book/test_fit_a_line.py)中。 + +第一步,进入demo代码所在目录: +```bash +cd /paddle/python/paddle/fluid/tests/book +``` + +第二步,启动Parameter Server: +```bash +PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.2 TRAINERS=2 POD_IP=192.168.1.2 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=PSERVER python test_fit_a_line.py +``` +执行命令后请等待出现提示: ```Server listening on 192.168.1.2:6174 ```, 表示Paramter Server已经正常启动。 + +第三步,启动Trainer: +```bash +PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.3 TRAINERS=2 POD_IP=192.168.1.3 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=TRAINER python test_fit_a_line.py +``` +由于我们定义的Trainer的数量是2个,因此需要在另外一个计算节点上再启动一个Trainer。 + +现在我们就启动了一个包含一个Parameter Server和两个Trainer的分布式训练任务。 diff --git a/doc/fluid/howto/index_cn.rst b/doc/fluid/howto/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..a92abad0c56a4fd821f9a6b9f4f5909504c8aaf1 --- /dev/null +++ b/doc/fluid/howto/index_cn.rst @@ -0,0 +1,2 @@ +进阶使用 +------------ diff --git a/doc/fluid/howto/index_en.rst b/doc/fluid/howto/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..06036bdce554a96443ea1fa47c15f7670ea6089d --- /dev/null +++ b/doc/fluid/howto/index_en.rst @@ -0,0 +1,4 @@ +HOW TO +------------ + +This is how to page diff --git a/doc/fluid/index_cn.rst b/doc/fluid/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..be3bed4393a7346d4f2a53e2c7409ee7165fb5b6 --- /dev/null +++ b/doc/fluid/index_cn.rst @@ -0,0 +1,12 @@ + PaddlePaddle Fluid +========================== + +.. toctree:: + :maxdepth: 1 + + getstarted/index_cn.rst + design/index_cn.rst + build_and_install/index_cn.rst + howto/index_cn.rst + dev/index_cn.rst + faq/index_cn.rst diff --git a/doc/fluid/index_en.rst b/doc/fluid/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..87c831420a57b4b9ce77ecf44f7f4d0feec833a6 --- /dev/null +++ b/doc/fluid/index_en.rst @@ -0,0 +1,12 @@ + PaddlePaddle Fluid +========================== + +.. toctree:: + :maxdepth: 1 + + getstarted/index_en.rst + design/index_en.rst + build_and_install/index_en.rst + howto/index_en.rst + dev/index_en.rst + faq/index_en.rst diff --git a/doc/v2/dev/write_docs_cn.rst b/doc/v2/dev/write_docs_cn.rst index a055bb04c0c093c9159290067e5ccbd2525cd519..23615f8830e99633676c83ec5d28139a732c623c 100644 --- a/doc/v2/dev/write_docs_cn.rst +++ b/doc/v2/dev/write_docs_cn.rst @@ -2,13 +2,14 @@ 如何贡献文档 ############# -PaddlePaddle的文档包括中英文两个部分。文档都是通过 ``cmake`` 驱动 ``sphinx`` 编译生成,也可以利用paddlepaddle.org工具来编译和预览文档。 +PaddlePaddle的文档包括中英文两个部分。文档都是通过 ``cmake`` 驱动 ``sphinx`` 编译生成的,PaddlePaddle.org工具可以帮助我们实现这一编译过程,并提供更好的预览效果。 如何构建文档 ============ PaddlePaddle的文档构建有两种方式,分别为使用paddlepaddle.org工具和不使用paddlepaddle.org工具,两种方式都有各自的优点,前者方便预览,后者方便开发者进行调试。这两种方式中又分别有使用docker和不使用docker的两种构建方法。 +我们建议使用PaddlePaddle.org工具来构建文档。 使用PaddlePaddle.org工具 ------------------------ @@ -31,7 +32,7 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D docker run -it -p 8000:8000 -v `pwd`:/var/content paddlepaddle/paddlepaddle.org:latest 注意: PaddlePaddle.org 会在 -v (volume) 指定的内容存储库运行命令 -之后再用网页连到http://localhost:8000就可以在网页上生成需要的文档 +之后再用网页连到 http://localhost:8000 就可以在网页上生成需要的文档 编译后的文件将被存储在工作目录 /.ppo_workspace/content。 如果不想使用Docker,你还可以通过运行Django框架直接激活工具的服务器。使用下面的命令来运行它。 @@ -56,7 +57,7 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D python manage.py runserver 工具服务器将读取环境变量 CONTENT_DIR 搜索代码库。请指定的PaddlePaddle工作目录给环境变量 CONTENT_DIR。 -之后再用网页连到http://localhost:8000就可以在网页上生成需要的文档。 +之后再用网页连到 http://localhost:8000 就可以在网页上生成需要的文档。 编译后的文件将被存储在工作目录 /.ppo_workspace/content。 想了解更多PaddlePaddle.org工具的详细信息,可以 `点击这里 `_ 。 @@ -96,7 +97,7 @@ PaddlePaddle.org工具可以配合Docker使用,需要在系统里先安装好D python -m SimpleHTTPServer 8088 -在浏览器中输入http://localhost:8088就可以看到编译生成的中/英文的文档页面和英文的API页面,下图为生成的英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。 +在浏览器中输入 http://localhost:8088 就可以看到编译生成的中/英文的文档页面和英文的API页面,下图为生成的英文文档首页示例。注意,示例中由于使用了sphinx的原始主题,所以页面的风格与官网并不一致,但这并不影响开发者进行调试。 .. image:: src/doc_en.png :align: center diff --git a/doc/v2/dev/write_docs_en.rst b/doc/v2/dev/write_docs_en.rst index f3408a84269aaeef19986c220454555fbbe30e23..15ff0d34ad622f100fe98d8738b830e47c35b41b 100644 --- a/doc/v2/dev/write_docs_en.rst +++ b/doc/v2/dev/write_docs_en.rst @@ -2,21 +2,20 @@ Contribute Documentation ######################## -PaddlePaddle supports English documentation ``doc`` and Chinese documentation ``doc_cn``. -Both are compiled by `cmake`_ and `sphinx`_ , the compiled documentations will be stored under ``doc`` and ``doc_cn`` directories. -When using the PaddlePaddle.org to compile documentations, the compiled documentations will be stored under a consolidated directory: .ppo_workspace/content +PaddlePaddle's documentation includes both Chinese and English versions. The documentation is built using the ``cmake`` command to drive the ``sphinx`` compiler. The PaddlePaddle.org tool helps us to implement this compilation process and provides better preview results. -How to Build Documentations -============ +How to build Documentation +=========================== -We recommend using PaddlePaddle.org tool to build documentation +PaddlePaddle's documentation is built in two ways: using the PaddlePaddle.org tool and without using it. Both methods have their own advantages. The former facilitates previewing, while the latter facilitates debugging by the developer. We could choose to build the documentation with Docker or without it in each of the above ways. +We recommend using PaddlePaddle.org tool to build documentation. -Use PaddlePaddle.org tool --------------- -This is the recommended method to build documentation. It can compile documentation and preview the documentation in a web browser. +Using PaddlePaddle.org tool +----------------------------- +This is the recommended method to build documentation, because it can automatically compile the documentation and preview the documentation directly in a web page. Note that, although you can preview the documentation in other ways, its style may not be consistent with the official website. Compiling with the PaddlePaddle.org tool produces a preview that will be consistent with the official website documentation style. -The tool uses Docker, please install it on your system. Please check Docker official website on how to install Docker. You may use the following commands to activate the tool +The PaddlePaddle.org tool can be used with Docker and Docker needs to be installed first. Please refer to `Docker's official website `_ on how to install Docker. After installing Docker, you may use the following commands to activate the tool .. code-block:: bash @@ -32,8 +31,8 @@ The tool uses Docker, please install it on your system. Please check Docker offi # Please specify the working directory through -v docker run -it -p 8000:8000 -v `pwd`:/var/content paddlepaddle/paddlepaddle.org:latest -Note: PaddlePaddle.org will read the content repos specified in the -v (volume) flag of the docker run command -Use a web browser and navigate to http://localhost:8000, click the buttons to compile the documentation +Note: PaddlePaddle.org will read the content repos specified in the -v (volume) flag of the docker run commands +Use a web browser and navigate to http://localhost:8000. Click the buttons to compile the documentation. The compiled documentations will be stored in /.ppo_workspace/content @@ -58,19 +57,62 @@ If you don't wish to use Docker, you can also activate the tool through Django. pip install -r requirements.txt python manage.py runserver -Use a web browser and navigate to http://localhost:8000, click the buttons to compile the documentation +Specify the PaddlePaddle working directory for the environment variable CONTENT_DIR so that the tool could find where the working directory is. + +Use a web browser and navigate to http://localhost:8000. Click the buttons to compile the documentation The compiled documentations will be stored in /.ppo_workspace/content -If you want to learn more on the PaddlePaddle.org, please `click here `_ 。 +Please `click here `_ for more information about the PaddlePaddle.org tool. + + +Manually Building the Documentation +------------------------------------- + +Build PaddlePaddle's documentation with Docker,you need to install Docker first. Please refer to `Docker's official website `_ on how to install Docker. After Docker is installed, you could use the scripts in the source directory to build the documentation. + +[TBD] + +If you do not wish to use Docker, you can also use the following commands to directly build the PaddlePaddle documentation. + +.. code-block:: bash + + mkdir paddle + cd paddle + git clone https://github.com/PaddlePaddle/Paddle.git + mkdir -p build + cd build + cmake .. -DCMAKE_BUILD_TYPE=Release -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON + + # If you only need to build documents, use the following commands + make -j $processors gen_proto_py + make -j $processors paddle_docs paddle_docs_cn + + # If you only need to build APIs, use the following commands + make -j $processors gen_proto_py framework_py_proto + make -j $processors copy_paddle_pybind + make -j $processors paddle_api_docs + +$processors indicates that as many processes as the CPU cores are started to compile in parallel. It should be set according to the number of CPU cores of your machine. + +After the compilation is complete, enter the ``doc/v2`` directory. If you chose to build documents, it will generate ``cn/html/`` and ``en/html`` subdirectories under this directory. If you chose to build APIs,it will generate``api/en/html`` subdirectory. Please enter these directories respectively and execute the following commands: + +.. code-block:: bash + + python -m SimpleHTTPServer 8088 + +Use a web browser and navigate to http://localhost:8000, you could see the compiled Chinese/English documents page and the English APIs page. The following figure is an example of the built English documents home page. Note that due to the sphinx's original theme used in the example, the style of the page is not consistent with the official website, but this does not affect the developer's debugging. -How to write Documentations -============ +.. image:: src/doc_en.png + :align: center + :scale: 60 % -PaddlePaddle uses `sphinx`_ to compile documentations,Please check sphinx official website for more detail. +How to write Documentation +=========================== +PaddlePaddle uses `sphinx`_ to compile documentation,Please check sphinx official website for more detail. How to update www.paddlepaddle.org -============================ +=================================== Please create PRs and submit them to github, please check `Contribute Code `_ 。 PaddlePaddle develop branch will update the documentation once the PR is merged. User may check latest `Chinese Docs `_ and diff --git a/doc/v2/howto/capi/index_en.rst b/doc/v2/howto/capi/index_en.rst index 2cbbe362fd8e06abe9866d998f60fbb3458a80b5..4ec39c9d5223442cf6872edaf7befeb5053b538e 100644 --- a/doc/v2/howto/capi/index_en.rst +++ b/doc/v2/howto/capi/index_en.rst @@ -1,6 +1,23 @@ -C-API Prediction Library +C-API Inference Library ======================== +After we train a neural network, we use it to do inference. Inference is the process of preparing input data and propagating it through the model to produce the result. + +Compared with model training, prediction has the following features: + +#. Inference does not require backpropagation and parameter updates, as required during training. +#. Labels are not needed in prediction. +#. Most of the time, predictions need to be integrated with the user system. + +Therefore, the model prediction SDK needs to be designed separately and has the following features: + +#. The predictive SDK does not include backpropagation and parameter updates to reduce the size of the SDK. +#. The predictive SDK needs a simple user interface for ease of use. +#. Since the input data may have a variety of structures, the format of the input data is clearly and compactly packaged. +#. In order to be compatible with user's system, the SDK's interface must conform to the C-standard interface. + +PaddlePaddle provides C-API to solve the above problem. Following are the guidelines to use the C-API: + .. toctree:: :maxdepth: 1 diff --git a/doc/v2/howto/index_en.rst b/doc/v2/howto/index_en.rst index 2079be766f2d8e6d63ca11dccd98f80613309ceb..bf2320a169df149cc8d44612d975ecf64f8ea779 100644 --- a/doc/v2/howto/index_en.rst +++ b/doc/v2/howto/index_en.rst @@ -1,11 +1,37 @@ HOW TO -======= +======== + +PaddlePaddle provides the users the ability to flexibly set various command line parameters to control the model training and inference process. Please refer to the following instructions on using PaddlePaddle: + +.. toctree:: + :maxdepth: 1 + + cmd_parameter/index_cn.rst + +PaddlePaddle supports distributed training tasks on fabric clusters, MPI clusters, and Kubernetes clusters. For detailed configuration and usage instructions, refer to: + +.. toctree:: + :maxdepth: 1 + + cluster/index_cn.rst + +PaddlePaddle provides a C-API for inference. We provide the following guidelines for using the C-API: + +.. toctree:: + :maxdepth: 1 + + capi/index_cn.rst + +PaddlePaddle supports a variety of flexible and efficient recurrent neural networks. For details, please refer to: + +.. toctree:: + :maxdepth: 1 + + rnn/index_cn.rst + +How to use the built-in timing tool, nvprof, or nvvp to run performance analysis and tuning, please refer to: .. toctree:: :maxdepth: 1 - cmd_parameter/index_en.rst - cluster/index_en.rst - capi/index_en.rst - rnn/index_en.rst - optimization/gpu_profiling_en.rst + optimization/gpu_profiling_cn.rst diff --git a/paddle/fluid/framework/mixed_vector.h b/paddle/fluid/framework/mixed_vector.h index 6a6fa538718837a958b7d82c37f583f62f4bf96e..d99a15547b77a0e0d71b14bd1c798cd1485720b0 100644 --- a/paddle/fluid/framework/mixed_vector.h +++ b/paddle/fluid/framework/mixed_vector.h @@ -176,7 +176,7 @@ class Vector { // resize the vector void resize(size_t size) { - if (size + 1 < capacity()) { + if (size + 1 <= capacity()) { size_ = size; } else { MutableCPU(); diff --git a/paddle/fluid/framework/mixed_vector_test.cu b/paddle/fluid/framework/mixed_vector_test.cu index 4bf78499f2fda2d2631e05ddcbbd0bc49498af1a..d57f82510833d6a0cea7009cf1f0b49543812f8d 100644 --- a/paddle/fluid/framework/mixed_vector_test.cu +++ b/paddle/fluid/framework/mixed_vector_test.cu @@ -104,3 +104,11 @@ TEST(mixed_vector, ForEach) { for (auto& v : tmp) { } } + +TEST(mixed_vector, Reserve) { + paddle::framework::Vector vec; + vec.reserve(1); + vec.push_back(0); + vec.push_back(0); + vec.push_back(0); +} diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index d74c47b981e51f12d99098818c71f3f6ec455d98..ec637658c03ad94624ee9a4f5def6a84387d293e 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -613,3 +613,14 @@ REGISTER_OP(swish, ops::ActivationOp, ops::SwishOpMaker, swish_grad, ops::grad_functor>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); + +REGISTER_OP_CPU_KERNEL(relu, + ops::ActivationKernel>, + ops::ActivationKernel>); +REGISTER_OP_CPU_KERNEL( + relu_grad, ops::ActivationGradKernel>, + ops::ActivationGradKernel>); diff --git a/paddle/fluid/operators/activation_op.cu b/paddle/fluid/operators/activation_op.cu index b2633d017623c3a6a3bab2b416009d6d7c8fc1d4..7709a551dc155e1f3cd2a19a689999608f497beb 100644 --- a/paddle/fluid/operators/activation_op.cu +++ b/paddle/fluid/operators/activation_op.cu @@ -14,6 +14,7 @@ limitations under the License. */ #define EIGEN_USE_GPU #include "paddle/fluid/operators/activation_op.h" +#include "paddle/fluid/platform/float16.h" namespace ops = paddle::operators; @@ -31,3 +32,16 @@ namespace ops = paddle::operators; ops::grad_functor>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL); + +REGISTER_OP_CUDA_KERNEL( + relu, ops::ActivationKernel>, + ops::ActivationKernel>, + ops::ActivationKernel>); +REGISTER_OP_CUDA_KERNEL( + relu_grad, ops::ActivationGradKernel>, + ops::ActivationGradKernel>); diff --git a/paddle/fluid/operators/activation_op.h b/paddle/fluid/operators/activation_op.h index 8f791a6ca81c13a92fd8adf0d1620203bd4cf7d6..b95e793586219b7c413d0c7adb835081874d9363 100644 --- a/paddle/fluid/operators/activation_op.h +++ b/paddle/fluid/operators/activation_op.h @@ -772,7 +772,6 @@ struct SwishGradFunctor : public BaseActivationFunctor { __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor); \ __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor); \ __macro(exp, ExpFunctor, ExpGradFunctor); \ - __macro(relu, ReluFunctor, ReluGradFunctor); \ __macro(tanh, TanhFunctor, TanhGradFunctor); \ __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor); \ __macro(sqrt, SqrtFunctor, SqrtGradFunctor); \ diff --git a/paddle/fluid/operators/average_accumulates_op.cc b/paddle/fluid/operators/average_accumulates_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..c95077fcbdb6b6c0da31f30b795dbe4d7d4fe6fe --- /dev/null +++ b/paddle/fluid/operators/average_accumulates_op.cc @@ -0,0 +1,216 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/average_accumulates_op.h" + +namespace paddle { +namespace operators { + +template <> +void GetAccumulators( + const framework::ExecutionContext& ctx, int64_t& num_updates_, + int64_t& num_accumulates_, int64_t& old_num_accumulates_) { + auto* in_old_num_accumulates = ctx.Input("in_old_num_accumulates"); + auto* in_num_accumulates = ctx.Input("in_num_accumulates"); + auto* in_num_updates = ctx.Input("in_num_updates"); + + old_num_accumulates_ = in_old_num_accumulates->data()[0]; + num_accumulates_ = in_num_accumulates->data()[0]; + num_updates_ = in_num_updates->data()[0]; +} + +template <> +void SetAccumulators( + const framework::ExecutionContext& ctx, int64_t num_updates_, + int64_t num_accumulates_, int64_t old_num_accumulates_) { + auto* out_old_num_accumulates = ctx.Output("out_old_num_accumulates"); + auto* out_num_accumulates = ctx.Output("out_num_accumulates"); + auto* out_num_updates = ctx.Output("out_num_updates"); + + out_old_num_accumulates->data()[0] = old_num_accumulates_; + out_num_accumulates->data()[0] = num_accumulates_; + out_num_updates->data()[0] = num_updates_; +} + +class AverageAccumulatesOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE( + ctx->HasInput("param"), + "Input (param) of average_accumulates op should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("in_sum_1"), + "Input (sum_1) of average_accumulates op should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("in_sum_2"), + "Input (sum_2) of average_accumulates op should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("in_sum_3"), + "Input (sum_3) of average_accumulates op should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("in_num_accumulates"), + "Input (in_num_accumulates) of average_accumulates op should " + "not be null."); + PADDLE_ENFORCE(ctx->HasInput("in_old_num_accumulates"), + "Input (old_num_accumulates) of average_accumulates op " + "should not be null."); + PADDLE_ENFORCE( + ctx->HasInput("in_num_updates"), + "Input (num_updates) of average_accumulates op should not be null."); + + PADDLE_ENFORCE( + ctx->HasOutput("out_sum_1"), + "Output (sum_1) of average_accumulates op should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("out_sum_2"), + "Output (sum_2) of average_accumulates op should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("out_sum_3"), + "Output (sum_3) of average_accumulates op should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("out_num_accumulates"), + "Output (num_accumulates) of average_accumulates op should " + "not be null."); + PADDLE_ENFORCE(ctx->HasOutput("out_old_num_accumulates"), + "Output (old_num_accumulates) of average_accumulates op " + "should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("out_num_updates"), + "Output (num_updates) of average_accumulates op should not be null."); + + auto in_dim = ctx->GetInputDim("param"); + + ctx->SetOutputDim("out_sum_1", in_dim); + ctx->SetOutputDim("out_sum_2", in_dim); + ctx->SetOutputDim("out_sum_3", in_dim); + ctx->SetOutputDim("out_num_accumulates", {1}); + ctx->SetOutputDim("out_old_num_accumulates", {1}); + ctx->SetOutputDim("out_num_updates", {1}); + } + + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const override { + return framework::OpKernelType( + framework::ToDataType(ctx.Input("param")->type()), + ctx.GetPlace()); + } +}; + +class AverageAccumulatesOpMaker : public framework::OpProtoAndCheckerMaker { + public: + AverageAccumulatesOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("param", "(Tensor), The parameter to be accumulated."); + AddInput("in_sum_1", + "(Tensor), A tensor used to store the parameter " + "sums with the same shape as input(param)."); + AddInput("in_sum_2", + "(Tensor), A auxiliary tensor to help " + "accumulating sums of parameter values with the same shape as " + "input(param). It is used to avoid loss of precision due to too " + "many sums."); + AddInput("in_sum_3", + "(Tensor), A auxiliary tensor to help " + "accumulating sums of parameter values with the same shape as " + "input(param)."); + AddInput("in_num_accumulates", + "(Tensor), The accumulating times of current window with " + "shape [1]."); + AddInput( + "in_old_num_accumulates", + "(Tensor), The accumulating times of previous window with " + "shape [1]."); + AddInput("in_num_updates", + "(Tensor), The total number of batches used by trainning " + "before this batch with shape [1]."); + + AddOutput("out_sum_1", + "(Tensor), A tensor used to store the " + "parameter sums with the same shape as input(param)."); + AddOutput("out_sum_2", + "(Tensor), A auxiliary tensor to help " + "accumulating sums of parameter values with the same shape as " + "input(param). It is used to avoid loss of precision due to too " + "many sums."); + AddOutput("out_sum_3", + "(Tensor), A auxiliary tensor to help " + "accumulating sums of parameter values with the same shape as " + "input(param)."); + AddOutput( + "out_num_accumulates", + "(Tensor), The accumulating times of current window with " + "shape [1]."); + AddOutput( + "out_old_num_accumulates", + "(Tensor) The accumulating times of previous window with " + "shape [1]."); + AddOutput( + "out_num_updates", + "(Tensor), The total number of batches used by trainning " + "before this batch with shape [1]."); + + AddAttr("average_window", + "(float, default 0) " + "The rate of average window size relative to num_updates.") + .SetDefault(0); + AddAttr("max_average_window", + "(int64_t) " + "Maximum size of average window. It suggests that the " + "number of mini-batches " + "in one pass is appropriate value to set."); + AddAttr("min_average_window", + "(int64_t, default 10000L) " + "Minimu size of average window.") + .SetDefault(10000L); + + AddComment(R"DOC( +AverageAccumulates Operator. +Accumulate the sum of parameter whtin sliding window. The size of sliding window is +determined by 'average_window', 'max_average_window' and 'min_average_window'. +Memory was shared by Input(in_sum_1) and Output(out_sum_1) which acts as an accumulator 'sum_1'. +'sum_2', 'sum_3', 'num_accumulates', 'old_num_accumulates' and 'num_updates' were the same as 'sum_1'. + +All the accumulators were inited to zero before training. + +And for a mini-batch in training, accumulators were computed as below steps: + num_updates += 1 + num_accumulates += 1 + sum_1 += param + if num_updates % kMaxNumAccumulates == 0: + sum_2 += sum_1 + sum_1 = 0 + if num_accumulates >= min_average_window && num_accumulates >= min(max_average_window, num_updates * average_window): + sum_3 = sum_1 + sum_2 + sum_1 = 0 + sum_2 = 0 + old_num_accumulates = num_accumulates + num_accumulates = 0 + +)DOC"); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OPERATOR(average_accumulates, ops::AverageAccumulatesOp, + ops::AverageAccumulatesOpMaker, + paddle::framework::EmptyGradOpMaker); +REGISTER_OP_CPU_KERNEL( + average_accumulates, + ops::AverageAccumulatesKernel, + ops::AverageAccumulatesKernel); diff --git a/paddle/fluid/operators/average_accumulates_op.cu b/paddle/fluid/operators/average_accumulates_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..270c46984465e5ca62eaa8da3955ce7a3eaa0c57 --- /dev/null +++ b/paddle/fluid/operators/average_accumulates_op.cu @@ -0,0 +1,63 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/operators/average_accumulates_op.h" +#include "paddle/fluid/platform/gpu_info.h" + +namespace paddle { +namespace operators { +template <> +void GetAccumulators( + const framework::ExecutionContext& ctx, int64_t& num_updates_, + int64_t& num_accumulates_, int64_t& old_num_accumulates_) { + auto* in_old_num_accumulates = ctx.Input("in_old_num_accumulates"); + auto* in_num_accumulates = ctx.Input("in_num_accumulates"); + auto* in_num_updates = ctx.Input("in_num_updates"); + auto stream = ctx.cuda_device_context().stream(); + memory::Copy(platform::CPUPlace(), &old_num_accumulates_, + platform::CUDAPlace(), in_old_num_accumulates->data(), + sizeof(int64_t), stream); + memory::Copy(platform::CPUPlace(), &num_accumulates_, platform::CUDAPlace(), + in_num_accumulates->data(), sizeof(int64_t), stream); + memory::Copy(platform::CPUPlace(), &num_updates_, platform::CUDAPlace(), + in_num_updates->data(), sizeof(int64_t), stream); +} + +template <> +void SetAccumulators( + const framework::ExecutionContext& ctx, int64_t num_updates_, + int64_t num_accumulates_, int64_t old_num_accumulates_) { + auto stream = ctx.cuda_device_context().stream(); + auto* out_old_num_accumulates = ctx.Output("out_old_num_accumulates"); + auto* out_num_accumulates = ctx.Output("out_num_accumulates"); + auto* out_num_updates = ctx.Output("out_num_updates"); + + memory::Copy(platform::CUDAPlace(), out_old_num_accumulates->data(), + platform::CPUPlace(), &old_num_accumulates_, sizeof(int64_t), + stream); + memory::Copy(platform::CUDAPlace(), out_num_accumulates->data(), + platform::CPUPlace(), &num_accumulates_, sizeof(int64_t), + stream); + memory::Copy(platform::CUDAPlace(), out_num_updates->data(), + platform::CPUPlace(), &num_updates_, sizeof(int64_t), stream); +} + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + average_accumulates, + ops::AverageAccumulatesKernel, + ops::AverageAccumulatesKernel); diff --git a/paddle/fluid/operators/average_accumulates_op.h b/paddle/fluid/operators/average_accumulates_op.h new file mode 100644 index 0000000000000000000000000000000000000000..f858109d1428dc67d94c253e5a39818eb2d4560d --- /dev/null +++ b/paddle/fluid/operators/average_accumulates_op.h @@ -0,0 +1,113 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/math/math_function.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +using EigenVector = framework::EigenVector; + +template +void GetAccumulators(const framework::ExecutionContext& ctx, + int64_t& num_updates, int64_t& num_accumulates, + int64_t& old_num_accumulates); + +template +void SetAccumulators(const framework::ExecutionContext& ctx, + int64_t num_updates, int64_t num_accumulates, + int64_t old_num_accumulates); + +template +class AverageAccumulatesKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + // It is used to avoid loss of precision + static const int64_t kMaxNumAccumulates = 16384; + // Get accumulators from input + int64_t num_updates = 0; + int64_t num_accumulates = 0; + int64_t old_num_accumulates = 0; + GetAccumulators(ctx, num_updates, num_accumulates, + old_num_accumulates); + + // Get attrs + float average_window = ctx.Attr("average_window"); + int64_t max_average_window = ctx.Attr("max_average_window"); + int64_t min_average_window = ctx.Attr("min_average_window"); + min_average_window = + std::min(min_average_window, max_average_window); + + // Get inputs + auto* param = ctx.Input("param"); + auto* in_sum_1 = ctx.Input("in_sum_1"); + auto* in_sum_2 = ctx.Input("in_sum_2"); + auto* in_sum_3 = ctx.Input("in_sum_3"); + auto param_tensor = EigenVector::Flatten(*param); + auto in_sum_1_tensor = EigenVector::Flatten(*in_sum_1); + auto in_sum_2_tensor = EigenVector::Flatten(*in_sum_2); + auto in_sum_3_tensor = EigenVector::Flatten(*in_sum_3); + + // Get outputs + auto* out_sum_1 = ctx.Output("out_sum_1"); + auto* out_sum_2 = ctx.Output("out_sum_2"); + auto* out_sum_3 = ctx.Output("out_sum_3"); + auto out_sum_1_tensor = EigenVector::Flatten(*out_sum_1); + auto out_sum_2_tensor = EigenVector::Flatten(*out_sum_2); + auto out_sum_3_tensor = EigenVector::Flatten(*out_sum_3); + + // Compute + auto& place = *ctx.template device_context().eigen_device(); + math::SetConstant constant_functor; + ++num_updates; + ++num_accumulates; + out_sum_1_tensor.device(place) = in_sum_1_tensor + param_tensor; + out_sum_2_tensor.device(place) = in_sum_2_tensor; + out_sum_3_tensor.device(place) = in_sum_3_tensor; + if (num_updates % kMaxNumAccumulates == 0) { + // Move the sum to a different buffer to avoid loss of precision due to + // too many sums. + out_sum_2_tensor.device(place) = in_sum_2_tensor + in_sum_1_tensor; + constant_functor(ctx.template device_context(), out_sum_1, + 0.0); + } + if (num_accumulates >= min_average_window && + num_accumulates >= std::min(max_average_window, + num_updates * average_window)) { + // Now the average window is too long, discard the old sum. + out_sum_3_tensor.device(place) = in_sum_1_tensor + in_sum_2_tensor; + constant_functor(ctx.template device_context(), out_sum_1, + 0.0); + constant_functor(ctx.template device_context(), out_sum_2, + 0.0); + old_num_accumulates = num_accumulates; + num_accumulates = 0; + } + + // Set accumulators to output + SetAccumulators(ctx, num_updates, num_accumulates, + old_num_accumulates); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/batch_norm_op.cc b/paddle/fluid/operators/batch_norm_op.cc index 5d27f5b60c7115a32aeeca5ec2a6654471c310c7..36049ee6a4a0d2a251b6d10cf1ff05a9d9845089 100644 --- a/paddle/fluid/operators/batch_norm_op.cc +++ b/paddle/fluid/operators/batch_norm_op.cc @@ -457,12 +457,39 @@ class BatchNormGradKernel } }; +class BatchNormGradMaker : public framework::SingleGradOpDescMaker { + public: + using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; + + protected: + std::unique_ptr Apply() const override { + auto *op = new framework::OpDesc(); + op->SetType("batch_norm_grad"); + op->SetInput("X", Input("X")); + op->SetInput(framework::GradVarName("Y"), OutputGrad("Y")); + + op->SetInput("Scale", Input("Scale")); + op->SetInput("SavedMean", Output("SavedMean")); + op->SetInput("SavedVariance", Output("SavedVariance")); + + op->SetAttrMap(Attrs()); + + op->SetOutput(framework::GradVarName("X"), InputGrad("X")); + op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale")); + op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias")); + + return std::unique_ptr(op); + } +}; + } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, - batch_norm_grad, ops::BatchNormGradOp); +REGISTER_OPERATOR(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, + ops::BatchNormGradMaker); +REGISTER_OPERATOR(batch_norm_grad, ops::BatchNormGradOp); + REGISTER_OP_CPU_KERNEL( batch_norm, ops::BatchNormKernel); diff --git a/paddle/fluid/operators/box_coder_op.cc b/paddle/fluid/operators/box_coder_op.cc index eccdd408a17a07a541480705242b137f8207c139..ec416f725e75fae57484751ee8a066c0b9da8a70 100644 --- a/paddle/fluid/operators/box_coder_op.cc +++ b/paddle/fluid/operators/box_coder_op.cc @@ -126,6 +126,7 @@ width and height. } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker); +REGISTER_OPERATOR(box_coder, ops::BoxCoderOp, ops::BoxCoderOpMaker, + paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL(box_coder, ops::BoxCoderKernel, ops::BoxCoderKernel); diff --git a/paddle/fluid/operators/cross_entropy_op.h b/paddle/fluid/operators/cross_entropy_op.h index ec315695a68befc2e3de798fdb3fa146a903aaff..6da3a24dc89a85fe432b6350d3af7b0e84337c9d 100644 --- a/paddle/fluid/operators/cross_entropy_op.h +++ b/paddle/fluid/operators/cross_entropy_op.h @@ -78,7 +78,7 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { for (int64_t i = 0; i < batch_size; ++i) { PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); int64_t index = i * class_num + label_data[i]; - dx_data[index] = -dy_data[i] / x_data[index]; + dx_data[index] = math::TolerableValue()(-dy_data[i] / x_data[index]); } } } diff --git a/paddle/fluid/operators/detail/CMakeLists.txt b/paddle/fluid/operators/detail/CMakeLists.txt index 94395ccfbcbd74ee40552a5c70dc8b8063a5f851..2b19f0448955d2d7582f23ac133c14ffdf5c9e49 100644 --- a/paddle/fluid/operators/detail/CMakeLists.txt +++ b/paddle/fluid/operators/detail/CMakeLists.txt @@ -1,6 +1,8 @@ if(WITH_DISTRIBUTE) - grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc grpc_server.cc PROTO send_recv.proto DEPS lod_tensor selected_rows) + grpc_library(sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc + grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor selected_rows) set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") set_source_files_properties(test_serde.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) - cc_test(serde_test SRCS test_serde.cc DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc) + cc_test(serde_test SRCS test_serde.cc variable_response.cc DEPS grpc++_unsecure grpc_unsecure gpr + cares zlib protobuf sendrecvop_grpc) endif() diff --git a/paddle/fluid/operators/detail/bytebuffer_stream.h b/paddle/fluid/operators/detail/bytebuffer_stream.h index 099deb12d0e436427c147ab9b1eb553b712e14fb..0cbe514d0498b4775c5cb4ff3e7ff4f968da4180 100644 --- a/paddle/fluid/operators/detail/bytebuffer_stream.h +++ b/paddle/fluid/operators/detail/bytebuffer_stream.h @@ -23,9 +23,107 @@ limitations under the License. */ #include "google/protobuf/io/coded_stream.h" #include "google/protobuf/io/zero_copy_stream.h" +namespace grpc { +// A ZeroCopyInputStream that reads from grpc_byte_buffer +class GrpcBufferReader final + : public ::google::protobuf::io::ZeroCopyInputStream { + typedef void (CoreCodegenInterface::*OldReaderInitAPI)( + grpc_byte_buffer_reader* reader, grpc_byte_buffer* buffer); + typedef int (CoreCodegenInterface::*NewReaderInitAPI)( + grpc_byte_buffer_reader* reader, grpc_byte_buffer* buffer); + void ReaderInit(OldReaderInitAPI ptr, grpc_byte_buffer_reader* reader, + grpc_byte_buffer* buffer) { + (g_core_codegen_interface->*ptr)(reader, buffer); + } + void ReaderInit(NewReaderInitAPI ptr, grpc_byte_buffer_reader* reader, + grpc_byte_buffer* buffer) { + int result = (g_core_codegen_interface->*ptr)(reader, buffer); + (void)result; + } + + public: + explicit GrpcBufferReader(grpc_byte_buffer* buffer) + : byte_count_(0), backup_count_(0) { + ReaderInit(&CoreCodegenInterface::grpc_byte_buffer_reader_init, &reader_, + buffer); + } + ~GrpcBufferReader() override { + g_core_codegen_interface->grpc_byte_buffer_reader_destroy(&reader_); + } + + bool Next(const void** data, int* size) override { + if (backup_count_ > 0) { + *data = GRPC_SLICE_START_PTR(slice_) + GRPC_SLICE_LENGTH(slice_) - + backup_count_; + GPR_CODEGEN_ASSERT(backup_count_ <= INT_MAX); + *size = (int)backup_count_; + backup_count_ = 0; + return true; + } + if (!g_core_codegen_interface->grpc_byte_buffer_reader_next(&reader_, + &slice_)) { + return false; + } + g_core_codegen_interface->grpc_slice_unref(slice_); + *data = GRPC_SLICE_START_PTR(slice_); + // On win x64, int is only 32bit + GPR_CODEGEN_ASSERT(GRPC_SLICE_LENGTH(slice_) <= INT_MAX); + byte_count_ += * size = (int)GRPC_SLICE_LENGTH(slice_); + return true; + } + + void BackUp(int count) override { backup_count_ = count; } + + bool Skip(int count) override { + const void* data; + int size; + while (Next(&data, &size)) { + if (size >= count) { + BackUp(size - count); + return true; + } + // size < count; + count -= size; + } + // error or we have too large count; + return false; + } + + ::google::protobuf::int64 ByteCount() const override { + return byte_count_ - backup_count_; + } + + private: + int64_t byte_count_; + int64_t backup_count_; + grpc_byte_buffer_reader reader_; + grpc_slice slice_; +}; + +}; // namespace grpc + namespace paddle { namespace operators { namespace detail { +// Source provides a way for a particular RPC implementation to provide +// received data to ParseFrom. +class Source { + public: + virtual ~Source() {} + + // Return the stream that contains the data to be parsed. + // Note that this method might be invoked more than once if + // ParseFrom needs to fall back to a more expensive parsing method. + // Every call must return a stream pointing at the beginning of + // the serialized RecvTensorResponse. + // + // Note that a subsequent call to contents() invalidates previous + // results of contents(). + // + // Ownership of the returned stream is retained by the Source and + // should not be deleted by the caller. + virtual ::google::protobuf::io::ZeroCopyInputStream* contents() = 0; +}; // A ZeroCopyInputStream that reads from a grpc::ByteBuffer. class GrpcByteBufferSource @@ -46,6 +144,42 @@ class GrpcByteBufferSource ::google::protobuf::int64 byte_count_; }; +class GrpcByteBufferSourceWrapper : public Source { + public: + GrpcByteBufferSourceWrapper(GrpcByteBufferSource* source) : source_(source) {} + virtual ::google::protobuf::io::ZeroCopyInputStream* contents() override { + return source_; + } + + private: + GrpcByteBufferSource* source_; +}; + +class GrpcByteSource : public Source { + public: + explicit GrpcByteSource(grpc_byte_buffer* buffer) : buffer_(buffer) {} + ~GrpcByteSource() override { DeleteStream(); } + + typedef ::grpc::GrpcBufferReader Reader; + + ::google::protobuf::io::ZeroCopyInputStream* contents() override { + DeleteStream(); + stream_ = new (&space_) Reader(buffer_); + return stream_; + } + + private: + void DeleteStream() { + if (stream_) { + stream_->~Reader(); + } + } + + grpc_byte_buffer* buffer_; // Not owned + Reader* stream_ = nullptr; // Points into space_ if non-nullptr + char space_[sizeof(Reader)]; +}; + } // namespace detail } // namespace operators } // namespace paddle diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc index ddeeebec58e02f1686fd2e3d3e5ac1a4c4fd3c59..eb19685aa6cb73862b9e31afbf9c5138659b1b13 100644 --- a/paddle/fluid/operators/detail/grpc_client.cc +++ b/paddle/fluid/operators/detail/grpc_client.cc @@ -13,7 +13,9 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "grpc_client.h" +#include #include "paddle/fluid/framework/threadpool.h" + namespace paddle { namespace operators { namespace detail { @@ -31,8 +33,9 @@ bool RPCClient::AsyncSendVariable(const std::string& ep, framework::Async([var_name_val, p_ctx, ep_val, p_scope, time_out, ch, this] { auto* var = p_scope->FindVar(var_name_val); - sendrecv::VariableMessage req; - SerializeToMessage(var_name_val, var, *p_ctx, &req); + + ::grpc::ByteBuffer req; + SerializeToByteBuffer(var_name_val, var, *p_ctx, &req); // varhandle VarHandle var_h; @@ -46,8 +49,11 @@ bool RPCClient::AsyncSendVariable(const std::string& ep, s->Prepare(var_h, time_out); s->response_call_back_ = NULL; - auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_); - rpc->Finish(&s->reply_, &s->status_, (void*)s); + auto call = std::move(s->stub_g_.PrepareUnaryCall( + s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, + &cq_)); + call->StartCall(); + call->Finish(&s->reply_, &s->status_, (void*)s); }); req_count_++; @@ -56,9 +62,19 @@ bool RPCClient::AsyncSendVariable(const std::string& ep, } void ProcGetResponse(const VarHandle& var_h, - const sendrecv::VariableMessage& ret_msg) { - auto* outvar = var_h.scope->FindVar(var_h.name); - DeserializeFromMessage(ret_msg, *var_h.ctx, outvar); + // const sendrecv::VariableMessage& ret_msg) { + const ::grpc::ByteBuffer& ret_msg) { + framework::Variable* outvar = NULL; + DeserializeFromByteBuffer(ret_msg, *var_h.ctx, var_h.scope, outvar); +} + +template +void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) { + ::grpc::Slice slice(proto.ByteSizeLong()); + proto.SerializeWithCachedSizesToArray( + const_cast(reinterpret_cast(slice.begin()))); + ::grpc::ByteBuffer tmp(&slice, 1); + result->Swap(&tmp); } bool RPCClient::AsyncGetVariable(const std::string& ep, @@ -88,8 +104,13 @@ bool RPCClient::AsyncGetVariable(const std::string& ep, s->Prepare(var_h, time_out); s->response_call_back_ = ProcGetResponse; - auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_); - rpc->Finish(&s->reply_, &s->status_, (void*)s); + ::grpc::ByteBuffer buf; + RequestToByteBuffer(req, &buf); + + auto call = std::move(s->stub_g_.PrepareUnaryCall( + s->context_.get(), "/sendrecv.SendRecvService/GetVariable", buf, &cq_)); + call->StartCall(); + call->Finish(&s->reply_, &s->status_, (void*)s); }); req_count_++; diff --git a/paddle/fluid/operators/detail/grpc_client.h b/paddle/fluid/operators/detail/grpc_client.h index f520367dd981288416631fdad15241fb5d811d07..8216ac52fbbb3dcd2f30957cde58a850a77b08d6 100644 --- a/paddle/fluid/operators/detail/grpc_client.h +++ b/paddle/fluid/operators/detail/grpc_client.h @@ -25,6 +25,11 @@ limitations under the License. */ #include #include +#include +#include +#include +#include + #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" @@ -49,15 +54,11 @@ struct VarHandle { } }; -void ProcGetResponse(const VarHandle& var_h, - const sendrecv::VariableMessage& msg); +void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg); class BaseProcessor { public: - explicit BaseProcessor(std::shared_ptr ch) { - stub_ = sendrecv::SendRecvService::NewStub(ch); - context_ = NULL; - } + explicit BaseProcessor(std::shared_ptr ch) { context_ = NULL; } virtual ~BaseProcessor() {} @@ -82,19 +83,18 @@ class BaseProcessor { virtual void Process() = 0; - std::unique_ptr stub_; std::unique_ptr context_; grpc::Status status_; VarHandle var_h_; }; -typedef std::function +typedef std::function RequestSendCallBack; class SendProcessor : public BaseProcessor { public: explicit SendProcessor(std::shared_ptr ch) - : BaseProcessor(ch) {} + : BaseProcessor(ch), stub_g_(ch) {} virtual ~SendProcessor() {} @@ -104,17 +104,18 @@ class SendProcessor : public BaseProcessor { } } - sendrecv::VoidMessage reply_; + ::grpc::GenericStub stub_g_; + ::grpc::ByteBuffer reply_; RequestSendCallBack response_call_back_ = NULL; }; -typedef std::function +typedef std::function RequestGetCallBack; class GetProcessor : public BaseProcessor { public: explicit GetProcessor(std::shared_ptr ch) - : BaseProcessor(ch) {} + : BaseProcessor(ch), stub_g_(ch) {} virtual ~GetProcessor() {} @@ -124,30 +125,37 @@ class GetProcessor : public BaseProcessor { } } - sendrecv::VariableMessage reply_; + ::grpc::ByteBuffer reply_; + ::grpc::GenericStub stub_g_; RequestGetCallBack response_call_back_ = ProcGetResponse; }; class BatchBarrierProcessor : public BaseProcessor { public: explicit BatchBarrierProcessor(std::shared_ptr ch) - : BaseProcessor(ch) {} + : BaseProcessor(ch) { + stub_ = sendrecv::SendRecvService::NewStub(ch); + } virtual ~BatchBarrierProcessor() {} virtual void Process() {} sendrecv::VoidMessage reply_; + std::unique_ptr stub_; }; class FetchBarrierProcessor : public BaseProcessor { public: explicit FetchBarrierProcessor(std::shared_ptr ch) - : BaseProcessor(ch) {} + : BaseProcessor(ch) { + stub_ = sendrecv::SendRecvService::NewStub(ch); + } virtual ~FetchBarrierProcessor() {} virtual void Process() {} sendrecv::VariableMessage reply_; + std::unique_ptr stub_; }; class RPCClient { diff --git a/paddle/fluid/operators/detail/grpc_server.cc b/paddle/fluid/operators/detail/grpc_server.cc index 8fff430cc4890925e4edba2fadb8eb7fc647d181..9691d1e86b111def5b82e022dd01795aaf5c7b0d 100644 --- a/paddle/fluid/operators/detail/grpc_server.cc +++ b/paddle/fluid/operators/detail/grpc_server.cc @@ -14,7 +14,7 @@ limitations under the License. */ #include "paddle/fluid/operators/detail/grpc_server.h" -using grpc::ServerAsyncResponseWriter; +using ::grpc::ServerAsyncResponseWriter; namespace paddle { namespace operators { @@ -26,9 +26,10 @@ enum CallStatus { PROCESS = 0, FINISH }; // https://stackoverflow.com/questions/41732884/grpc-multiple-services-in-cpp-async-server class RequestBase { public: - explicit RequestBase(sendrecv::SendRecvService::AsyncService* service, - grpc::ServerCompletionQueue* cq) - : service_(service), cq_(cq), status_(PROCESS) { + explicit RequestBase(GrpcService::AsyncService* service, + ::grpc::ServerCompletionQueue* cq, + const platform::DeviceContext* dev_ctx) + : service_(service), cq_(cq), status_(PROCESS), dev_ctx_(dev_ctx) { PADDLE_ENFORCE(cq_); } virtual ~RequestBase() {} @@ -42,55 +43,58 @@ class RequestBase { } protected: - grpc::ServerContext ctx_; - sendrecv::SendRecvService::AsyncService* service_; - grpc::ServerCompletionQueue* cq_; + ::grpc::ServerContext ctx_; + GrpcService::AsyncService* service_; + ::grpc::ServerCompletionQueue* cq_; CallStatus status_; + const platform::DeviceContext* dev_ctx_; }; -typedef std::pair MessageWithName; - class RequestSend final : public RequestBase { public: - explicit RequestSend(sendrecv::SendRecvService::AsyncService* service, - grpc::ServerCompletionQueue* cq, - SimpleBlockQueue* queue) - : RequestBase(service, cq), queue_(queue), responder_(&ctx_) { - service_->RequestSendVariable(&ctx_, &request_, &responder_, cq_, cq_, - this); + explicit RequestSend(GrpcService::AsyncService* service, + ::grpc::ServerCompletionQueue* cq, + framework::Scope* scope, ReceivedQueue* queue, + const platform::DeviceContext* dev_ctx) + : RequestBase(service, cq, dev_ctx), queue_(queue), responder_(&ctx_) { + request_.reset(new VariableResponse(scope, dev_ctx_)); + int method_id = static_cast(detail::GrpcMethod::kSendVariable); + service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_, + cq_, cq_, this); } virtual ~RequestSend() {} - virtual std::string GetReqName() { return request_.varname(); } + virtual std::string GetReqName() { return request_->Varname(); } virtual void Process() { - MessageWithName msg_with_name = - std::make_pair(request_.varname(), std::move(request_)); - queue_->Push(std::move(msg_with_name)); - responder_.Finish(reply_, grpc::Status::OK, this); + queue_->Push(std::make_pair(request_->Varname(), request_)); + + sendrecv::VoidMessage reply; + responder_.Finish(reply, ::grpc::Status::OK, this); status_ = FINISH; } protected: - sendrecv::VariableMessage request_; - sendrecv::VoidMessage reply_; - SimpleBlockQueue* queue_; + std::shared_ptr request_; + ReceivedQueue* queue_; ServerAsyncResponseWriter responder_; }; class RequestGet final : public RequestBase { public: - explicit RequestGet(sendrecv::SendRecvService::AsyncService* service, - grpc::ServerCompletionQueue* cq, framework::Scope* scope, + explicit RequestGet(GrpcService::AsyncService* service, + ::grpc::ServerCompletionQueue* cq, + framework::Scope* scope, const platform::DeviceContext* dev_ctx, SimpleBlockQueue* queue) - : RequestBase(service, cq), + : RequestBase(service, cq, dev_ctx), responder_(&ctx_), scope_(scope), - dev_ctx_(dev_ctx), queue_(queue) { - service_->RequestGetVariable(&ctx_, &request_, &responder_, cq_, cq_, this); + int method_id = static_cast(detail::GrpcMethod::kGetVariable); + service_->RequestAsyncUnary(method_id, &ctx_, &request_, &responder_, cq_, + cq_, this); } virtual ~RequestGet() {} @@ -101,24 +105,26 @@ class RequestGet final : public RequestBase { // proc request. std::string var_name = request_.varname(); auto* var = scope_->FindVar(var_name); + + ::grpc::ByteBuffer reply; if (var_name != FETCH_BARRIER_MESSAGE) { - SerializeToMessage(var_name, var, *dev_ctx_, &reply_); + SerializeToByteBuffer(var_name, var, *dev_ctx_, &reply); } - // TODO(gongwb): check var's info. - responder_.Finish(reply_, grpc::Status::OK, this); + + responder_.Finish(reply, ::grpc::Status::OK, this); status_ = FINISH; - MessageWithName msg_with_name = - // request name reply - std::make_pair(var_name, std::move(reply_)); - queue_->Push(msg_with_name); + + if (var_name == FETCH_BARRIER_MESSAGE) { + sendrecv::VariableMessage msg; + MessageWithName msg_with_name = std::make_pair(var_name, msg); + queue_->Push(msg_with_name); + } } protected: sendrecv::VariableMessage request_; - sendrecv::VariableMessage reply_; - ServerAsyncResponseWriter responder_; + ServerAsyncResponseWriter<::grpc::ByteBuffer> responder_; framework::Scope* scope_; - const platform::DeviceContext* dev_ctx_; SimpleBlockQueue* queue_; }; @@ -133,8 +139,8 @@ void AsyncGRPCServer::WaitClientGet(int count) { } void AsyncGRPCServer::RunSyncUpdate() { - grpc::ServerBuilder builder; - builder.AddListeningPort(address_, grpc::InsecureServerCredentials()); + ::grpc::ServerBuilder builder; + builder.AddListeningPort(address_, ::grpc::InsecureServerCredentials()); builder.SetMaxSendMessageSize(std::numeric_limits::max()); builder.SetMaxReceiveMessageSize(std::numeric_limits::max()); builder.RegisterService(&service_); @@ -182,8 +188,8 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() { if (is_shut_down_) { return; } - RequestSend* send = - new RequestSend(&service_, cq_send_.get(), &var_recv_queue_); + RequestSend* send = new RequestSend(&service_, cq_send_.get(), scope_, + &var_recv_queue_, dev_ctx_); VLOG(4) << "Create RequestSend status:" << send->Status(); } @@ -198,7 +204,7 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() { } // FIXME(typhoonzero): change cq_name to enum. -void AsyncGRPCServer::HandleRequest(grpc::ServerCompletionQueue* cq, +void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq, std::string cq_name, std::function TryToRegisterNewOne) { TryToRegisterNewOne(); diff --git a/paddle/fluid/operators/detail/grpc_server.h b/paddle/fluid/operators/detail/grpc_server.h index b6666bcf96e484b0b17b935c0efb2930f19b19f2..9c21a07432031a6e4ac03fda357ff6bbff618418 100644 --- a/paddle/fluid/operators/detail/grpc_server.h +++ b/paddle/fluid/operators/detail/grpc_server.h @@ -14,28 +14,35 @@ limitations under the License. */ #pragma once +#include +#include + #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/var_type.h" +#include "paddle/fluid/operators/detail/sendrecvop_utils.h" #include "paddle/fluid/operators/detail/simple_block_queue.h" #include "paddle/fluid/operators/detail/send_recv.grpc.pb.h" #include "paddle/fluid/operators/detail/send_recv.pb.h" -#include -#include -#include -#include "paddle/fluid/operators/detail/sendrecvop_utils.h" +#include "paddle/fluid/operators/detail/grpc_service.h" + +//#include namespace paddle { namespace operators { namespace detail { +typedef std::pair> + ReceivedMessage; +typedef SimpleBlockQueue ReceivedQueue; + typedef std::pair MessageWithName; class RequestBase; -class AsyncGRPCServer final : public sendrecv::SendRecvService::Service { +class AsyncGRPCServer final { public: explicit AsyncGRPCServer(const std::string &address) : address_(address) {} @@ -50,14 +57,16 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service { void SetDevCtx(const platform::DeviceContext *dev_ctx) { dev_ctx_ = dev_ctx; } - const MessageWithName Get() { return this->var_recv_queue_.Pop(); } + const ReceivedMessage Get() { return this->var_recv_queue_.Pop(); } - void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); } + void Push(const std::string &msg_name) { + this->var_recv_queue_.Push(std::make_pair(msg_name, nullptr)); + } void ShutDown(); protected: - void HandleRequest(grpc::ServerCompletionQueue *cq, std::string cq_name, + void HandleRequest(::grpc::ServerCompletionQueue *cq, std::string cq_name, std::function TryToRegisterNewOne); void TryToRegisterNewSendOne(); void TryToRegisterNewGetOne(); @@ -66,18 +75,19 @@ class AsyncGRPCServer final : public sendrecv::SendRecvService::Service { private: std::mutex cq_mutex_; volatile bool is_shut_down_ = false; - std::unique_ptr cq_send_; - std::unique_ptr cq_get_; + std::unique_ptr<::grpc::ServerCompletionQueue> cq_send_; + std::unique_ptr<::grpc::ServerCompletionQueue> cq_get_; - sendrecv::SendRecvService::AsyncService service_; - std::unique_ptr server_; + GrpcService::AsyncService service_; + std::unique_ptr<::grpc::Server> server_; std::string address_; framework::Scope *scope_; const platform::DeviceContext *dev_ctx_; + // received variable from RPC, operators fetch variable from this queue. - SimpleBlockQueue var_recv_queue_; SimpleBlockQueue var_get_queue_; + ReceivedQueue var_recv_queue_; // condition of the sub program std::mutex barrier_mutex_; diff --git a/paddle/fluid/operators/detail/grpc_service.h b/paddle/fluid/operators/detail/grpc_service.h new file mode 100644 index 0000000000000000000000000000000000000000..ae6f9db3bd31a4b4839b34e8e53dd87f1ecf4b1d --- /dev/null +++ b/paddle/fluid/operators/detail/grpc_service.h @@ -0,0 +1,118 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "paddle/fluid/operators/detail/variable_response.h" + +// NOTE: This method was originally created by tensorflow +// (https://github.com/tensorflow/tensorflow/) we borrow this +// method and did some modifications so that we can parse gRPC +// requests without too much copying of the tensor data. + +namespace grpc { +class CompletionQueue; +class Channel; +class RpcService; +class ServerCompletionQueue; +class ServerContext; + +// Support parsing/unparsing of tensorflow::VariableResponse. +// Wire-format is identical to RecvVariableResponse. +template <> +class SerializationTraits { + public: + static Status Serialize( + const paddle::operators::detail::VariableResponse& msg, + grpc_byte_buffer** bp, bool* own_buffer) { + PADDLE_ENFORCE(false, "SerializationTraits::Serialize not implemented!"); + return Status(); + } + static Status Deserialize(grpc_byte_buffer* buffer, + paddle::operators::detail::VariableResponse* msg, + int max_message_size = INT_MAX) { + if (buffer == nullptr) { + return Status(StatusCode::INTERNAL, "No payload"); + } + + Status result = g_core_codegen_interface->ok(); + if (result.ok()) { + paddle::operators::detail::GrpcByteSource source(buffer); + int ret = msg->Parse(&source); + if (ret != 0) { + result = Status(StatusCode::INTERNAL, "VariableResponse parse error"); + } + } + g_core_codegen_interface->grpc_byte_buffer_destroy(buffer); + return result; + } +}; +} // namespace grpc + +namespace paddle { +namespace operators { +namespace detail { + +enum class GrpcMethod { + kSendVariable, + kGetVariable, +}; + +static const int kGrpcNumMethods = + static_cast(GrpcMethod::kGetVariable) + 1; + +inline const char* GrpcMethodName(GrpcMethod id) { + switch (id) { + case GrpcMethod::kSendVariable: + return "/sendrecv.SendRecvService/SendVariable"; + case GrpcMethod::kGetVariable: + return "/sendrecv.SendRecvService/GetVariable"; + } + + // Shouldn't be reached. + PADDLE_ENFORCE(false, "Invalid id: not found valid method name"); + return nullptr; +} + +class GrpcService final { + public: + class AsyncService : public ::grpc::Service { + public: + AsyncService() { + for (int i = 0; i < kGrpcNumMethods; ++i) { + AddMethod(new ::grpc::internal::RpcServiceMethod( + GrpcMethodName(static_cast(i)), + ::grpc::internal::RpcMethod::NORMAL_RPC, nullptr)); + ::grpc::Service::MarkMethodAsync(i); + } + } + virtual ~AsyncService() {} + + // Make RequestAsyncUnary public for grpc_call.h + using ::grpc::Service::RequestAsyncUnary; + }; +}; + +} // namespace detail +} // namespace operator +} // namespace paddle diff --git a/paddle/fluid/operators/detail/send_recv.proto b/paddle/fluid/operators/detail/send_recv.proto index b0215d4a80c9440f09c35434903fd6166b03e8b0..598aaa4c51a6c5cd32eeffe08bbae849aee1a1df 100644 --- a/paddle/fluid/operators/detail/send_recv.proto +++ b/paddle/fluid/operators/detail/send_recv.proto @@ -32,6 +32,9 @@ enum VarType { SELECTED_ROWS = 1; } +// NOTICE(gongwb):don't modify this proto if you are not +// not familar with how we serialize in sendrecvop_utils.h +// and deserilize it in variable_response.h. message VariableMessage { enum Type { // Pod Types @@ -45,7 +48,6 @@ message VariableMessage { } message LodData { repeated int64 lod_data = 1; } - string varname = 1; // TODO(Yancey1989): reference framework::proto::VarDesc::VarType VarType type = 2; @@ -64,3 +66,5 @@ message VariableMessage { } message VoidMessage {} + +message TestMessage { int64 test_1 = 1; } diff --git a/paddle/fluid/operators/detail/sendrecvop_utils.cc b/paddle/fluid/operators/detail/sendrecvop_utils.cc index 39117eeeb611b025c426938c60ddf82c6af232ca..d7bbf79c50651943d91c38bbaab775f5ee8dc395 100644 --- a/paddle/fluid/operators/detail/sendrecvop_utils.cc +++ b/paddle/fluid/operators/detail/sendrecvop_utils.cc @@ -13,61 +13,19 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/detail/sendrecvop_utils.h" +#include +#include #include "google/protobuf/io/coded_stream.h" #include "google/protobuf/io/zero_copy_stream.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/operators/detail/bytebuffer_stream.h" #include "paddle/fluid/operators/detail/proto_encoder_helper.h" +#include "paddle/fluid/operators/detail/variable_response.h" namespace paddle { namespace operators { namespace detail { -void SerializeToMessage(const std::string& name, const framework::Variable* var, - const platform::DeviceContext& ctx, - sendrecv::VariableMessage* msg) { - msg->set_varname(name); - std::ostringstream oss; - switch (framework::ToVarType(var->Type())) { - case framework::proto::VarType_Type_LOD_TENSOR: - msg->set_type(sendrecv::VarType::LOD_TENSOR); - framework::SerializeToStream(oss, var->Get(), ctx); - break; - case framework::proto::VarType_Type_SELECTED_ROWS: - msg->set_type(sendrecv::VarType::SELECTED_ROWS); - framework::SerializeToStream(oss, var->Get(), - ctx); - break; - default: { - PADDLE_THROW("Serialize does not support type: %s", - typeid(var->Type()).name()); - break; - } - } - msg->set_serialized(oss.str()); -} - -void DeserializeFromMessage(const sendrecv::VariableMessage& msg, - const platform::DeviceContext& ctx, - framework::Variable* var) { - std::istringstream iss(msg.serialized()); - switch (msg.type()) { - case sendrecv::VarType::LOD_TENSOR: - DeserializeFromStream(iss, var->GetMutable(), ctx); - break; - case sendrecv::VarType::SELECTED_ROWS: { - DeserializeFromStream(iss, var->GetMutable(), - ctx); - break; - } - default: { - PADDLE_THROW("Deserialize does not support type: %s", - typeid(var->Type()).name()); - break; - } - } -} - void SerializeToByteBuffer(const std::string& name, framework::Variable* var, const platform::DeviceContext& ctx, ::grpc::ByteBuffer* msg) { @@ -123,6 +81,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, static_cast(ctx); auto copy_size = tensor.memory_size(); payload = memory::Alloc(cpu, copy_size); + memory::Copy(cpu, payload, boost::get(tensor.place()), reinterpret_cast(tensor.data()), @@ -132,6 +91,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, platform::CPUPlace cpu; memory::Free(cpu, backing); }; + #endif } else { payload = tensor.data(); @@ -219,80 +179,11 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg, const platform::DeviceContext& ctx, - framework::Variable* var) { - sendrecv::VariableMessage meta; - GrpcByteBufferSource source; - source.Init(msg); - ::google::protobuf::io::CodedInputStream input(&source); - // do zerocopy parsing - PADDLE_ENFORCE(meta.ParseFromCodedStream(&input)); - PADDLE_ENFORCE(input.ConsumedEntireMessage()); - // dims is needed by both tensor and selectedrows - std::vector vecdims; - for (auto& d : meta.dims()) { - vecdims.push_back(d); - } - framework::DDim dims = framework::make_ddim(vecdims); - - if (meta.type() == sendrecv::LOD_TENSOR) { - auto* tensor = var->GetMutable(); - tensor->Resize(dims); - void* tensor_data = tensor->mutable_data( - ctx.GetPlace(), - paddle::operators::detail::ToTypeIndex(meta.data_type())); - framework::LoD lod; - for (int i = 0; i < meta.lod_level(); ++i) { - framework::Vector v; - for (int j = 0; j < meta.lod(i).lod_data_size(); ++j) { - v.push_back(meta.lod(i).lod_data(j)); - } - lod.push_back(v); - } - tensor->set_lod(lod); - // How to avoid copying and use the message buffer directly? - // Maybe need to find a way to release all memory except tensor content. - if (platform::is_gpu_place(ctx.GetPlace())) { -#ifdef PADDLE_WITH_CUDA - platform::CPUPlace cpu; - auto& gpu_dev_ctx = static_cast(ctx); - memory::Copy(boost::get(tensor->place()), - tensor_data, cpu, - reinterpret_cast(meta.serialized().data()), - meta.serialized().size(), gpu_dev_ctx.stream()); - ctx.Wait(); -#endif - } else { - memcpy(tensor_data, - reinterpret_cast(meta.serialized().data()), - meta.serialized().size()); - } - } else if (meta.type() == sendrecv::SELECTED_ROWS) { - auto* slr = var->GetMutable(); - auto* tensor = slr->mutable_value(); - int64_t* rows_data = slr->mutable_rows()->data(); - tensor->Resize(dims); - void* tensor_data = tensor->mutable_data( - ctx.GetPlace(), - paddle::operators::detail::ToTypeIndex(meta.data_type())); - if (platform::is_gpu_place(ctx.GetPlace())) { -#ifdef PADDLE_WITH_CUDA - platform::CPUPlace cpu; - auto& gpu_dev_ctx = static_cast(ctx); - memory::Copy(boost::get(tensor->place()), - tensor_data, cpu, - reinterpret_cast(meta.serialized().data()), - meta.serialized().size(), gpu_dev_ctx.stream()); - ctx.Wait(); -#endif - } else { - memcpy(tensor_data, - reinterpret_cast(meta.serialized().data()), - meta.serialized().size()); - } - // copy rows CPU data, GPU data will be copied lazly - memcpy(rows_data, reinterpret_cast(meta.rows().data()), - meta.rows().size()); - } + const framework::Scope* scope, + framework::Variable*& var) { + operators::detail::VariableResponse resp(scope, &ctx); + PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!"); + var = resp.GetVar(); } } // namespace detail diff --git a/paddle/fluid/operators/detail/sendrecvop_utils.h b/paddle/fluid/operators/detail/sendrecvop_utils.h index 4fa6aefd3e0b1bd45ac52b1eff3b29126d79f03a..3b875627032a6b08cc70280b3cc825c2a703923f 100644 --- a/paddle/fluid/operators/detail/sendrecvop_utils.h +++ b/paddle/fluid/operators/detail/sendrecvop_utils.h @@ -21,6 +21,7 @@ limitations under the License. */ #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/operators/detail/send_recv.grpc.pb.h" @@ -36,21 +37,14 @@ namespace detail { typedef void (*DestroyCallback)(void*); -void SerializeToMessage(const std::string& name, const framework::Variable* var, - const platform::DeviceContext& ctx, - sendrecv::VariableMessage* msg); - -void DeserializeFromMessage(const sendrecv::VariableMessage& msg, - const platform::DeviceContext& ctx, - framework::Variable* var); - void SerializeToByteBuffer(const std::string& name, framework::Variable* var, const platform::DeviceContext& ctx, ::grpc::ByteBuffer* msg); void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg, const platform::DeviceContext& ctx, - framework::Variable* var); + const framework::Scope* scope, + framework::Variable*& var); inline std::type_index ToTypeIndex(sendrecv::VariableMessage::Type type) { switch (type) { diff --git a/paddle/fluid/operators/detail/test_serde.cc b/paddle/fluid/operators/detail/test_serde.cc index 2f06e5a686b996858d21930a1afa2861efca4a9b..4be5963794717e55bd03110996ad511e6fa0a1db 100644 --- a/paddle/fluid/operators/detail/test_serde.cc +++ b/paddle/fluid/operators/detail/test_serde.cc @@ -16,11 +16,13 @@ limitations under the License. */ #include #include +#include #include "gtest/gtest.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/operators/detail/sendrecvop_utils.h" +#include "paddle/fluid/operators/detail/variable_response.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/string/printf.h" @@ -31,19 +33,21 @@ namespace operators = paddle::operators; namespace math = paddle::operators::math; namespace memory = paddle::memory; -void RunSerdeTestTensor(platform::Place place) { - // serialize var to ByteBuffer - framework::Variable var; - auto* tensor = var.GetMutable(); - tensor->Resize(framework::make_ddim({4, 8, 4, 2})); - framework::LoD lod; - lod.push_back(framework::Vector({1, 3, 8})); - tensor->set_lod(lod); - int tensor_numel = 4 * 8 * 4 * 2; +void RunSerdeTestSelectedRows(platform::Place place) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto& ctx = *pool.Get(place); + + // serialize var to ByteBuffer + framework::Variable var; + auto* slr = var.GetMutable(); + auto* tensor = slr->mutable_value(); + auto* rows = slr->mutable_rows(); + tensor->Resize(framework::make_ddim({2, 10})); tensor->mutable_data(place); - math::set_constant(ctx, tensor, 31.9); + int tensor_numel = 2 * 10; + math::set_constant(ctx, tensor, 32.7); + rows->push_back(3); + rows->push_back(10); ::grpc::ByteBuffer msg; operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg); @@ -56,62 +60,67 @@ void RunSerdeTestTensor(platform::Place place) { for (const auto& s : slices) { tmp.append(reinterpret_cast(s.begin()), s.size()); } + sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); + EXPECT_EQ(varmsg.varname(), "myvar"); - EXPECT_EQ(varmsg.type(), 0); - EXPECT_EQ(varmsg.dims()[0], 4); - EXPECT_EQ(varmsg.dims()[1], 8); - EXPECT_EQ(varmsg.dims()[2], 4); - EXPECT_EQ(varmsg.dims()[3], 2); - EXPECT_EQ(varmsg.lod_level(), 1); - EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); - EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); - EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); + EXPECT_EQ(varmsg.type(), 1); const float* tensor_data = reinterpret_cast(varmsg.serialized().data()); + const int64_t* rows_data = + reinterpret_cast(varmsg.rows().data()); for (int i = 0; i < tensor_numel; ++i) { - EXPECT_FLOAT_EQ(tensor_data[i], 31.9); + EXPECT_FLOAT_EQ(tensor_data[i], 32.7); } - + EXPECT_EQ(rows_data[0], 3); + EXPECT_EQ(rows_data[1], 10); // deserialize zero-copy - framework::Variable var2; - operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2); - auto tensor2 = var2.Get(); + // framework::Variable var2; + // operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2); + framework::Scope scope; + scope.Var("myvar"); + operators::detail::TensorResponse resp(&scope, &ctx); + EXPECT_EQ(resp.Parse(msg), 0); + + framework::Variable* var2 = resp.GetVar(); + + auto* slr2 = var2->GetMutable(); + auto* tensor2 = slr2->mutable_value(); + auto* rows2 = slr2->mutable_rows(); float* tensor_data2 = nullptr; framework::Tensor tmp_tensor; if (platform::is_gpu_place(ctx.GetPlace())) { platform::CPUPlace cpu; - framework::TensorCopy(tensor2, cpu, &tmp_tensor); + framework::TensorCopy(*tensor2, cpu, &tmp_tensor); tensor_data2 = tmp_tensor.data(); } else { - tensor_data2 = const_cast(tensor2.data()); + tensor_data2 = const_cast(tensor2->data()); } + const int64_t* rows_data2 = rows2->data(); - EXPECT_EQ(varmsg.lod_level(), 1); - EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); - EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); - EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); - for (int i = 0; i < tensor_numel; ++i) EXPECT_FLOAT_EQ(tensor_data2[i], 31.9); + for (int i = 0; i < tensor_numel; ++i) { + EXPECT_FLOAT_EQ(tensor_data2[i], 32.7); + } + EXPECT_EQ(rows_data2[0], 3); + EXPECT_EQ(rows_data2[1], 10); } -void RunSerdeTestSelectedRows(platform::Place place) { - platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); - auto& ctx = *pool.Get(place); - +void RunTestLodTensor(platform::Place place, int from_type = 0) { // serialize var to ByteBuffer framework::Variable var; - auto* slr = var.GetMutable(); - auto* tensor = slr->mutable_value(); - auto* rows = slr->mutable_rows(); - tensor->Resize(framework::make_ddim({2, 10})); + auto* tensor = var.GetMutable(); + tensor->Resize(framework::make_ddim({4, 8, 4, 2})); + framework::LoD lod; + lod.push_back(framework::Vector({1, 3, 8})); + tensor->set_lod(lod); + int tensor_numel = 4 * 8 * 4 * 2; + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& ctx = *pool.Get(place); tensor->mutable_data(place); - int tensor_numel = 2 * 10; - math::set_constant(ctx, tensor, 32.7); - rows->push_back(3); - rows->push_back(10); + math::set_constant(ctx, tensor, 31.9); ::grpc::ByteBuffer msg; operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg); @@ -126,43 +135,75 @@ void RunSerdeTestSelectedRows(platform::Place place) { } sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); - EXPECT_EQ(varmsg.varname(), "myvar"); - EXPECT_EQ(varmsg.type(), 1); + EXPECT_EQ(varmsg.type(), 0); + EXPECT_EQ(varmsg.dims()[0], 4); + EXPECT_EQ(varmsg.dims()[1], 8); + EXPECT_EQ(varmsg.dims()[2], 4); + EXPECT_EQ(varmsg.dims()[3], 2); + EXPECT_EQ(varmsg.lod_level(), 1); + EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); + EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); + EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); const float* tensor_data = reinterpret_cast(varmsg.serialized().data()); - const int64_t* rows_data = - reinterpret_cast(varmsg.rows().data()); for (int i = 0; i < tensor_numel; ++i) { - EXPECT_FLOAT_EQ(tensor_data[i], 32.7); + EXPECT_FLOAT_EQ(tensor_data[i], 31.9); } - EXPECT_EQ(rows_data[0], 3); - EXPECT_EQ(rows_data[1], 10); + + // message binary + std::string str; + varmsg.SerializeToString(&str); + + // message bytebuffer + ::grpc::Slice slices_2[1]; + int num_slices = 1; + slices_2[0] = ::grpc::Slice(str.length()); + memcpy(const_cast(slices_2[0].begin()), str.c_str(), str.length()); + ::grpc::ByteBuffer bytebuffer2(&slices_2[0], num_slices); + // deserialize zero-copy - framework::Variable var2; - operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2); + framework::Scope scope; + scope.Var("myvar"); + operators::detail::TensorResponse resp(&scope, &ctx); + if (from_type == 0) { + EXPECT_EQ(resp.Parse(msg), 0); + } else { + EXPECT_EQ(resp.Parse(bytebuffer2), 0); + } - auto* slr2 = var2.GetMutable(); - auto* tensor2 = slr2->mutable_value(); - auto* rows2 = slr2->mutable_rows(); + framework::Variable* var2 = resp.GetVar(); + + auto tensor2 = var2->Get(); float* tensor_data2 = nullptr; framework::Tensor tmp_tensor; if (platform::is_gpu_place(ctx.GetPlace())) { platform::CPUPlace cpu; - framework::TensorCopy(*tensor2, cpu, &tmp_tensor); + framework::TensorCopy(tensor2, cpu, &tmp_tensor); tensor_data2 = tmp_tensor.data(); } else { - tensor_data2 = const_cast(tensor2->data()); + tensor_data2 = const_cast(tensor2.data()); } - const int64_t* rows_data2 = rows2->data(); - for (int i = 0; i < tensor_numel; ++i) { - EXPECT_FLOAT_EQ(tensor_data2[i], 32.7); - } - EXPECT_EQ(rows_data2[0], 3); - EXPECT_EQ(rows_data2[1], 10); + EXPECT_EQ(varmsg.lod_level(), 1); + EXPECT_EQ(varmsg.lod(0).lod_data(0), 1); + EXPECT_EQ(varmsg.lod(0).lod_data(1), 3); + EXPECT_EQ(varmsg.lod(0).lod_data(2), 8); + for (int i = 0; i < tensor_numel; ++i) EXPECT_FLOAT_EQ(tensor_data2[i], 31.9); +} + +TEST(LodTensor, GPU) { + platform::CUDAPlace place; + RunTestLodTensor(place); + RunTestLodTensor(place, 1); +} + +TEST(LodTensor, CPU) { + platform::CPUPlace place; + RunTestLodTensor(place); + RunTestLodTensor(place, 1); } TEST(SelectedRows, CPU) { @@ -174,13 +215,3 @@ TEST(SelectedRows, GPU) { platform::CUDAPlace place; RunSerdeTestSelectedRows(place); } - -TEST(Tensor, CPU) { - platform::CPUPlace place; - RunSerdeTestTensor(place); -} - -TEST(Tensor, GPU) { - platform::CUDAPlace place; - RunSerdeTestTensor(place); -} \ No newline at end of file diff --git a/paddle/fluid/operators/detail/variable_response.cc b/paddle/fluid/operators/detail/variable_response.cc new file mode 100644 index 0000000000000000000000000000000000000000..12e8eb0b4da2252b104415aef4156bf100c3e565 --- /dev/null +++ b/paddle/fluid/operators/detail/variable_response.cc @@ -0,0 +1,400 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/detail/variable_response.h" +#include +#include "paddle/fluid/operators/detail/send_recv.pb.h" +#include "paddle/fluid/operators/detail/sendrecvop_utils.h" + +namespace paddle { +namespace operators { +namespace detail { + +enum WireType { + WIRETYPE_VARINT = 0, + WIRETYPE_LENGTH_DELIMITED = 2, +}; + +inline int GetTagFieldNumber(uint32_t tag) { return tag >> 3; } + +inline WireType GetTagWireType(uint32_t tag) { + return static_cast(tag & 0x7); +} + +bool ReadVarintSizeAsInt(::google::protobuf::io::CodedInputStream* input, + int* result) { + uint64_t v; + if (input->ReadVarint64(&v) && v <= static_cast(INT_MAX)) { + *result = static_cast(v); + return true; + } else { + return false; + } +} + +bool ReadRaw(::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& dev_ctx, platform::Place place, + void* dest, int size) { + const void* data = NULL; + int size_to_write = 0; + + if (platform::is_gpu_place(place)) { +#ifdef PADDLE_WITH_CUDA + auto& gpu_dev_ctx = + static_cast(dev_ctx); + platform::CPUPlace cpu; + + char* p = reinterpret_cast(dest); + while (size > 0) { + if (!input->GetDirectBufferPointer(&data, &size_to_write)) { + return false; + } + + memory::Copy(boost::get(place), + reinterpret_cast(p), cpu, data, size_to_write, + gpu_dev_ctx.stream()); + p += size_to_write; + size -= size_to_write; + + input->Skip(size_to_write); + } + gpu_dev_ctx.Wait(); +#else + PADDLE_THROW("Unexpected branch"); +#endif + return true; + } + + char* p = reinterpret_cast(dest); + while (size > 0) { + if (!input->GetDirectBufferPointer(&data, &size_to_write)) { + return false; + } + // TODO(gongwb): can we avoid copy? + platform::CPUPlace cpu; + memory::Copy(cpu, reinterpret_cast(p), cpu, data, size_to_write); + + p += size_to_write; + size -= size_to_write; + + input->Skip(size_to_write); + } + + return true; +} + +bool VariableResponse::CopyLodTensorData( + ::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& ctx, framework::DDim& dims, int length) { + auto var = scope_->FindVar(meta_.varname()); + auto* tensor = var->GetMutable(); + tensor->Resize(dims); + + framework::LoD lod; + for (int i = 0; i < meta_.lod_level(); ++i) { + framework::Vector v; + for (int j = 0; j < meta_.lod(i).lod_data_size(); ++j) { + v.push_back(meta_.lod(i).lod_data(j)); + } + lod.push_back(v); + } + tensor->set_lod(lod); + + void* tensor_data = + tensor->mutable_data(ctx.GetPlace(), ToTypeIndex(meta_.data_type())); + + if (!ReadRaw(input, ctx, tensor->place(), tensor_data, length)) { + return false; + } + + return true; +} + +inline framework::DDim GetDims( + const ::google::protobuf::RepeatedField<::google::protobuf::int64>& dims) { + std::vector vecdims; + for (auto& d : dims) { + vecdims.push_back(d); + } + return framework::make_ddim(vecdims); +} + +bool VariableResponse::CopySelectRowsTensorData( + ::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& ctx, framework::DDim& dims, int length) { + auto var = scope_->FindVar(meta_.varname()); + auto* slr = var->GetMutable(); + auto* tensor = slr->mutable_value(); + tensor->Resize(dims); + void* tensor_data = tensor->mutable_data( + ctx.GetPlace(), + paddle::operators::detail::ToTypeIndex(meta_.data_type())); + + if (!ReadRaw(input, ctx, tensor->place(), tensor_data, length)) { + return false; + } + + return true; +} + +bool VariableResponse::CopySelectRowsData( + ::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& ctx, int length) { + auto var = scope_->FindVar(meta_.varname()); + auto* slr = var->GetMutable(); + int64_t* rows_data = slr->mutable_rows()->data(); + + // copy rows CPU data, GPU data will be copied lazily. + platform::CPUPlace cpu; + if (!ReadRaw(input, ctx, cpu, rows_data, length)) { + return false; + } + + return true; +} + +bool ParseLodData(::google::protobuf::io::CodedInputStream* input, + std::vector* lod) { + while (true) { + auto p = input->ReadTagWithCutoff(127); + int tag = GetTagFieldNumber(p.first); + WireType wt = GetTagWireType(p.first); + + if (!p.second) { + return (tag == 0); + } + + switch (tag) { + case sendrecv::VariableMessage_LodData::kLodDataFieldNumber: { + uint64_t v; + if (wt == WIRETYPE_VARINT) { + if (!input->ReadVarint64(&v)) { + return false; + } + lod->push_back(v); + break; + } + + if (wt == WIRETYPE_LENGTH_DELIMITED) { + int length = 0; + if (!input->ReadVarintSizeAsInt(&length)) { + return tag; + } + + for (int i = 0; i < length; i++) { + uint64_t v; + if (!input->ReadVarint64(&v)) { + return false; + } + lod->push_back(v); + } + break; + } + + return false; + } + default: { return false; } + } + } + + return true; +} + +int VariableResponse::Parse(const ::grpc::ByteBuffer& byte_buffer) { + GrpcByteBufferSource source; + source.Init(byte_buffer); + GrpcByteBufferSourceWrapper r(&source); + + return Parse(&r); +} + +int VariableResponse::Parse(Source* source) { + ::google::protobuf::io::ZeroCopyInputStream* input_stream = + source->contents(); + ::google::protobuf::io::CodedInputStream input(input_stream); + input.SetTotalBytesLimit(INT_MAX, INT_MAX); + + while (true) { + auto p = input.ReadTagWithCutoff(127); + int tag = GetTagFieldNumber(p.first); + WireType wt = GetTagWireType(p.first); + if (!p.second) { + if (tag != 0) { + return -1; + } + + return 0; + } + + switch (tag) { + case sendrecv::VariableMessage::kVarnameFieldNumber: { + uint32_t length; + if ((wt != WIRETYPE_LENGTH_DELIMITED) || !input.ReadVarint32(&length)) { + return tag; + } + + std::string temp; + if (!input.ReadString(&temp, length)) { + return tag; + } + + meta_.set_varname(temp); + break; + } + case sendrecv::VariableMessage::kTypeFieldNumber: { + uint64_t v; + if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) { + return tag; + } + + meta_.set_type(static_cast<::sendrecv::VarType>(v)); + break; + } + case sendrecv::VariableMessage::kDataTypeFieldNumber: { + uint64_t v = 0; + if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) { + return tag; + } + + meta_.set_data_type(static_cast<::sendrecv::VariableMessage_Type>(v)); + break; + } + case sendrecv::VariableMessage::kDimsFieldNumber: { + // not packed + if (wt == WIRETYPE_VARINT) { + uint64_t v; + if (!input.ReadVarint64(&v)) { + return tag; + } + meta_.add_dims(v); + break; + } + + // packed + if (wt == WIRETYPE_LENGTH_DELIMITED) { + int length = 0; + if (!input.ReadVarintSizeAsInt(&length)) { + return tag; + } + for (int i = 0; i < length; i++) { + uint64_t v; + if (!input.ReadVarint64(&v)) { + return tag; + } + meta_.add_dims(v); + } + break; + } + + return tag; + } + case sendrecv::VariableMessage::kLodLevelFieldNumber: { + uint64_t v = 0; + if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) { + return tag; + } + meta_.set_lod_level(static_cast(v)); + break; + } + case sendrecv::VariableMessage::kLodFieldNumber: { + int length = 0; + if (wt != WIRETYPE_LENGTH_DELIMITED || + !ReadVarintSizeAsInt(&input, &length)) { + return tag; + } + + std::pair<::google::protobuf::io::CodedInputStream::Limit, int> p = + input.IncrementRecursionDepthAndPushLimit(length); + + std::vector lod_data; + if (p.second < 0 || !ParseLodData(&input, &lod_data)) { + return tag; + } + + if (!input.DecrementRecursionDepthAndPopLimit(p.first)) { + return false; + } + + if (lod_data.size() == 0) { + break; + } + + auto lod = meta_.add_lod(); + for (uint32_t i = 0; i < lod_data.size(); i++) { + lod->add_lod_data(lod_data[i]); + } + break; + } + case sendrecv::VariableMessage::kSerializedFieldNumber: { + PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS || + meta_.type() == sendrecv::LOD_TENSOR) && + meta_.varname() != "", + "meta info should be got first!"); + + int length = 0; + if (wt != WIRETYPE_LENGTH_DELIMITED || + !ReadVarintSizeAsInt(&input, &length)) { + return tag; + } + + framework::DDim dims = GetDims(meta_.dims()); + if (meta_.type() == sendrecv::LOD_TENSOR) { + PADDLE_ENFORCE(meta_.lod_size() >= 0, + "lod info should be got first!"); + if (!CopyLodTensorData(&input, *dev_ctx_, dims, length)) { + return tag; + } + break; + } + + if (meta_.type() == sendrecv::SELECTED_ROWS) { + if (!CopySelectRowsTensorData(&input, *dev_ctx_, dims, length)) { + return tag; + } + break; + } + + return tag; + } + case sendrecv::VariableMessage::kRowsFieldNumber: { + PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS || + meta_.type() == sendrecv::LOD_TENSOR) && + meta_.varname() != "", + "meta info should be got first!"); + + int length = 0; + if (wt != WIRETYPE_LENGTH_DELIMITED || + !ReadVarintSizeAsInt(&input, &length)) { + return tag; + } + + if (!CopySelectRowsData(&input, *dev_ctx_, length)) { + return tag; + } + break; + } + + default: { + // Unknown tag, return unknown error. + return -1; + } + } + } + + return 0; +} + +}; // namespace detail +}; // namespace operators +}; // namespace paddle diff --git a/paddle/fluid/operators/detail/variable_response.h b/paddle/fluid/operators/detail/variable_response.h new file mode 100644 index 0000000000000000000000000000000000000000..c7bc7a46e7bc8a24ae9b4931d347767c10277d22 --- /dev/null +++ b/paddle/fluid/operators/detail/variable_response.h @@ -0,0 +1,81 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/framework/selected_rows.h" +#include "paddle/fluid/framework/var_type.h" + +#include "paddle/fluid/operators/detail/send_recv.grpc.pb.h" +#include "paddle/fluid/operators/detail/send_recv.pb.h" + +#include "google/protobuf/io/coded_stream.h" +#include "google/protobuf/io/zero_copy_stream.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/operators/detail/bytebuffer_stream.h" + +namespace paddle { +namespace operators { +namespace detail { + +class VariableResponse { + public: + VariableResponse(const framework::Scope* scope, + const platform::DeviceContext* dev_ctx) + : scope_(scope), dev_ctx_(dev_ctx){}; + + virtual ~VariableResponse(){}; + + // return: + // 0:ok. + // -1: unkown error. + // other: number of error field. + int Parse(Source* source); + + // return: + // 0:ok. + // -1: unkown error. + // other: number of error field. + int Parse(const ::grpc::ByteBuffer& byte_buffer); + + inline std::string Varname() { return meta_.varname(); } + + // should call parse first. + framework::Variable* GetVar() { return scope_->FindVar(meta_.varname()); } + + private: + bool CopySelectRowsTensorData(::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& ctx, + framework::DDim& dims, int length); + + bool CopySelectRowsData(::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& ctx, int length); + + bool CopyLodTensorData(::google::protobuf::io::CodedInputStream* input, + const platform::DeviceContext& ctx, + framework::DDim& dims, int length); + + private: + const framework::Scope* scope_; + const platform::DeviceContext* dev_ctx_; + // only Skeleton + sendrecv::VariableMessage meta_; +}; + +}; // namespace detail +}; // namespace operators +}; // namespace paddle diff --git a/paddle/fluid/operators/detection_map_op.cc b/paddle/fluid/operators/detection_map_op.cc index 73c84c2fe0155d21d7059938330e44fa3668c6df..93ef15b9332168a9c62abfd4d0827207173ece45 100644 --- a/paddle/fluid/operators/detection_map_op.cc +++ b/paddle/fluid/operators/detection_map_op.cc @@ -188,8 +188,8 @@ The general steps are as follows. First, calculate the true positive and } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp, - ops::DetectionMAPOpMaker); +REGISTER_OPERATOR(detection_map, ops::DetectionMAPOp, ops::DetectionMAPOpMaker, + paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL( detection_map, ops::DetectionMAPOpKernel, ops::DetectionMAPOpKernel); diff --git a/paddle/fluid/operators/iou_similarity_op.cc b/paddle/fluid/operators/iou_similarity_op.cc index ffbd7c7814c3fdec9fef0580ccd1ea3661ac0012..4b78ec510d1fb73592ee8af9a641622f4d713f8d 100755 --- a/paddle/fluid/operators/iou_similarity_op.cc +++ b/paddle/fluid/operators/iou_similarity_op.cc @@ -87,8 +87,9 @@ $$ } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(iou_similarity, ops::IOUSimilarityOp, - ops::IOUSimilarityOpMaker); +REGISTER_OPERATOR(iou_similarity, ops::IOUSimilarityOp, + ops::IOUSimilarityOpMaker, + paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL( iou_similarity, diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index a594de67e05acd28ffedc5407beecfaea1281444..31ea2a7e581950b5399a7a5efc9ae38b8ea3c52d 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -69,9 +69,7 @@ class ListenAndServOp : public framework::OperatorBase { } void Stop() override { - detail::MessageWithName term_msg; - term_msg.first = LISTEN_TERMINATE_MESSAGE; - rpc_service_->Push(term_msg); + rpc_service_->Push(LISTEN_TERMINATE_MESSAGE); rpc_service_->ShutDown(); server_thread_->join(); } @@ -108,7 +106,7 @@ class ListenAndServOp : public framework::OperatorBase { size_t recv_var_cnt = 0; int batch_barrier = 0; while (batch_barrier != fan_in) { - const detail::MessageWithName &v = rpc_service_->Get(); + const detail::ReceivedMessage v = rpc_service_->Get(); auto recv_var_name = v.first; if (recv_var_name == LISTEN_TERMINATE_MESSAGE) { LOG(INFO) << "received terminate message and exit"; @@ -121,12 +119,11 @@ class ListenAndServOp : public framework::OperatorBase { } else { VLOG(3) << "received grad: " << recv_var_name; recv_var_cnt++; - auto *var = recv_scope.FindVar(recv_var_name); + auto var = v.second->GetVar(); if (var == nullptr) { LOG(ERROR) << "Can not find server side var: " << recv_var_name; PADDLE_THROW("Can not find server side var"); } - detail::DeserializeFromMessage(v.second, dev_ctx, var); if (var->IsType()) { sparse_vars.push_back(var); } diff --git a/paddle/fluid/operators/math/softmax.cu b/paddle/fluid/operators/math/softmax.cu index 34ea6a91ce7743462d378cf471a5ec3a12ca51d1..5518ebed3f792a5acdfbb27976bc2c6dbd78069a 100644 --- a/paddle/fluid/operators/math/softmax.cu +++ b/paddle/fluid/operators/math/softmax.cu @@ -89,6 +89,7 @@ void SoftmaxGradCUDNNFunctor::operator()( XGrad->mutable_data(context.GetPlace()))); } +template class SoftmaxCUDNNFunctor; template class SoftmaxCUDNNFunctor; template class SoftmaxCUDNNFunctor; template class SoftmaxGradCUDNNFunctor; diff --git a/paddle/fluid/operators/mine_hard_examples_op.cc b/paddle/fluid/operators/mine_hard_examples_op.cc index 0e81d60878dce747b047abbe4641b71462373b2b..277901cff493445e1e85e92e22ea0ada0e1cba43 100644 --- a/paddle/fluid/operators/mine_hard_examples_op.cc +++ b/paddle/fluid/operators/mine_hard_examples_op.cc @@ -324,8 +324,9 @@ MatchIndices elements with value -1. } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(mine_hard_examples, ops::MineHardExamplesOp, - ops::MineHardExamplesOpMaker); +REGISTER_OPERATOR(mine_hard_examples, ops::MineHardExamplesOp, + ops::MineHardExamplesOpMaker, + paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL( mine_hard_examples, diff --git a/paddle/fluid/operators/prior_box_op.cc b/paddle/fluid/operators/prior_box_op.cc index 7ba55437cb20f802cc12ceea7777d7d78bba62a6..c22a55bce263423d5c17fffdb06b7ece02ae26da 100644 --- a/paddle/fluid/operators/prior_box_op.cc +++ b/paddle/fluid/operators/prior_box_op.cc @@ -168,7 +168,9 @@ https://arxiv.org/abs/1512.02325. } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_WITHOUT_GRADIENT(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker); +REGISTER_OPERATOR(prior_box, ops::PriorBoxOp, ops::PriorBoxOpMaker, + paddle::framework::EmptyGradOpMaker); + REGISTER_OP_CPU_KERNEL( prior_box, ops::PriorBoxOpKernel, ops::PriorBoxOpKernel); diff --git a/paddle/fluid/operators/softmax_cudnn_op.cu.cc b/paddle/fluid/operators/softmax_cudnn_op.cu.cc index 47cb336d87f8627d86ac33d6ac32c04d5d93f753..5596fa0648ccc151bc0d11de9c556599428a8d71 100644 --- a/paddle/fluid/operators/softmax_cudnn_op.cu.cc +++ b/paddle/fluid/operators/softmax_cudnn_op.cu.cc @@ -56,7 +56,9 @@ class SoftmaxGradCUDNNKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_KERNEL(softmax, CUDNN, ::paddle::platform::CUDAPlace, - ops::SoftmaxCUDNNKernel); -REGISTER_OP_KERNEL(softmax_grad, CUDNN, ::paddle::platform::CUDAPlace, +namespace plat = paddle::platform; +REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace, + ops::SoftmaxCUDNNKernel, + ops::SoftmaxCUDNNKernel); +REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace, ops::SoftmaxGradCUDNNKernel); diff --git a/paddle/fluid/operators/softmax_mkldnn_op.cc b/paddle/fluid/operators/softmax_mkldnn_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..cf0244e8662e827a90d8472a097315680579ff6d --- /dev/null +++ b/paddle/fluid/operators/softmax_mkldnn_op.cc @@ -0,0 +1,84 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "mkldnn.hpp" +#include "paddle/fluid/operators/softmax_op.h" +#include "paddle/fluid/platform/mkldnn_helper.h" + +#include + +namespace paddle { +namespace operators { + +using paddle::framework::Tensor; +using paddle::platform::MKLDNNDeviceContext; +using paddle::platform::MKLDNNMemDesc; + +using mkldnn::memory; // Note: paddle has also "memory" namespace +using mkldnn::primitive; +using mkldnn::softmax_forward; +using mkldnn::prop_kind; +using mkldnn::stream; + +template +class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), + "It must use CPUPlace."); + auto& dev_ctx = ctx.template device_context(); + auto mkldnn_engine = dev_ctx.GetEngine(); + const Tensor* input = ctx.Input("X"); + Tensor* output = ctx.Output("Out"); + PADDLE_ENFORCE(input->dims().size() == 2UL, + "The input of softmax op must be a 2D matrix."); + const T* input_data = input->data(); + // allocate memory for output + T* output_data = output->mutable_data(ctx.GetPlace()); + std::vector src_tz = paddle::framework::vectorize2int(input->dims()); + std::vector dst_tz = paddle::framework::vectorize2int(output->dims()); + // MKL-DNN does support softmax over selected axis. Having 2D Tensor, + // we will make normalization after final eg. axis: 1 + PADDLE_ENFORCE(((src_tz[0] == dst_tz[0]) && (src_tz[1] == dst_tz[1])), + "Softmax input and output dimensions should match"); + // Same memory descriptor to be used for input and output + memory::dims softmax_tz = {src_tz[0], src_tz[1]}; + // Currently only supports NC data format + // TODO(jczaja-intel): support more formats + auto softmax_md = + MKLDNNMemDesc({softmax_tz}, memory::f32, memory::format::nc); + // Normalization is made after innermost dimension eg. C out of NC + auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring, + softmax_md, 1 /*dim: C*/); + // create memory primitives + auto softmax_src_memory = + memory({softmax_md, mkldnn_engine}, (void*)input_data); + auto softmax_dst_memory = + memory({softmax_md, mkldnn_engine}, (void*)output_data); + auto softmax_prim_desc = + softmax_forward::primitive_desc(softmax_desc, mkldnn_engine); + auto softmax = softmax_forward(softmax_prim_desc, softmax_src_memory, + softmax_dst_memory); + std::vector pipeline{softmax}; + stream(stream::kind::eager).submit(pipeline).wait(); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace, + ops::SoftmaxMKLDNNKernel); diff --git a/paddle/fluid/operators/softmax_op.cc b/paddle/fluid/operators/softmax_op.cc index 1b63f8a499e5d20d2f10c3cd1024d1bcf78764d4..e2c0f915d96b7746191572fa27b725d90cb6e2e5 100644 --- a/paddle/fluid/operators/softmax_op.cc +++ b/paddle/fluid/operators/softmax_op.cc @@ -13,7 +13,13 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/softmax_op.h" +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/cudnn_helper.h" +#endif +#ifdef PADDLE_WITH_MKLDNN +#include "paddle/fluid/platform/mkldnn_helper.h" +#endif namespace paddle { namespace operators { @@ -38,26 +44,32 @@ class SoftmaxOp : public framework::OperatorWithKernel { framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { // choose cudnn kernel if the runtime supported. - bool use_cudnn = ctx.Attr("use_cudnn"); - bool runtime_cudnn_support = false; + framework::LibraryType library_{framework::LibraryType::kPlain}; #ifdef PADDLE_WITH_CUDA - if (platform::is_gpu_place(ctx.GetPlace())) { - auto& dev_ctx = - ctx.template device_context(); - runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false; + if (platform::CanCUDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kCUDNN; } #endif - framework::LibraryType library_ = framework::LibraryType::kPlain; - if (use_cudnn && runtime_cudnn_support) { - library_ = framework::LibraryType::kCUDNN; +#ifdef PADDLE_WITH_MKLDNN + if (library_ == framework::LibraryType::kPlain && + platform::CanMKLDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kMKLDNN; } +#endif + + auto input_data_type = + framework::ToDataType(ctx.Input("X")->type()); + if (input_data_type == framework::proto::VarType::FP16) { + PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN, + "float16 can only be used when CUDNN is used"); + } + std::string data_format = ctx.Attr("data_format"); - return framework::OpKernelType( - framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), - framework::StringToDataLayout(data_format), library_); + return framework::OpKernelType(input_data_type, ctx.GetPlace(), + framework::StringToDataLayout(data_format), + library_); } }; - class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { public: SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) @@ -77,6 +89,9 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { "Defaults to \"NHWC\". Specify the data format of the output data, " "the input will be transformed automatically. ") .SetDefault("AnyLayout"); + AddAttr("use_mkldnn", + "(bool, default false) Only used in mkldnn kernel") + .SetDefault(false); AddComment(R"DOC( Softmax Operator. @@ -119,19 +134,12 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel { framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { // choose cudnn kernel if the runtime supported. - bool use_cudnn = ctx.Attr("use_cudnn"); - bool runtime_cudnn_support = false; + framework::LibraryType library_{framework::LibraryType::kPlain}; #ifdef PADDLE_WITH_CUDA - if (platform::is_gpu_place(ctx.GetPlace())) { - auto& dev_ctx = - ctx.template device_context(); - runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false; - } -#endif - framework::LibraryType library_ = framework::LibraryType::kPlain; - if (use_cudnn && runtime_cudnn_support) { + if (platform::CanCUDNNBeUsed(ctx)) { library_ = framework::LibraryType::kCUDNN; } +#endif std::string data_format = ctx.Attr("data_format"); return framework::OpKernelType( framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), diff --git a/paddle/fluid/operators/target_assign_op.cc b/paddle/fluid/operators/target_assign_op.cc index a894b12fa35a121eff0b8f9d2d0eecc5ae5185f3..33ff967e5e8f5afbaa62ba39ce596687ae0a71cd 100644 --- a/paddle/fluid/operators/target_assign_op.cc +++ b/paddle/fluid/operators/target_assign_op.cc @@ -153,8 +153,8 @@ template struct NegTargetAssignFunctor, diff --git a/paddle/fluid/platform/device_context.cc b/paddle/fluid/platform/device_context.cc index 98b4178177b0a8bafd6fe34a92be2a07a2fbc5a7..59b76a1edb5ec5900520fbccb6a6f8f6e7a70aa4 100644 --- a/paddle/fluid/platform/device_context.cc +++ b/paddle/fluid/platform/device_context.cc @@ -10,43 +10,45 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device_context.h" +#include #include "paddle/fluid/memory/memory.h" - namespace paddle { namespace platform { DeviceContextPool* DeviceContextPool::pool = nullptr; -const platform::DeviceContext* DeviceContextPool::Get( - const platform::Place& place) { +platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) { auto it = device_contexts_.find(place); if (it == device_contexts_.end()) { PADDLE_THROW( "'Place' is not supported, Please re-compile with WITH_GPU " "option"); } - return it->second; + return it->second.get(); } DeviceContextPool::DeviceContextPool( const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0); - for (size_t i = 0; i < places.size(); i++) { - if (platform::is_cpu_place(places[i])) { + using PtrType = std::unique_ptr; + std::unordered_set set; + for (auto& p : places) { + set.insert(p); + } + + for (auto& p : set) { + if (platform::is_cpu_place(p)) { #ifdef PADDLE_WITH_MKLDNN - device_contexts_.emplace(places[i], - new platform::MKLDNNDeviceContext( - boost::get(places[i]))); + device_contexts_.emplace( + p, PtrType(new MKLDNNDeviceContext(boost::get(p)))); #else - device_contexts_.emplace(places[i], - new platform::CPUDeviceContext( - boost::get(places[i]))); + device_contexts_.emplace( + p, PtrType(new CPUDeviceContext(boost::get(p)))); #endif - } else if (platform::is_gpu_place(places[i])) { + } else if (platform::is_gpu_place(p)) { #ifdef PADDLE_WITH_CUDA - device_contexts_.emplace(places[i], - new platform::CUDADeviceContext( - boost::get(places[i]))); + device_contexts_.emplace( + p, PtrType(new CUDADeviceContext(boost::get(p)))); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " @@ -159,6 +161,7 @@ CUDADeviceContext::~CUDADeviceContext() { Place CUDADeviceContext::GetPlace() const { return place_; } void CUDADeviceContext::Wait() const { + std::lock_guard guard(mutex_); PADDLE_ENFORCE(cudaStreamSynchronize(stream_)); PADDLE_ENFORCE(cudaGetLastError()); } diff --git a/paddle/fluid/platform/device_context.h b/paddle/fluid/platform/device_context.h index 603b890af13b529c490c29112a73a09cc815d07a..202394c7be7e103a609dd0999fc883c794ef0edd 100644 --- a/paddle/fluid/platform/device_context.h +++ b/paddle/fluid/platform/device_context.h @@ -103,6 +103,7 @@ class CUDADeviceContext : public DeviceContext { std::unique_ptr eigen_device_; std::unique_ptr eigen_stream_; + mutable std::mutex mutex_; cudaStream_t stream_; cudnnHandle_t cudnn_handle_; cublasHandle_t cublas_handle_; @@ -159,7 +160,7 @@ class DeviceContextPool { } /*! \brief Return handle of single device context. */ - const platform::DeviceContext* Get(const platform::Place& place); + platform::DeviceContext* Get(const platform::Place& place); template const typename DefaultDeviceContextType::TYPE* GetByPlace( @@ -172,19 +173,8 @@ class DeviceContextPool { private: static DeviceContextPool* pool; - constexpr static int LEFT_SHIFT = 8; - struct Hash { - std::hash hash_; - size_t operator()(const platform::Place& place) const { - int pre_hash = place.which() << LEFT_SHIFT; - if (platform::is_gpu_place(place)) { - pre_hash += boost::get(place).GetDeviceId(); - } - return hash_(pre_hash); - } - }; - std::unordered_map + std::unordered_map, PlaceHash> device_contexts_; DISABLE_COPY_AND_ASSIGN(DeviceContextPool); }; diff --git a/paddle/fluid/platform/place.h b/paddle/fluid/platform/place.h index 501bddfc6ec8b5d0bf554b0911c32e47fd51ec15..4cc8b377b8b671eb5a446ecbae21ba9628fbd2c8 100644 --- a/paddle/fluid/platform/place.h +++ b/paddle/fluid/platform/place.h @@ -65,6 +65,18 @@ bool is_cpu_place(const Place &); bool places_are_same_class(const Place &, const Place &); bool is_same_place(const Place &, const Place &); +struct PlaceHash { + std::size_t operator()(const Place &p) const { + constexpr size_t num_dev_bits = 4; + std::hash ihash; + size_t dev_id = 0; + if (is_gpu_place(p)) { + dev_id = boost::get(p).device; + } + return ihash(dev_id << num_dev_bits | p.which()); + } +}; + std::ostream &operator<<(std::ostream &, const Place &); template diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 6be2bd8fad9e33cf4e1dcafdd6b8f39111bdbe88..2e9b088bfa596d86c3c43c09d360da772fb2775a 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -35,7 +35,7 @@ function cmake_gen() { -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE:-Release} ${PYTHON_FLAGS} -DWITH_DSO=ON - -DWITH_DOC=OFF + -DWITH_DOC=${WITH_DOC:-OFF} -DWITH_GPU=${WITH_GPU:-OFF} -DWITH_DISTRIBUTE=${WITH_DISTRIBUTE:-OFF} -DWITH_MKL=${WITH_MKL:-ON} @@ -60,7 +60,7 @@ EOF -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE:-Release} \ ${PYTHON_FLAGS} \ -DWITH_DSO=ON \ - -DWITH_DOC=OFF \ + -DWITH_DOC=${WITH_DOC:-OFF} \ -DWITH_GPU=${WITH_GPU:-OFF} \ -DWITH_DISTRIBUTE=${WITH_DISTRIBUTE:-OFF} \ -DWITH_MKL=${WITH_MKL:-ON} \ @@ -231,7 +231,7 @@ gen_capi_package gen_fluid_inference_lib if [[ ${WITH_C_API:-OFF} == "ON" ]]; then - printf "PaddlePaddle C-API libraries was generated on build/paddle.tgz\n" + printf "PaddlePaddle C-API libraries was generated on build/paddle.tgz\n" else printf "If you need to install PaddlePaddle in develop docker image," printf "please make install or pip install build/python/dist/*.whl.\n" diff --git a/paddle/scripts/tools/build_docs/.gitignore b/paddle/scripts/tools/build_docs/.gitignore deleted file mode 100644 index 6ec14c8f5bc3774a81dbe87c44f458594b38f12c..0000000000000000000000000000000000000000 --- a/paddle/scripts/tools/build_docs/.gitignore +++ /dev/null @@ -1,2 +0,0 @@ -doc -doc_cn diff --git a/paddle/scripts/tools/build_docs/build_docs.sh b/paddle/scripts/tools/build_docs/build_docs.sh deleted file mode 100755 index f9bc8bf63ae9afdfca1ff660bc83e62e71f03005..0000000000000000000000000000000000000000 --- a/paddle/scripts/tools/build_docs/build_docs.sh +++ /dev/null @@ -1,8 +0,0 @@ -#!/bin/bash -docker run --rm \ - -v $(git rev-parse --show-toplevel):/paddle \ - -e "WITH_GPU=OFF" \ - -e "WITH_AVX=ON" \ - -e "WITH_DOC=ON" \ - -e "WOBOQ=ON" \ - ${1:-"paddlepaddle/paddle:latest-dev"} diff --git a/python/paddle/fluid/concurrency.py b/python/paddle/fluid/concurrency.py index 0fc4981a8e9da09f15e6d0a5e5c6761e01328876..3e4292d23550b853ea73de787a1c053e1f2c80fd 100644 --- a/python/paddle/fluid/concurrency.py +++ b/python/paddle/fluid/concurrency.py @@ -131,7 +131,7 @@ def make_channel(dtype, capacity=0): return channel -def channel_send(channel, value, copy=False): +def channel_send(channel, value, is_copy=False): """ Sends a value through a channel variable. Used by an unbuffered or buffered channel to pass data from within or to a concurrent Go block, where @@ -141,8 +141,8 @@ def channel_send(channel, value, copy=False): channel (Variable|Channel): Channel variable created using `make_channel`. value (Variable): Value to send to channel - copy (bool): Copy data while channel send. If False, then data - is moved. The input cannot be used after move. + is_copy (bool): Copy data while channel send. If False, then data + is moved. The input cannot be used after move. (default False) Returns: Variable: The boolean status on whether or not the channel successfully sent the passed value. @@ -166,7 +166,7 @@ def channel_send(channel, value, copy=False): X = value - if copy is True: + if is_copy is True: copied_X = helper.create_variable( name=unique_name.generate(value.name + '_copy'), type=value.type, diff --git a/python/paddle/fluid/debuger.py b/python/paddle/fluid/debuger.py index 97fa182c4007cc730c06e9f95259a2509e01ecdf..7b4afa9bf65e1369329cd4648c1f5c4bd8fa8357 100644 --- a/python/paddle/fluid/debuger.py +++ b/python/paddle/fluid/debuger.py @@ -16,7 +16,6 @@ import sys import re from graphviz import GraphPreviewGenerator import proto.framework_pb2 as framework_pb2 -import paddle.fluid.core as core _vartype2str_ = [ "UNK", @@ -126,7 +125,6 @@ def pprint_block_codes(block_desc, show_backward=False): def is_var_backward(var_desc): return "@GRAD" in var_desc.name - #print(type(block_desc)) if type(block_desc) is not framework_pb2.BlockDesc: block_desc = framework_pb2.BlockDesc.FromString( block_desc.serialize_to_string()) diff --git a/python/paddle/fluid/distribute_transpiler.py b/python/paddle/fluid/distribute_transpiler.py index ad655ee96cee0744e7bedb17163faf7d8d1d8877..33cea96421bf93f1693bc06e7412b561f1bd2a32 100644 --- a/python/paddle/fluid/distribute_transpiler.py +++ b/python/paddle/fluid/distribute_transpiler.py @@ -20,6 +20,7 @@ from layer_helper import LayerHelper from distributed_spliter import * import math from . import core +import debuger class VarBlock: @@ -289,6 +290,7 @@ class DistributeTranspiler: dtype=v.dtype, shape=v.shape) recv_inputs.append(var) + # step3 optimize_block = pserver_program.create_block(0) # step 4 diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 70ecffd910a46570b5a8e576d88039fa5e22e726..3e78788f470556d2196b5104f69a0a3285543ec4 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -918,6 +918,24 @@ class Block(object): name=v.name) self.vars[new_p.name] = new_p + def clone_variable(self, var): + """ + Clone a variable into current block. + Args: + var: the variable to be cloned. + + Returns: + The new variable cloned from 'var' in current block. + """ + assert isinstance(var, Variable) + return self.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + lod_level=var.lod_level, + persistable=True) + class Program(object): def __init__(self): @@ -960,14 +978,14 @@ class Program(object): """Clone the Program object Set for_test to False when we want to clone the program for training. - Set for_test to True when we want to clone the program for testing. + Set for_test to True when we want to clone the program for testing. Args: for_test(bool): Some operators, such as batch_norm and drop_out ops, behave differently in training and testing. If for_test is True, the is_test attributes in these operators will be set to True for - testing purposes, otherwise, they remain unchanged. - + testing purposes, otherwise, they remain unchanged. + Returns(Program): The cloned Program object. """ diff --git a/python/paddle/fluid/layer_helper.py b/python/paddle/fluid/layer_helper.py index da7e74c901e1f5be709c5f9d73f048bfda0c5549..58b668227168c5c5e080f3928035ad98303bbae9 100644 --- a/python/paddle/fluid/layer_helper.py +++ b/python/paddle/fluid/layer_helper.py @@ -399,6 +399,9 @@ class LayerHelper(object): if isinstance(act, basestring): act = {'type': act} tmp = self.create_tmp_variable(dtype=input_var.dtype) + + if 'use_mkldnn' in self.kwargs: + act['use_mkldnn'] = self.kwargs.get('use_mkldnn') act_type = act.pop('type') self.append_op( type=act_type, diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index ec4afa8067620bf757d604257f1133aead4902df..32bf669b4576abdb9281b2d947310c7da335c75f 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -128,13 +128,11 @@ def detection_output(loc, prior_box_var=prior_box_var, target_box=loc, code_type='decode_center_size') - old_shape = scores.shape scores = nn.reshape(x=scores, shape=(-1, old_shape[-1])) scores = nn.softmax(input=scores) scores = nn.reshape(x=scores, shape=old_shape) scores = nn.transpose(scores, perm=[0, 2, 1]) - nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype) helper.append_op( type="multiclass_nms", @@ -474,6 +472,7 @@ def ssd_loss(location, # 2. Compute confidence for mining hard examples # 2.1. Get the target label based on matched indices gt_label = nn.reshape(x=gt_label, shape=gt_label.shape + (1, )) + gt_label.stop_gradient = True target_label, _ = target_assign( gt_label, matched_indices, mismatch_value=background_label) # 2.2. Compute confidence loss. @@ -481,10 +480,12 @@ def ssd_loss(location, confidence = __reshape_to_2d(confidence) target_label = tensor.cast(x=target_label, dtype='int64') target_label = __reshape_to_2d(target_label) + target_label.stop_gradient = True conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) # 3. Mining hard examples conf_loss = nn.reshape(x=conf_loss, shape=(num, num_prior)) + conf_loss.stop_gradient = True neg_indices = helper.create_tmp_variable(dtype='int32') dtype = matched_indices.dtype updated_matched_indices = helper.create_tmp_variable(dtype=dtype) @@ -694,6 +695,8 @@ def multi_box_head(inputs, outputs={"Boxes": box, "Variances": var}, attrs=attrs, ) + box.stop_gradient = True + var.stop_gradient = True return box, var def _reshape_with_axis_(input, axis=1): diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index d98e1bdfcaf87d42722dbbc827a1d240ad0c6238..0e8354a4a0c198a839179962fa52263f11153c82 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -83,6 +83,7 @@ def fc(input, num_flatten_dims=1, param_attr=None, bias_attr=None, + use_mkldnn=False, act=None, name=None): """ @@ -164,8 +165,11 @@ def fc(input, inputs={"X": input_var, "Y": w}, outputs={"Out": tmp}, - attrs={"x_num_col_dims": num_flatten_dims, - "y_num_col_dims": 1}) + attrs={ + "x_num_col_dims": num_flatten_dims, + "y_num_col_dims": 1, + 'use_mkldnn': use_mkldnn + }) mul_results.append(tmp) # sum diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index 43a78a27c6ca945f39b61cc7491ff18792c61e71..c09bc864eb6abec75bc3c193cd41001d06ceb1b8 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -68,6 +68,7 @@ __all__ = [ 'gaussian_random_batch_size_like', 'cumsum', 'scatter', + 'sum', ] + __activations__ for _OP in set(__all__): diff --git a/python/paddle/fluid/optimizer.py b/python/paddle/fluid/optimizer.py index a33760a528f667b7afabafa19762eca7d1ef0635..180575c35dc6e115e11cccf9fff9fb2d3cd7e9a6 100644 --- a/python/paddle/fluid/optimizer.py +++ b/python/paddle/fluid/optimizer.py @@ -13,7 +13,7 @@ # limitations under the License. from collections import defaultdict - +from paddle.fluid.framework import Program import framework import layers from backward import append_backward @@ -23,9 +23,11 @@ from initializer import Constant from layer_helper import LayerHelper from regularizer import append_regularization_ops from clip import append_gradient_clip_ops, error_clip_callback +from contextlib import contextmanager __all__ = [ - 'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Adadelta' + 'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', + 'Adadelta', 'ModelAverage' ] @@ -121,7 +123,12 @@ class Optimizer(object): """ pass - def _add_accumulator(self, name, param, dtype=None, fill_value=0.0): + def _add_accumulator(self, + name, + param, + dtype=None, + fill_value=0.0, + shape=None): """Utility function to add an accumulator for a parameter Args: @@ -135,17 +142,19 @@ class Optimizer(object): param.name in self._accumulators[name]): raise Exception("Accumulator {} already exists for parameter {}". format(name, param.name)) - + if shape == None: + shape = param.shape assert isinstance(self.helper, LayerHelper) var = self.helper.create_global_variable( name=unique_name.generate(name), persistable=True, dtype=dtype or param.dtype, type=param.type, - shape=param.shape) + shape=shape) self.helper.set_variable_initializer( var, initializer=Constant(value=float(fill_value))) self._accumulators[name][param.name] = var + return var def _get_accumulator(self, name, param): """Utility function to fetch an accumulator for a parameter @@ -797,3 +806,143 @@ Adamax = AdamaxOptimizer DecayedAdagrad = DecayedAdagradOptimizer Adadelta = AdadeltaOptimizer RMSProp = RMSPropOptimizer + + +class ModelAverage(Optimizer): + """Accumulate the average of parameters whtin sliding window. The average + result will be saved in temporary variables which can be applied to + parameter variables of current model by calling 'apply()' method. And the + 'restore()' method is used to restored the parameter values of current model. + + The size of average window is determined by average_window_rate, + min_average_window, max_average_window and current update times. + + Args: + params_grads: A list of parameter-grad variable pairs. + average_window_rate: The rate of average window. + min_average_window: The minimum size of average window. + max_average_window: The maximum size of average window. + + Examples: + ... + optimizer = fluid.optimizer.Momentum() + _, params_grads = optimizer.minimize(cost) + model_average = fluid.optimizer.ModelAverage(params_grads, 0.15, + min_average_window=10000, + max_average_window=20000) + for pass_id in range(args.pass_num): + for data in train_reader(): + exe.run(fluid.default_main_program()...) + + with model_average.apply(exe): + for data in test_reader(): + exe.run(inference_program...) + """ + + def __init__(self, + params_grads, + average_window_rate, + min_average_window=10000, + max_average_window=10000, + **kwargs): + super(ModelAverage, self).__init__(0.0, **kwargs) + self.average_window = average_window_rate + self.min_average_window = min_average_window + self.max_average_window = max_average_window + self.params_grads = params_grads + for param, grad in self.params_grads: + if grad is not None: + self._append_average_accumulate_op(param) + + self.apply_program = Program() + block = self.apply_program.global_block() + with program_guard(main_program=self.apply_program): + for param_grad in self.params_grads: + if param_grad[1] is not None: + self._add_average_apply_op(block, param_grad) + + self.restore_program = Program() + block = self.restore_program.global_block() + with program_guard(main_program=self.restore_program): + for param_grad in self.params_grads: + if param_grad[1] is not None: + self._add_average_restore_op(block, param_grad) + + def _add_average_apply_op(self, block, param_grad): + param = block.clone_variable(param_grad[0]) + grad = block.clone_variable(param_grad[1]) + sum_1 = block.clone_variable(self._get_accumulator('sum_1', param)) + sum_2 = block.clone_variable(self._get_accumulator('sum_2', param)) + sum_3 = block.clone_variable(self._get_accumulator('sum_3', param)) + num_accumulates = block.clone_variable( + self._get_accumulator('num_accumulates', param)) + old_num_accumulates = block.clone_variable( + self._get_accumulator('old_num_accumulates', param)) + num_updates = block.clone_variable( + self._get_accumulator('num_updates', param)) + # backup param value to grad + layers.assign(input=param, output=grad) + # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates) + tmp = layers.sum(x=[num_accumulates, old_num_accumulates]) + sum = layers.sum(x=[sum_1, sum_2, sum_3]) + tmp = layers.cast(x=tmp, dtype='float32') + sum = layers.cast(x=sum, dtype='float32') + layers.elementwise_div(x=sum, y=tmp, out=param) + + def _add_average_restore_op(self, block, param_grad): + param = block.clone_variable(param_grad[0]) + grad = block.clone_variable(param_grad[1]) + layers.assign(input=grad, output=param) + + def _append_average_accumulate_op(self, param): + self.helper = LayerHelper("average_accumulate") + sum_1 = self._add_accumulator('sum_1', param) + sum_2 = self._add_accumulator('sum_2', param) + sum_3 = self._add_accumulator('sum_3', param) + num_accumulates = self._add_accumulator( + 'num_accumulates', param, dtype='int64', shape=[1]) + old_num_accumulates = self._add_accumulator( + 'old_num_accumulates', param, dtype='int64', shape=[1]) + num_updates = self._add_accumulator( + 'num_updates', param, dtype='int64', shape=[1]) + + self.helper.append_op( + type='average_accumulates', + inputs={ + "param": param, + "in_sum_1": sum_1, + "in_sum_2": sum_2, + "in_sum_3": sum_3, + "in_num_accumulates": num_accumulates, + "in_old_num_accumulates": old_num_accumulates, + "in_num_updates": num_updates + }, + outputs={ + "out_sum_1": sum_1, + "out_sum_2": sum_2, + "out_sum_3": sum_3, + "out_num_accumulates": num_accumulates, + "out_old_num_accumulates": old_num_accumulates, + "out_num_updates": num_updates, + }, + attrs={ + "average_window": self.average_window, + "min_average_window": self.min_average_window, + "max_average_window": self.max_average_window, + }) + + @contextmanager + def apply(self, executor, need_restore=True): + """Apply average values to parameters of current model. + """ + executor.run(self.apply_program) + try: + yield + finally: + if need_restore: + self.restore(executor) + + def restore(self, executor): + """Restore parameter values of current model. + """ + executor.run(self.restore_program) diff --git a/python/paddle/fluid/tests/unittests/test_activation_op.py b/python/paddle/fluid/tests/unittests/test_activation_op.py index eab41ebe711bd21bdc3b34ca83ab57388cc35ba2..1e3decfbaf0691e912b96b415b68353e626cf51e 100644 --- a/python/paddle/fluid/tests/unittests/test_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_activation_op.py @@ -14,6 +14,7 @@ import unittest import numpy as np +import paddle.fluid.core as core from op_test import OpTest from scipy.special import expit @@ -212,18 +213,39 @@ class TestRound(OpTest): class TestRelu(OpTest): def setUp(self): self.op_type = "relu" - x = np.random.uniform(-1, 1, [11, 17]).astype("float32") + self.dtype = np.float32 + self.init_dtype() + + x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype) # The same reason with TestAbs x[np.abs(x) < 0.005] = 0.02 - self.inputs = {'X': x} - self.outputs = {'Out': np.maximum(self.inputs['X'], 0)} + out = np.maximum(x, 0) + + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return self.check_grad(['X'], 'Out', max_relative_error=0.007) + def init_dtype(self): + pass + + +class TestFP16Relu(TestRelu): + def init_dtype(self): + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + class TestBRelu(OpTest): def setUp(self): diff --git a/python/paddle/fluid/tests/unittests/test_softmax_op.py b/python/paddle/fluid/tests/unittests/test_softmax_op.py index 4f20da2b926823db9e7ec92c95178b6d3d1feec9..33d60c7e31ce0817ad26ea1c1c974339936052d3 100644 --- a/python/paddle/fluid/tests/unittests/test_softmax_op.py +++ b/python/paddle/fluid/tests/unittests/test_softmax_op.py @@ -29,15 +29,20 @@ class TestSoftmaxOp(OpTest): def setUp(self): self.op_type = "softmax" self.use_cudnn = False - self.inputs = { - 'X': np.random.uniform(0.1, 1, [10, 10]).astype("float32") - } - self.outputs = { - 'Out': np.apply_along_axis(stable_softmax, 1, self.inputs['X']) + self.use_mkldnn = False + self.dtype = np.float32 + self.init_kernel_type() + + x = np.random.uniform(0.1, 1, [10, 10]).astype(self.dtype) + out = np.apply_along_axis(stable_softmax, 1, x) + self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} + self.outputs = {'Out': out} + self.attrs = { + 'use_cudnn': self.use_cudnn, + 'use_mkldnn': self.use_mkldnn } - self.attrs = {'use_cudnn': self.use_cudnn, } - def init_op_type(self): + def init_kernel_type(self): pass def test_check_output(self): @@ -48,6 +53,8 @@ class TestSoftmaxOp(OpTest): self.check_output() def test_check_grad(self): + if self.dtype == np.float16: + return if self.use_cudnn: place = core.CUDAPlace(0) self.check_grad_with_place( @@ -57,8 +64,25 @@ class TestSoftmaxOp(OpTest): class TestSoftmaxCUDNNOp(TestSoftmaxOp): - def init_op_type(self): + def init_kernel_type(self): + self.use_cudnn = True + + +class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp): + def init_kernel_type(self): self.use_cudnn = True + self.dtype = np.float16 + + def test_check_output(self): + if core.is_compiled_with_cuda(): + place = core.CUDAPlace(0) + if core.is_float16_supported(place): + self.check_output_with_place(place, atol=1e-3) + + +class TestSoftmaxMKLDNNOp(TestSoftmaxOp): + def init_kernel_type(self): + self.use_mkldnn = True if __name__ == "__main__": diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index eac2cb316835fda0a52ac9895eaa80914d0f1e5b..3684d1e8f73a21d9c6f2a5985f8b40ed6984057b 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -2747,17 +2747,17 @@ def img_pool_layer(input, .. math:: - w & = 1 + \\frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} + w & = 1 + ceil(\\frac{input\_width + 2 * padding - pool\_size}{stride}) - h & = 1 + \\frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} + h & = 1 + ceil(\\frac{input\_height + 2 * padding\_y - pool\_size\_y}{stride\_y}) - ceil_mode=False: .. math:: - w & = 1 + \\frac{floor(input\_width + 2 * padding - pool\_size)}{stride} + w & = 1 + floor(\\frac{input\_width + 2 * padding - pool\_size}{stride}) - h & = 1 + \\frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} + h & = 1 + floor(\\frac{input\_height + 2 * padding\_y - pool\_size\_y}{stride\_y}) The example usage is: