Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
ad4ab5ac
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad4ab5ac
编写于
2月 26, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove step_input in recurrent_group step_input
上级
f13f1f1c
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
62 addition
and
20 deletion
+62
-20
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+6
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+50
-11
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+6
-7
未找到文件。
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
ad4ab5ac
...
...
@@ -3042,7 +3042,8 @@ def recurrent_group(step,
reverse
=
False
,
name
=
None
,
targetInlink
=
None
,
is_generating
=
False
):
is_generating
=
False
,
in_args_converter
=
None
):
"""
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
...
...
@@ -3185,7 +3186,10 @@ def recurrent_group(step,
assert
(
is_generating
!=
has_LayerOutput
)
if
in_args_converter
is
None
:
layer_outs
=
step
(
*
in_args
)
else
:
layer_outs
=
step
(
*
in_args_converter
(
*
in_args
)).
to_proto
(
dict
())
if
isinstance
(
layer_outs
,
LayerOutput
):
layer_outs
=
[
layer_outs
]
...
...
python/paddle/v2/layer.py
浏览文件 @
ad4ab5ac
...
...
@@ -73,8 +73,6 @@ from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config
as
__parse__
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
import
activation
import
attr
import
data_type
__all__
=
[
...
...
@@ -101,11 +99,10 @@ def parse_network(*outputs):
class
Layer
(
object
):
def
__init__
(
self
,
name
,
parent_layers
,
step_input
=
None
):
def
__init__
(
self
,
name
,
parent_layers
):
assert
isinstance
(
parent_layers
,
dict
)
assert
isinstance
(
name
,
basestring
)
self
.
name
=
name
self
.
step_input
=
step_input
self
.
__parent_layers__
=
parent_layers
def
to_proto
(
self
,
context
):
...
...
@@ -121,12 +118,13 @@ class Layer(object):
else
:
v1_layer
=
map
(
lambda
x
:
x
.
to_proto
(
context
=
context
),
self
.
__parent_layers__
[
layer_name
])
if
layer_name
==
"input"
and
self
.
step_input
is
not
None
:
v1_layer
.
insert
(
0
,
self
.
step_input
)
kwargs
[
layer_name
]
=
v1_layer
if
self
.
name
is
None
:
return
self
.
to_proto_impl
(
**
kwargs
)
# memory may have the same name with some layer
if
isinstance
(
self
,
MemoryV2
):
if
isinstance
(
self
,
MemoryV2
)
or
isinstance
(
self
,
LayerOutputV2
)
:
return
self
.
to_proto_impl
(
**
kwargs
)
if
self
.
name
not
in
context
:
...
...
@@ -144,7 +142,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
wrapper
=
None
class
V2LayerImpl
(
Layer
):
def
__init__
(
self
,
name
=
None
,
step_input
=
None
,
**
kwargs
):
def
__init__
(
self
,
name
=
None
,
**
kwargs
):
parent_layers
=
dict
()
other_kwargs
=
dict
()
for
pname
in
parent_names
:
...
...
@@ -155,7 +153,7 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
if
key
not
in
parent_names
:
other_kwargs
[
key
]
=
kwargs
[
key
]
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
,
step_input
)
super
(
V2LayerImpl
,
self
).
__init__
(
name
,
parent_layers
)
self
.
__other_kwargs__
=
other_kwargs
if
wrapper
is
not
None
:
...
...
@@ -214,6 +212,48 @@ class MemoryV2(Layer):
return
conf_helps
.
memory
(
name
=
self
.
name
,
size
=
self
.
size
,
**
args
)
class
LayerOutputV2
(
Layer
):
def
__init__
(
self
,
layer_output
):
assert
isinstance
(
layer_output
,
conf_helps
.
LayerOutput
)
self
.
layer_output
=
layer_output
super
(
LayerOutputV2
,
self
).
__init__
(
name
=
layer_output
.
name
,
parent_layers
=
dict
())
def
to_proto_impl
(
self
):
return
self
.
layer_output
class
RecurrentGroupV2
(
Layer
):
def
__init__
(
self
,
name
,
**
kwargs
):
self
.
__parent_names__
=
[
'input'
]
other_kwargs
=
dict
()
parent_layers
=
dict
()
for
pname
in
self
.
__parent_names__
:
if
kwargs
.
has_key
(
pname
):
parent_layers
[
pname
]
=
kwargs
[
pname
]
for
key
in
kwargs
.
keys
():
if
key
not
in
self
.
__parent_names__
:
other_kwargs
[
key
]
=
kwargs
[
key
]
self
.
__kwargs__
=
other_kwargs
super
(
RecurrentGroupV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
parent_layers
)
def
to_proto_impl
(
self
,
**
kwargs
):
def
in_args_converter
(
in_args
):
if
not
isinstance
(
in_args
,
collections
.
Sequence
):
in_args
=
[
in_args
]
return
[
LayerOutputV2
(
input
)
for
input
in
in_args
]
args
=
dict
()
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__kwargs__
:
args
[
each
]
=
self
.
__kwargs__
[
each
]
return
conf_helps
.
recurrent_group
(
name
=
self
.
name
,
in_args_converter
=
in_args_converter
,
**
args
)
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
max_id
=
__convert_to_v2__
(
...
...
@@ -234,8 +274,7 @@ embedding = __convert_to_v2__(
'embedding_layer'
,
name_prefix
=
'embedding'
,
parent_names
=
[
'input'
])
last_seq
=
__convert_to_v2__
(
'last_seq'
,
name_prefix
=
'last_seq'
,
parent_names
=
[
'input'
])
recurrent_group
=
__convert_to_v2__
(
'recurrent_group'
,
name_prefix
=
'recurrent_layer'
,
parent_names
=
[
'input'
])
recurrent_group
=
RecurrentGroupV2
memory
=
MemoryV2
cross_entropy_with_selfnorm_cost
=
__convert_to_v2__
(
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
ad4ab5ac
...
...
@@ -63,7 +63,7 @@ class RNNTest(unittest.TestCase):
word_dim
=
8
hidden_dim
=
8
def
test
_old_rnn
():
def
parse
_old_rnn
():
def
step
(
y
):
mem
=
conf_helps
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
conf_helps
.
fc_layer
(
...
...
@@ -81,16 +81,15 @@ class RNNTest(unittest.TestCase):
return
str
(
parse_network
(
test
))
def
test
_new_rnn
():
def
parse
_new_rnn
():
def
new_step
(
y
):
mem
=
layer
.
memory
(
name
=
"rnn_state"
,
size
=
hidden_dim
)
out
=
layer
.
fc
(
input
=
[
mem
],
step_input
=
y
,
out
=
layer
.
fc
(
input
=
[
y
,
mem
],
size
=
hidden_dim
,
act
=
activation
.
Tanh
(),
bias_attr
=
True
,
name
=
"rnn_state"
)
return
out
.
to_proto
(
dict
())
return
out
data1
=
layer
.
data
(
name
=
"word"
,
type
=
data_type
.
integer_value
(
dict_dim
))
...
...
@@ -99,8 +98,8 @@ class RNNTest(unittest.TestCase):
name
=
"rnn"
,
step
=
new_step
,
input
=
embd
)
return
str
(
layer
.
parse_network
(
rnn_layer
))
diff
=
difflib
.
unified_diff
(
test
_old_rnn
().
splitlines
(
1
),
test
_new_rnn
().
splitlines
(
1
))
diff
=
difflib
.
unified_diff
(
parse
_old_rnn
().
splitlines
(
1
),
parse
_new_rnn
().
splitlines
(
1
))
print
''
.
join
(
diff
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录