Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
b7940c29
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b7940c29
编写于
3月 22, 2019
作者:
X
xjqbest
提交者:
dongdaxiang
3月 29, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug of gen_worker_desc and set_filelist, add some doc
上级
68d7bf3d
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
160 addition
and
40 deletion
+160
-40
paddle/fluid/framework/data_set.cc
paddle/fluid/framework/data_set.cc
+5
-0
paddle/fluid/framework/fleet/fleet_wrapper.cc
paddle/fluid/framework/fleet/fleet_wrapper.cc
+0
-7
python/paddle/fluid/dataset.py
python/paddle/fluid/dataset.py
+117
-4
python/paddle/fluid/device_worker.py
python/paddle/fluid/device_worker.py
+27
-25
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+2
-1
python/paddle/fluid/incubate/fleet/parameter_server/__init__.py
.../paddle/fluid/incubate/fleet/parameter_server/__init__.py
+9
-3
未找到文件。
paddle/fluid/framework/data_set.cc
浏览文件 @
b7940c29
...
...
@@ -221,6 +221,11 @@ void DatasetImpl<T>::DestroyReaders() {
}
std
::
vector
<
std
::
shared_ptr
<
paddle
::
framework
::
DataFeed
>>
().
swap
(
readers_
);
VLOG
(
3
)
<<
"readers size: "
<<
readers_
.
size
();
// if memory_data_ is not empty, which means it's not InMemory mode,
// so the next epoch should read all data again
if
(
memory_data_
.
size
()
!=
0
)
{
file_idx_
=
0
;
}
}
template
<
typename
T
>
...
...
paddle/fluid/framework/fleet/fleet_wrapper.cc
浏览文件 @
b7940c29
...
...
@@ -295,8 +295,6 @@ void FleetWrapper::PushSparseVarsWithLabelAsync(
int
offset
=
2
;
uint64_t
fea_idx
=
0u
;
for
(
size_t
i
=
0
;
i
<
sparse_key_names
.
size
();
++
i
)
{
LOG
(
WARNING
)
<<
"sparse key names["
<<
i
<<
"]: "
<<
sparse_key_names
[
i
];
LOG
(
WARNING
)
<<
"sparse grad names["
<<
i
<<
"]: "
<<
sparse_grad_names
[
i
];
Variable
*
g_var
=
scope
.
FindVar
(
sparse_grad_names
[
i
]);
CHECK
(
g_var
!=
nullptr
)
<<
"var["
<<
sparse_grad_names
[
i
]
<<
"] not found"
;
LoDTensor
*
g_tensor
=
g_var
->
GetMutable
<
LoDTensor
>
();
...
...
@@ -313,7 +311,6 @@ void FleetWrapper::PushSparseVarsWithLabelAsync(
exit
(
-
1
);
}
int
len
=
tensor
->
numel
();
LOG
(
WARNING
)
<<
" tensor len: "
<<
len
;
int64_t
*
ids
=
tensor
->
data
<
int64_t
>
();
push_values
->
resize
(
fea_keys
.
size
()
+
1
);
for
(
auto
&
t
:
*
push_values
)
{
...
...
@@ -325,16 +322,12 @@ void FleetWrapper::PushSparseVarsWithLabelAsync(
g
+=
emb_dim
;
continue
;
}
LOG
(
WARNING
)
<<
"going to memcpy"
;
CHECK
(
fea_idx
<
(
*
push_values
).
size
());
CHECK
(
fea_idx
<
fea_labels
.
size
());
memcpy
((
*
push_values
)[
fea_idx
].
data
()
+
offset
,
g
,
sizeof
(
float
)
*
emb_dim
);
LOG
(
WARNING
)
<<
"show"
;
(
*
push_values
)[
fea_idx
][
0
]
=
1.0
f
;
LOG
(
WARNING
)
<<
"click"
;
(
*
push_values
)[
fea_idx
][
1
]
=
static_cast
<
float
>
(
fea_labels
[
fea_idx
]);
LOG
(
WARNING
)
<<
"offset"
;
g
+=
emb_dim
;
fea_idx
++
;
}
...
...
python/paddle/fluid/dataset.py
浏览文件 @
b7940c29
...
...
@@ -19,10 +19,25 @@ __all__ = ['DatasetFactory']
class
DatasetFactory
(
object
):
"""
DatasetFactory is a factory which create dataset by its name,
you can create "QueueDataset" or "InMemoryDataset",
the default is "QueueDataset".
Example:
dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
"""
def
__init__
(
self
):
"""
Init
"""
pass
def
create_dataset
(
self
,
datafeed_class
=
"QueueDataset"
):
"""
Create "QueueDataset" or "InMemoryDataset",
the default is "QueueDataset".
"""
try
:
dataset
=
globals
()[
datafeed_class
]()
return
dataset
...
...
@@ -32,7 +47,13 @@ class DatasetFactory(object):
class
DatasetBase
(
object
):
"""
Base dataset class
"""
def
__init__
(
self
):
"""
Init
"""
# define class name here
# to decide whether we need create in memory instance
self
.
proto_desc
=
data_feed_pb2
.
DataFeedDesc
()
...
...
@@ -45,6 +66,12 @@ class DatasetBase(object):
Set pipe command of current dataset
A pipe command is a UNIX pipeline command that can be used only
Example:
>>> dataset.set_pipe_command("python my_script.py")
Args:
pipe_command: pipe command
"""
self
.
proto_desc
.
pipe_command
=
pipe_command
...
...
@@ -53,8 +80,7 @@ class DatasetBase(object):
Set batch size. Will be effective during training
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> data_feed.set_batch_size(128)
>>> dataset.set_batch_size(128)
Args:
batch_size: batch size
...
...
@@ -63,13 +89,40 @@ class DatasetBase(object):
self
.
proto_desc
.
batch_size
=
batch_size
def
set_thread
(
self
,
thread_num
):
"""
Set thread num, it is the num of readers.
Example:
>>> dataset.set_thread(12)
Args:
thread_num: thread num
"""
self
.
dataset
.
set_thread_num
(
thread_num
)
self
.
thread_num
=
thread_num
def
set_filelist
(
self
,
filelist
):
"""
Set file list in current worker.
Example:
>>> dataset.set_filelist(['a.txt', 'b.txt'])
Args:
filelist: file list
"""
self
.
dataset
.
set_filelist
(
filelist
)
def
set_use_var
(
self
,
var_list
):
"""
Set Variables which you will use.
Example:
>>> dataset.set_use_var([data, label])
Args:
var_list: variable list
"""
multi_slot
=
self
.
proto_desc
.
multi_slot_desc
for
var
in
var_list
:
slot_var
=
multi_slot
.
slots
.
add
()
...
...
@@ -87,9 +140,23 @@ class DatasetBase(object):
)
def
set_hdfs_config
(
self
,
fs_name
,
fs_ugi
):
"""
Set hdfs config: fs name ad ugi
Example:
>>> dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
Args:
fs_name: fs name
fs_ugi: fs ugi
"""
self
.
dataset
.
set_hdfs_config
(
fs_name
,
fs_ugi
)
def
_prepare_to_run
(
self
):
"""
Set data_feed_desc before load or shuffle,
user no need to call this function.
"""
self
.
dataset
.
set_data_feed_desc
(
self
.
desc
())
def
desc
(
self
):
...
...
@@ -97,8 +164,7 @@ class DatasetBase(object):
Returns a protobuf message for this DataFeedDesc
Example:
>>> data_feed = fluid.DataFeedDesc('data.proto')
>>> print(data_feed.desc())
>>> print(dataset.desc())
Returns:
A string message
...
...
@@ -107,18 +173,50 @@ class DatasetBase(object):
class
InMemoryDataset
(
DatasetBase
):
"""
InMemoryDataset, it will load data into memory
and shuffle data before training
Example:
dataset = paddle.fluid.DatasetFactory.create_dataset("InMemoryDataset")
"""
def
__init__
(
self
):
"""
Init
"""
super
(
InMemoryDataset
,
self
).
__init__
()
self
.
proto_desc
.
name
=
"MultiSlotInMemoryDataFeed"
def
load_into_memory
(
self
):
"""
Load data into memory
Example:
>>> dataset.load_into_memory()
"""
self
.
_prepare_to_run
()
self
.
dataset
.
load_into_memory
()
def
local_shuffle
(
self
):
"""
Local shuffle
Example:
>>> dataset.local_shuffle()
"""
self
.
dataset
.
local_shuffle
()
def
global_shuffle
(
self
,
fleet
=
None
):
"""
Global shuffle.
If you run distributed, you should pass fleet instead of None.
Example:
>>> dataset.global_shuffle(fleet)
Args:
fleet: fleet singleton. Default None.
"""
trainer_num
=
1
if
fleet
is
not
None
:
fleet
.
fleet_instance
.
role_maker_
.
barrier_worker
()
...
...
@@ -130,12 +228,27 @@ class InMemoryDataset(DatasetBase):
class
QueueDataset
(
DatasetBase
):
"""
QueueDataset, it will process data streamly.
Example:
dataset = paddle.fluid.DatasetFactory.create_dataset("QueueDataset")
"""
def
__init__
(
self
):
"""
Init
"""
super
(
QueueDataset
,
self
).
__init__
()
self
.
proto_desc
.
name
=
"MultiSlotDataFeed"
def
local_shuffle
(
self
):
"""
Local shuffle
"""
pass
def
global_shuffle
(
self
,
fleet
=
None
):
"""
Global shuffle
"""
pass
python/paddle/fluid/device_worker.py
浏览文件 @
b7940c29
...
...
@@ -43,31 +43,6 @@ class DownpourSGD(DeviceWorker):
super
(
DownpourSGD
,
self
).
__init__
()
def
gen_worker_desc
(
self
,
trainer_desc
):
trainer_desc
.
device_worker_name
=
"DownpourWorker"
pull_thread
=
trainer_desc
.
pull_dense_param
pull_thread
.
device_num
=
trainer_desc
.
thread_num
dense_table
=
pull_thread
.
dense_table
.
add
()
dense_table
.
dense_value_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
dense_table
[
0
].
dense_variable_name
)
dense_table
.
table_id
=
\
self
.
fleet_desc_
.
trainer_param
.
dense_table
[
0
].
table_id
downpour
=
trainer_desc
.
downpour_param
sparse_table
=
downpour
.
sparse_table
.
add
()
sparse_table
.
table_id
=
\
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
table_id
sparse_table
.
sparse_key_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
slot_key
)
sparse_table
.
sparse_value_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
slot_value
)
sparse_table
.
sparse_grad_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
slot_gradient
)
sparse_table
.
emb_dim
=
\
self
.
fleet_desc_
.
server_param
.
downpour_server_param
.
downpour_table_param
[
0
].
accessor
.
fea_dim
-
2
sparse_table
.
fea_dim
=
sparse_table
.
emb_dim
+
2
# TODO(guru4elephant): hard code here, need to improve
sparse_table
.
label_var_name
=
"click"
dense_table_set
=
set
()
program_id
=
str
(
id
(
self
.
program_
))
if
self
.
program_
==
None
:
...
...
@@ -75,6 +50,7 @@ class DownpourSGD(DeviceWorker):
sys
.
exit
(
-
1
)
opt_info
=
self
.
program_
.
_fleet_opt
program_configs
=
opt_info
[
"program_configs"
]
downpour
=
trainer_desc
.
downpour_param
for
pid
in
program_configs
:
if
pid
==
program_id
:
...
...
@@ -92,6 +68,32 @@ class DownpourSGD(DeviceWorker):
dense_table_set
.
add
(
i
)
break
trainer_desc
.
device_worker_name
=
"DownpourWorker"
pull_thread
=
trainer_desc
.
pull_dense_param
pull_thread
.
device_num
=
trainer_desc
.
thread_num
for
i
in
self
.
fleet_desc_
.
trainer_param
.
dense_table
:
if
i
.
table_id
in
dense_table_set
:
dense_table
=
pull_thread
.
dense_table
.
add
()
dense_table
.
dense_value_name
.
extend
(
i
.
dense_variable_name
)
dense_table
.
table_id
=
\
i
.
table_id
sparse_table
=
downpour
.
sparse_table
.
add
()
sparse_table
.
table_id
=
\
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
table_id
sparse_table
.
sparse_key_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
slot_key
)
sparse_table
.
sparse_value_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
slot_value
)
sparse_table
.
sparse_grad_name
.
extend
(
self
.
fleet_desc_
.
trainer_param
.
sparse_table
[
0
].
slot_gradient
)
sparse_table
.
emb_dim
=
\
self
.
fleet_desc_
.
server_param
.
downpour_server_param
.
downpour_table_param
[
0
].
accessor
.
fea_dim
-
2
sparse_table
.
fea_dim
=
sparse_table
.
emb_dim
+
2
# TODO(guru4elephant): hard code here, need to improve
sparse_table
.
label_var_name
=
"click"
for
i
in
self
.
fleet_desc_
.
trainer_param
.
dense_table
:
if
i
.
table_id
in
dense_table_set
:
dense_table
=
downpour
.
dense_table
.
add
()
...
...
python/paddle/fluid/executor.py
浏览文件 @
b7940c29
...
...
@@ -658,7 +658,8 @@ class Executor(object):
trainer
.
gen_trainer_desc
()
dataset
.
_prepare_to_run
()
if
debug
:
with
open
(
"train_desc.prototxt"
,
"w"
)
as
fout
:
#with open("train_desc.prototxt", "w") as fout:
with
open
(
str
(
id
(
program
))
+
"_train_desc.prototxt"
,
"w"
)
as
fout
:
fout
.
write
(
trainer
.
_desc
())
if
program
.
_fleet_opt
:
with
open
(
"fleet_desc.prototxt"
,
"w"
)
as
fout
:
...
...
python/paddle/fluid/incubate/fleet/parameter_server/__init__.py
浏览文件 @
b7940c29
...
...
@@ -146,7 +146,7 @@ class Fleet(object):
self
.
role_maker_
.
barrier_all
()
self
.
role_maker_
.
barrier_worker
()
if
self
.
role_maker_
.
is_first_worker
():
tables
=
self
.
_dist_desc
.
trainer_param
.
dense_table
.
_values
tables
=
self
.
_dist_desc
.
trainer_param
.
dense_table
for
prog
in
programs
:
prog_id
=
str
(
id
(
prog
))
prog_conf
=
self
.
_opt_info
[
'program_configs'
][
prog_id
]
...
...
@@ -156,8 +156,7 @@ class Fleet(object):
continue
for
table_id
in
prog_conf
[
key
]:
prog_tables
[
int
(
table_id
)]
=
0
for
i
in
range
(
0
,
len
(
tables
)):
table
=
tables
[
i
]
for
table
in
tables
:
if
int
(
table
.
table_id
)
not
in
prog_tables
:
continue
var_name_list
=
[]
...
...
@@ -185,6 +184,12 @@ class Fleet(object):
"""
return
self
.
role_maker_
.
server_num
()
def
get_worker_index
(
self
):
"""
return the mpi rank of current worker
"""
return
self
.
role_maker_
.
worker_index
();
def
is_worker
(
self
):
"""
return whether current node is a worker
...
...
@@ -306,3 +311,4 @@ init_pserver_model = fleet_instance.init_pserver_model
save_pserver_model
=
fleet_instance
.
save_pserver_model
worker_num
=
fleet_instance
.
get_worker_num
server_num
=
fleet_instance
.
get_server_num
worker_index
=
fleet_instance
.
get_worker_index
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录