From acdb57a510d116d0c9f2a0d0b26083f474cb4f8a Mon Sep 17 00:00:00 2001 From: tensor-tang Date: Fri, 15 Jun 2018 02:30:36 +0800 Subject: [PATCH] polish doc: conv2d --- python/paddle/fluid/layers/nn.py | 26 +++++++++++++++----------- 1 file changed, 15 insertions(+), 11 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 2c1f98882..48c6bb99b 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1183,14 +1183,17 @@ def conv2d(input, act=None, name=None): """ - **Convlution2D Layer** - The convolution2D layer calculates the output based on the input, filter - and strides, paddings, dilations, groups parameters. Input(Input) and - Output(Output) are in NCHW format. Where N is batch size, C is the number of + and strides, paddings, dilations, groups parameters. Input and + Output are in NCHW format, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. - The details of convolution layer, please refer UFLDL's `convolution, - `_ . + Filter is in MCHW format, where M is the number of output image channels, + C is the number of input image channels, H is the height of the filter, + and W is the width of the filter. If the groups is greater than 1, + C will equal the number of input image channels divided by the groups. + Please refer to UFLDL's `convolution + `_ + for more detials. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. @@ -1201,15 +1204,14 @@ def conv2d(input, Out = \sigma (W \\ast X + b) - In the above equation: + Where: * :math:`X`: Input value, a tensor with NCHW format. * :math:`W`: Filter value, a tensor with MCHW format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. - * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be - different. + * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: @@ -1220,6 +1222,7 @@ def conv2d(input, Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` - Output: + Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where @@ -1231,7 +1234,7 @@ def conv2d(input, Args: input (Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of filter. It is as same as the output + num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple|None): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). @@ -1254,7 +1257,8 @@ def conv2d(input, bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True - use_mkldnn (bool): Use mkldnn kernels or not. + use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled + with mkldnn library. Default: False act (str): Activation type. Default: None name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. -- GitLab