未验证 提交 ab51c5c9 编写于 作者: Z zhiboniu 提交者: GitHub

Develop add hrnet mpii infer (#3747)

* add python train time eval

* add mpii infer support
上级 3c761465
......@@ -240,6 +240,8 @@ def draw_pose(imgfile,
raise e
skeletons, scores = results['keypoint']
kpt_nums = 17
if len(skeletons) > 0:
kpt_nums = skeletons.shape[1]
if kpt_nums == 17: #plot coco keypoint
EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
......
......@@ -83,7 +83,8 @@ def get_categories(metric_type, anno_file=None, arch=None):
elif metric_type.lower() == 'widerface':
return _widerface_category()
elif metric_type.lower() == 'keypointtopdowncocoeval':
elif metric_type.lower() == 'keypointtopdowncocoeval' or metric_type.lower(
) == 'keypointtopdownmpiieval':
return (None, {'id': 'keypoint'})
elif metric_type.lower() in ['mot', 'motdet', 'reid']:
......
......@@ -292,11 +292,7 @@ class Trainer(object):
def train(self, validate=False):
assert self.mode == 'train', "Model not in 'train' mode"
# if validation in training is enabled, metrics should be re-init
if validate:
self._init_metrics(validate=validate)
self._reset_metrics()
Init_mark = False
model = self.model
if self.cfg.get('fleet', False):
......@@ -394,6 +390,12 @@ class Trainer(object):
self._eval_dataset,
self.cfg.worker_num,
batch_sampler=self._eval_batch_sampler)
# if validation in training is enabled, metrics should be re-init
# Init_mark makes sure this code will only execute once
if validate and Init_mark == False:
Init_mark = True
self._init_metrics(validate=validate)
self._reset_metrics()
with paddle.no_grad():
self.status['save_best_model'] = True
self._eval_with_loader(self._eval_loader)
......@@ -558,9 +560,7 @@ class Trainer(object):
shape=[None, 3, 192, 64], name='crops')
})
static_model = paddle.jit.to_static(
self.model, input_spec=input_spec)
static_model = paddle.jit.to_static(self.model, input_spec=input_spec)
# NOTE: dy2st do not pruned program, but jit.save will prune program
# input spec, prune input spec here and save with pruned input spec
pruned_input_spec = self._prune_input_spec(
......
......@@ -14,7 +14,7 @@
import os
import json
from collections import defaultdict
from collections import defaultdict, OrderedDict
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
......
......@@ -218,23 +218,35 @@ def draw_segm(image,
return Image.fromarray(img_array.astype('uint8'))
def map_coco_to_personlab(keypoints):
permute = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
return keypoints[:, permute, :]
def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
def draw_pose(image,
results,
visual_thread=0.6,
save_name='pose.jpg',
save_dir='output',
returnimg=False,
ids=None):
try:
import matplotlib.pyplot as plt
import matplotlib
plt.switch_backend('agg')
except Exception as e:
logger.error('Matplotlib not found, plaese install matplotlib.'
logger.error('Matplotlib not found, please install matplotlib.'
'for example: `pip install matplotlib`.')
raise e
EDGES = [(0, 14), (0, 13), (0, 4), (0, 1), (14, 16), (13, 15), (4, 10),
(1, 7), (10, 11), (7, 8), (11, 12), (8, 9), (4, 5), (1, 2), (5, 6),
(2, 3)]
skeletons = np.array([item['keypoints'] for item in results])
kpt_nums = 17
if len(skeletons) > 0:
kpt_nums = int(skeletons.shape[1] / 3)
skeletons = skeletons.reshape(-1, kpt_nums, 3)
if kpt_nums == 17: #plot coco keypoint
EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
(7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14),
(13, 15), (14, 16), (11, 12)]
else: #plot mpii keypoint
EDGES = [(0, 1), (1, 2), (3, 4), (4, 5), (2, 6), (3, 6), (6, 7), (7, 8),
(8, 9), (10, 11), (11, 12), (13, 14), (14, 15), (8, 12),
(8, 13)]
NUM_EDGES = len(EDGES)
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
......@@ -242,22 +254,36 @@ def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
cmap = matplotlib.cm.get_cmap('hsv')
plt.figure()
skeletons = np.array([item['keypoints'] for item in results]).reshape(-1,
17, 3)
img = np.array(image).astype('float32')
canvas = img.copy()
for i in range(17):
rgba = np.array(cmap(1 - i / 17. - 1. / 34))
rgba[0:3] *= 255
color_set = results['colors'] if 'colors' in results else None
if 'bbox' in results and ids is None:
bboxs = results['bbox']
for j, rect in enumerate(bboxs):
xmin, ymin, xmax, ymax = rect
color = colors[0] if color_set is None else colors[color_set[j] %
len(colors)]
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
canvas = img.copy()
for i in range(kpt_nums):
for j in range(len(skeletons)):
if skeletons[j][i, 2] < visual_thread:
continue
if ids is None:
color = colors[i] if color_set is None else colors[color_set[j]
%
len(colors)]
else:
color = get_color(ids[j])
cv2.circle(
canvas,
tuple(skeletons[j][i, 0:2].astype('int32')),
2,
colors[i],
color,
thickness=-1)
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
......@@ -265,7 +291,6 @@ def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
stickwidth = 2
skeletons = map_coco_to_personlab(skeletons)
for i in range(NUM_EDGES):
for j in range(len(skeletons)):
edge = EDGES[i]
......@@ -283,7 +308,13 @@ def draw_pose(image, results, visual_thread=0.6, save_name='pose.jpg'):
polygon = cv2.ellipse2Poly((int(mY), int(mX)),
(int(length / 2), stickwidth),
int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
if ids is None:
color = colors[i] if color_set is None else colors[color_set[j]
%
len(colors)]
else:
color = get_color(ids[j])
cv2.fillConvexPoly(cur_canvas, polygon, color)
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
image = Image.fromarray(canvas.astype('uint8'))
plt.close()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册