未验证 提交 a972c39e 编写于 作者: G Guanghua Yu 提交者: GitHub

support fuse conv bn when export model (#5977)

上级 67742521
...@@ -10,3 +10,4 @@ export: ...@@ -10,3 +10,4 @@ export:
post_process: True # Whether post-processing is included in the network when export model. post_process: True # Whether post-processing is included in the network when export model.
nms: True # Whether NMS is included in the network when export model. nms: True # Whether NMS is included in the network when export model.
benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported. benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported.
fuse_conv_bn: False
...@@ -44,6 +44,7 @@ from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric ...@@ -44,6 +44,7 @@ from ppdet.metrics import RBoxMetric, JDEDetMetric, SNIPERCOCOMetric
from ppdet.data.source.sniper_coco import SniperCOCODataSet from ppdet.data.source.sniper_coco import SniperCOCODataSet
from ppdet.data.source.category import get_categories from ppdet.data.source.category import get_categories
import ppdet.utils.stats as stats import ppdet.utils.stats as stats
from ppdet.utils.fuse_utils import fuse_conv_bn
from ppdet.utils import profiler from ppdet.utils import profiler
from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback
...@@ -770,6 +771,11 @@ class Trainer(object): ...@@ -770,6 +771,11 @@ class Trainer(object):
def export(self, output_dir='output_inference'): def export(self, output_dir='output_inference'):
self.model.eval() self.model.eval()
if hasattr(self.cfg, 'export') and 'fuse_conv_bn' in self.cfg[
'export'] and self.cfg['export']['fuse_conv_bn']:
self.model = fuse_conv_bn(self.model)
model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0] model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0]
save_dir = os.path.join(output_dir, model_name) save_dir = os.path.join(output_dir, model_name)
if not os.path.exists(save_dir): if not os.path.exists(save_dir):
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import paddle
import paddle.nn as nn
__all__ = ['fuse_conv_bn']
def fuse_conv_bn(model):
is_train = False
if model.training:
model.eval()
is_train = True
fuse_list = []
tmp_pair = [None, None]
for name, layer in model.named_sublayers():
if isinstance(layer, nn.Conv2D):
tmp_pair[0] = name
if isinstance(layer, nn.BatchNorm2D):
tmp_pair[1] = name
if tmp_pair[0] and tmp_pair[1] and len(tmp_pair) == 2:
fuse_list.append(tmp_pair)
tmp_pair = [None, None]
model = fuse_layers(model, fuse_list)
if is_train:
model.train()
return model
def find_parent_layer_and_sub_name(model, name):
"""
Given the model and the name of a layer, find the parent layer and
the sub_name of the layer.
For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
'block_1/convbn_1' and the sub_name is `conv_1`.
Args:
model(paddle.nn.Layer): the model to be quantized.
name(string): the name of a layer
Returns:
parent_layer, subname
"""
assert isinstance(model, nn.Layer), \
"The model must be the instance of paddle.nn.Layer."
assert len(name) > 0, "The input (name) should not be empty."
last_idx = 0
idx = 0
parent_layer = model
while idx < len(name):
if name[idx] == '.':
sub_name = name[last_idx:idx]
if hasattr(parent_layer, sub_name):
parent_layer = getattr(parent_layer, sub_name)
last_idx = idx + 1
idx += 1
sub_name = name[last_idx:idx]
return parent_layer, sub_name
class Identity(nn.Layer):
'''a layer to replace bn or relu layers'''
def __init__(self, *args, **kwargs):
super(Identity, self).__init__()
def forward(self, input):
return input
def fuse_layers(model, layers_to_fuse, inplace=False):
'''
fuse layers in layers_to_fuse
Args:
model(nn.Layer): The model to be fused.
layers_to_fuse(list): The layers' names to be fused. For
example,"fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
A TypeError would be raised if "fuse" was set as
True but "fuse_list" was None.
Default: None.
inplace(bool): Whether apply fusing to the input model.
Default: False.
Return
fused_model(paddle.nn.Layer): The fused model.
'''
if not inplace:
model = copy.deepcopy(model)
for layers_list in layers_to_fuse:
layer_list = []
for layer_name in layers_list:
parent_layer, sub_name = find_parent_layer_and_sub_name(model,
layer_name)
layer_list.append(getattr(parent_layer, sub_name))
new_layers = _fuse_func(layer_list)
for i, item in enumerate(layers_list):
parent_layer, sub_name = find_parent_layer_and_sub_name(model, item)
setattr(parent_layer, sub_name, new_layers[i])
return model
def _fuse_func(layer_list):
'''choose the fuser method and fuse layers'''
types = tuple(type(m) for m in layer_list)
fusion_method = types_to_fusion_method.get(types, None)
new_layers = [None] * len(layer_list)
fused_layer = fusion_method(*layer_list)
for handle_id, pre_hook_fn in layer_list[0]._forward_pre_hooks.items():
fused_layer.register_forward_pre_hook(pre_hook_fn)
del layer_list[0]._forward_pre_hooks[handle_id]
for handle_id, hook_fn in layer_list[-1]._forward_post_hooks.items():
fused_layer.register_forward_post_hook(hook_fn)
del layer_list[-1]._forward_post_hooks[handle_id]
new_layers[0] = fused_layer
for i in range(1, len(layer_list)):
identity = Identity()
identity.training = layer_list[0].training
new_layers[i] = identity
return new_layers
def _fuse_conv_bn(conv, bn):
'''fuse conv and bn for train or eval'''
assert(conv.training == bn.training),\
"Conv and BN both must be in the same mode (train or eval)."
if conv.training:
assert bn._num_features == conv._out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
raise NotImplementedError
else:
return _fuse_conv_bn_eval(conv, bn)
def _fuse_conv_bn_eval(conv, bn):
'''fuse conv and bn for eval'''
assert (not (conv.training or bn.training)), "Fusion only for eval!"
fused_conv = copy.deepcopy(conv)
fused_weight, fused_bias = _fuse_conv_bn_weights(
fused_conv.weight, fused_conv.bias, bn._mean, bn._variance, bn._epsilon,
bn.weight, bn.bias)
fused_conv.weight.set_value(fused_weight)
if fused_conv.bias is None:
fused_conv.bias = paddle.create_parameter(
shape=[fused_conv._out_channels], is_bias=True, dtype=bn.bias.dtype)
fused_conv.bias.set_value(fused_bias)
return fused_conv
def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
'''fuse weights and bias of conv and bn'''
if conv_b is None:
conv_b = paddle.zeros_like(bn_rm)
if bn_w is None:
bn_w = paddle.ones_like(bn_rm)
if bn_b is None:
bn_b = paddle.zeros_like(bn_rm)
bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps)
conv_w = conv_w * \
(bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
return conv_w, conv_b
types_to_fusion_method = {(nn.Conv2D, nn.BatchNorm2D): _fuse_conv_bn, }
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册