Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
af9a3301
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
af9a3301
编写于
11月 21, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop
上级
014e50c2
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
152 addition
and
130 deletion
+152
-130
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+4
-2
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+3
-2
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+1
-1
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+144
-125
未找到文件。
paddle/fluid/framework/selected_rows.h
浏览文件 @
af9a3301
...
...
@@ -121,7 +121,9 @@ class SelectedRows {
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
);
void
SyncIndex
();
/*
* @brief Get complete Dims before
*/
DDim
GetCompleteDims
()
const
{
std
::
vector
<
int64_t
>
dims
=
vectorize
(
value_
->
dims
());
dims
[
0
]
=
height_
;
...
...
@@ -136,7 +138,7 @@ class SelectedRows {
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
// should not be used when ids has duplicate member
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
int64_t
height_
;
int64_t
height_
;
// height indicates the underline tensor's height
std
::
unique_ptr
<
RWLock
>
rwlock_
{
nullptr
};
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
af9a3301
...
...
@@ -145,8 +145,9 @@ class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PreOut"
),
"Input(Preout) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"W"
)),
"Output(W@Grad should not be null.)"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)));
"Output(W@Grad should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@Grad should not be null."
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Bias"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Bias"
),
ctx
->
GetInputDim
(
"Bias"
));
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
af9a3301
...
...
@@ -191,10 +191,10 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
framework
::
Vector
<
int64_t
>
real_rows
=
cal_rows
(
path
);
auto
*
w_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
w_grad
->
SyncIndex
();
w_grad
->
set_height
(
w
->
dims
()[
0
]);
auto
*
w_grad_value
=
w_grad
->
mutable_value
();
framework
::
DDim
temp_dim
(
w
->
dims
());
set
(
temp_dim
,
0
,
real_rows
.
size
());
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
af9a3301
...
...
@@ -140,148 +140,167 @@ def hsigmoidWithCustomTree(x, w, ptable, pcode, label, bias, num_classes):
return
pre_output
,
out
#
class TestHSigmoidOp(OpTest):
#
def setUp(self):
#
self.op_type = "hierarchical_sigmoid"
#
num_classes = 6
#
feature_size = 8
#
batch_size = 4
#
x = np.random.random((batch_size, feature_size)).astype("float32") * 2
#
w = np.random.random(
#
(num_classes - 1, feature_size)).astype("float32") * 2
#
label = np.random.randint(0, num_classes, (batch_size, 1))
#
bias = np.random.random((1, num_classes - 1)).astype("float32")
#
self.attrs = {'num_classes': num_classes, 'is_sparse': False}
#
self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
#
pre_output, out = hsigmoid(x, w, label, bias, num_classes)
#
self.outputs = {'PreOut': pre_output, 'Out': out}
#
def test_check_output(self):
#
self.check_output()
#
def test_check_grad(self):
#
self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
# class TestHSigmoidOpSparse(OpTest):
# def setUp(self
):
# self.op_type = "hierarchical_sigmoid"
# num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
# feature_size = 8
# batch_size = 4
# x = np.random.random((batch_size, feature_size)).astype("float32") * 2
# w = np.random.random(
# (num_classes - 1, feature_size)).astype("float32") * 2
#
label = np.array([0, 1, 4, 5])
#
ptable = np.array(
#
[(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
#
(0, 2, -1, -1,
#
-1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
#
pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
#
1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
#
bias = np.random.random((1, num_classes - 1)).astype("float32")
#
self.attrs = {'num_classes': num_classes, 'is_sparse': True}
#
self.inputs = {
#
'X': x,
#
'W': w,
#
'PTable': ptable,
#
'PCode': pcode,
#
'Label': label,
#
'Bias': bias
#
}
#
pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
#
bias, num_classes)
#
self.outputs = {'PreOut': pre_output, 'Out': out}
#
def test_check_output(self):
#
print("checking output in CostumTree")
#
self.check_output()
class
TestHSigmoidOpWithSparseGrad
():
def
hs_net_conf
(
self
):
emb
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
3
],
dtype
=
'int64'
)
class
TestHSigmoidOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
class
TestHSigmoidOpSparse
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
True
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
ptable
,
'PCode'
:
pcode
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
ptable
,
pcode
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
class
TestHSigmoidOpWithSparseGrad
(
unittest
.
TestCase
):
def
hs_net_conf
(
self
,
is_sparse
):
input_word
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
1
],
dtype
=
'int64'
)
ptable
=
fluid
.
layers
.
data
(
name
=
'ptable'
,
shape
=
[
3
],
dtype
=
'int64'
)
pcode
=
fluid
.
layers
.
data
(
name
=
'pcode'
,
shape
=
[
3
],
dtype
=
'int64'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
data_list
=
[
emb
,
ptable
,
pcode
,
label
]
data_list
=
[
input_word
,
ptable
,
pcode
,
label
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
is_sparse
=
False
,
size
=
[
3
,
3
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
3
))))
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
predict_word
,
non_leaf_num
=
4
,
label
=
label
,
non_leaf_num
=
3
,
ptable
=
ptable
,
pcode
=
pcode
,
is_costum
=
True
,
is_sparse
=
Tru
e
)
is_sparse
=
is_spars
e
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
data_list
def
test_training_test
(
self
):
print
(
"im here"
)
w
=
np
.
arange
(
12
).
reshape
(
4
,
3
)
x
=
np
.
ones
((
2
,
3
))
def
training_test
(
self
,
is_sparse
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
start_up
=
fluid
.
default_startup_program
()
start_up
.
random_seed
=
1
# Fix random seed
x
=
np
.
arange
(
6
).
reshape
(
6
)
ptable
=
np
.
array
([(
1
,
2
,
-
1
),
(
1
,
2
,
-
1
)])
pcode
=
np
.
array
([(
1
,
0
,
-
1
),
(
0
,
0
,
-
1
)])
label
=
np
.
array
([(
1
,
4
)
])
label
=
np
.
array
([
1
,
4
])
loss
,
data_list
=
hs_net_conf
(
)
loss
,
data_list
=
self
.
hs_net_conf
(
is_sparse
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
main_program
=
fluid
.
default_main_program
()
# print("main program: {program}".format{program=str(main_program)})
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
data_list
,
place
=
place
)
data_name_list
=
[
var
.
name
for
var
in
data_list
]
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
args
.
num_passes
):
exe
.
run
(
start_up
)
result
=
list
()
for
i
in
range
(
10
):
data
=
[
w
,
x
[
i
%
2
],
ptable
[
i
%
2
],
pcode
[
i
%
2
],
label
[
i
%
2
]]
data
=
[([[
x
[
i
%
2
]]],
[
list
(
ptable
[
i
%
2
])],
[
list
(
pcode
[
i
%
2
])],
[
label
[
i
%
2
]])]
loss_val
=
exe
.
run
(
main_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
print
(
"loss is: {loss}"
.
format
(
loss
=
loss
))
# class TestHSigmoidOpWithCostumTree(OpTest):
# def setUp(self):
# self.op_type = "hierarchical_sigmoid"
# num_classes = 6 #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
# feature_size = 8
# batch_size = 4
# x = np.random.random((batch_size, feature_size)).astype("float32") * 2
# w = np.random.random(
# (num_classes - 1, feature_size)).astype("float32") * 2
# label = np.array([0, 1, 4, 5])
# ptable = np.array(
# [(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
# (0, 2, -1, -1,
# -1)]) #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
# pcode = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
# 1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]) #np.array to store
# bias = np.random.random((1, num_classes - 1)).astype("float32")
# self.attrs = {'num_classes': num_classes, 'is_sparse': False}
# self.inputs = {
# 'X': x,
# 'W': w,
# 'PTable': ptable,
# 'PCode': pcode,
# 'Label': label,
# 'Bias': bias
# }
# pre_output, out = hsigmoidWithCustomTree(x, w, ptable, pcode, label,
# bias, num_classes)
# self.outputs = {'PreOut': pre_output, 'Out': out}
# def test_check_output(self):
# print("checking output in CostumTree")
# self.check_output()
# def test_check_grad(self):
# print("checking outputGrad in CostumTree")
# self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
result
.
append
(
loss_val
)
return
result
def
test_hs_grad_with_sparse
(
self
):
dense_result
=
self
.
training_test
(
is_sparse
=
False
)
sparse_result
=
self
.
training_test
(
is_sparse
=
True
)
assert
(
dense_result
==
sparse_result
)
class
TestHSigmoidOpWithCostumTree
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
2
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
2
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
,
'is_sparse'
:
False
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
ptable
,
'PCode'
:
pcode
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
ptable
,
pcode
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
def
test_check_grad
(
self
):
print
(
"checking outputGrad in CostumTree"
)
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录