提交 a7c8e42d 编写于 作者: P peizhilin

Merge branch 'windows/build' into windows/online

test=develop
python/paddle/fluid/tests/unittests/reader_reset_test.recordio
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
......
......@@ -42,6 +42,7 @@
| QiJune | Jun Qi |
| qingqing01 | Qing-Qing Dang |
| reyoung | Yang Yu |
| Sand3r- | Michal Gallus |
| Superjom | Chun-Wei Yan |
| tensor-tang | Jian Tang |
| tianbingsz | Tian-Bing Xu |
......
......@@ -166,8 +166,8 @@ copy(framework_lib DEPS ${framework_lib_deps}
set(module "memory")
copy(memory_lib
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h ${src_dir}/${module}/allocation/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail ${dst_dir}/${module}/allocation
)
set(inference_deps paddle_fluid_shared paddle_fluid)
......
......@@ -31,9 +31,7 @@ function(windows_symbolic TARGET)
endfunction()
add_subdirectory(ir)
if (NOT WIN32)
add_subdirectory(details)
endif (NOT WIN32)
# ddim lib
proto_library(framework_proto SRCS framework.proto)
......@@ -118,13 +116,8 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context)
if (NOT WIN32)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler)
else()
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor)
endif(NOT WIN32)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry device_context)
......@@ -179,12 +172,10 @@ else()
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op)
endif()
if (NOT WIN32)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor)
endif() # NOT WIN32
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
......
......@@ -13,9 +13,9 @@
// limitations under the License.
#pragma once
#include <ThreadPool.h>
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
......
......@@ -100,6 +100,7 @@ class OperatorBase {
const std::string& Type() const { return type_; }
bool HasAttr(const std::string& name) const { return attrs_.count(name); }
template <typename T>
inline const T& Attr(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
......
......@@ -7,16 +7,17 @@ set(analysis_deps # analysis_deps can be extended accross the project
add_subdirectory(ir_passes)
add_subdirectory(passes)
cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass ${INFER_IR_PASSES})
cc_library(analysis_helper SRCS helper.cc DEPS framework_proto proto_desc graph paddle_fluid_api)
cc_library(ir_pass_manager SRCS ir_pass_manager.cc DEPS graph pass ${INFER_IR_PASSES} analysis_helper)
cc_library(argument SRCS argument.cc DEPS scope proto_desc)
cc_library(analysis_pass SRCS analysis_pass.cc DEPS proto_desc)
cc_library(analysis SRCS
analyzer.cc
helper.cc
analysis_pass
DEPS ${analysis_deps}
DEPS ${analysis_deps} analysis_helper
)
cc_test(test_dot SRCS dot_tester.cc DEPS analysis)
......
......@@ -30,6 +30,7 @@ TEST(Analyzer, analysis_without_tensorrt) {
Argument argument;
argument.SetModelDir(FLAGS_inference_model_dir);
argument.SetIrAnalysisPasses({"infer_clean_graph_pass"});
argument.SetUseGPU(false);
Analyzer analyser;
analyser.Run(&argument);
......@@ -41,6 +42,7 @@ TEST(Analyzer, analysis_with_tensorrt) {
argument.SetTensorRtWorkspaceSize(1 << 20);
argument.SetModelDir(FLAGS_inference_model_dir);
argument.SetIrAnalysisPasses({"infer_clean_graph_pass"});
argument.SetUseGPU(false);
Analyzer analyser;
analyser.Run(&argument);
......
......@@ -116,6 +116,7 @@ struct Argument {
std::vector<std::string>);
DECL_ARGUMENT_FIELD(use_gpu, UseGPU, bool);
DECL_ARGUMENT_FIELD(gpu_device_id, GPUDeviceId, int);
DECL_ARGUMENT_FIELD(use_tensorrt, UseTensorRT, bool);
DECL_ARGUMENT_FIELD(tensorrt_node_teller, TensorRtNodeTeller,
std::function<bool(const framework::ir::Node*)>);
......
......@@ -4,4 +4,6 @@ set(analysis_deps ${analysis_deps}
subgraph_detector tensorrt_subgraph_pass
CACHE INTERNAL "")
set(pass_file ${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h)
file(APPEND ${pass_file} "USE_PASS(tensorrt_subgraph_pass);\n")
set(INFER_IR_PASSES ${INFER_IR_PASSES} tensorrt_subgraph_pass CACHE INTERNAL "")
......@@ -46,7 +46,7 @@ void IrAnalysisComposePass::InitTensorRTAttrs(Argument *argument) {
{"mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid",
"depthwise_conv2d", "batch_norm", "concat", "tanh", "pad",
"elementwise_add", "elementwise_mul", "dropout", "split", "prelu",
"conv2d_transpose"});
"conv2d_transpose", "leaky_relu"});
if (!node->IsOp()) return false;
if (teller_set.count(node->Op()->Type())) {
......
......@@ -30,15 +30,28 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
if (!argument->scope_valid()) {
argument->SetScope(new framework::Scope);
}
PADDLE_ENFORCE(argument->use_gpu_valid());
// The load program should run on the same device with the inference program,
// so that the parameters will on the same device, or they will keep copying
// between difference devices.
platform::Place place;
if (argument->use_gpu()) {
PADDLE_ENFORCE(argument->gpu_device_id_valid());
place = platform::CUDAPlace(argument->gpu_device_id());
} else {
place = platform::CPUPlace();
}
if (argument->model_dir_valid()) {
auto program = LoadModel(argument->model_dir(), argument->scope_ptr());
auto program =
LoadModel(argument->model_dir(), argument->scope_ptr(), place);
argument->SetMainProgram(program.release());
} else if (argument->model_program_path_valid() &&
argument->model_params_path_valid()) {
auto program =
LoadModel(argument->model_program_path(), argument->model_params_path(),
argument->scope_ptr());
argument->scope_ptr(), place);
argument->SetMainProgram(program.release());
} else {
PADDLE_THROW(
......@@ -52,16 +65,15 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
}
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &path, framework::Scope *scope) {
platform::CPUPlace place;
const std::string &path, framework::Scope *scope,
const platform::Place &place) {
framework::Executor exe(place);
return Load(&exe, scope, path);
}
std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope) {
platform::CPUPlace place;
framework::Scope *scope, const platform::Place &place) {
framework::Executor exe(place);
return Load(&exe, scope, program_path, params_path);
}
......
......@@ -17,6 +17,7 @@
#include <string>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace inference {
......@@ -32,11 +33,12 @@ class IrGraphBuildPass : public AnalysisPass {
std::string repr() const override;
private:
std::unique_ptr<framework::ProgramDesc> LoadModel(const std::string &path,
framework::Scope *scope);
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &path, framework::Scope *scope,
const platform::Place &place);
std::unique_ptr<framework::ProgramDesc> LoadModel(
const std::string &program_path, const std::string &params_path,
framework::Scope *scope);
framework::Scope *scope, const platform::Place &place);
std::string model_binary_str_;
};
......
......@@ -27,11 +27,10 @@ endif()
cc_library(reset_tensor_array SRCS details/reset_tensor_array.cc DEPS lod_tensor scope)
cc_library(analysis_config SRCS analysis_config.cc DEPS lod_tensor paddle_pass_builder)
cc_library(paddle_pass_builder SRCS paddle_pass_builder.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS paddle_inference_api)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc DEPS paddle_inference_api)
cc_library(analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api analysis naive_executor zero_copy_tensor reset_tensor_array analysis_config paddle_pass_builder ir_pass_manager)
cc_library(zero_copy_tensor SRCS details/zero_copy_tensor.cc DEPS scope lod_tensor enforce)
cc_library(zero_copy_tensor_dummy SRCS details/zero_copy_tensor_dummy.cc)
cc_library(paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor scope paddle_pass_builder reset_tensor_array analysis_config analysis_config paddle_pass_builder DEPS zero_copy_tensor)
cc_test(test_paddle_inference_api
SRCS api_tester.cc
......
......@@ -285,6 +285,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
status_program_optimized_ = true;
argument_.SetUseGPU(config_.use_gpu);
argument_.SetGPUDeviceId(config_.device);
// Analyze inference_program
if (!config_.model_dir.empty()) {
argument_.SetModelDir(config_.model_dir);
......@@ -491,8 +492,7 @@ bool AnalysisPredictor::LoadParameters() {
}
// Use NaiveExecutor to Load parameters.
platform::CPUPlace place;
framework::NaiveExecutor e(place);
framework::NaiveExecutor e(place_);
e.Prepare(scope_.get(), *load_program, 0, false);
e.Run();
VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load";
......@@ -551,4 +551,5 @@ USE_TRT_CONVERTER(pad);
USE_TRT_CONVERTER(split);
USE_TRT_CONVERTER(prelu);
USE_TRT_CONVERTER(conv2d_transpose);
USE_TRT_CONVERTER(leaky_relu);
#endif
......@@ -116,8 +116,12 @@ class CpuPassStrategy : public PassStrategy {
class GpuPassStrategy : public PassStrategy {
public:
GpuPassStrategy() : PassStrategy({}) {
// TODO(NHZlX) Problem with Data synchronization between GPU and CPU
// When running in GPU mode, the parameters are all on GPU. But the
// opearations of "conv_bn_fuse_pass" are on CPU.
passes_.assign({
"infer_clean_graph_pass", "conv_bn_fuse_pass",
"infer_clean_graph_pass",
// "infer_clean_graph_pass", "conv_bn_fuse_pass",
});
}
......
......@@ -2,7 +2,7 @@
nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
batch_norm_op.cc activation_op.cc softmax_op.cc concat_op.cc dropout_op.cc
pad_op.cc split_op.cc prelu_op.cc
pad_op.cc split_op.cc prelu_op.cc leaky_relu_op.cc
DEPS tensorrt_engine tensorrt_plugin operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS
......@@ -38,3 +38,5 @@ nv_test(test_trt_split_op SRCS test_split_op.cc split_op.cc
nv_test(test_trt_prelu_op SRCS test_prelu_op.cc prelu_op.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine tensorrt_plugin
prelu_op SERIAL)
nv_test(test_trt_leaky_relu_op SRCS test_leaky_relu_op.cc leaky_relu_op.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OPERATOR_DEPS} tensorrt_engine activation_op SERIAL)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace paddle {
namespace inference {
namespace tensorrt {
// LeakyRelu converter from fluid to tensorRT
class LeakyReluOpConverter : public OpConverter {
public:
void operator()(const framework::proto::OpDesc& op,
const framework::Scope& scope, bool test_mode) override {
VLOG(4) << "convert fluid leaky_relu op to tensorrt layer";
framework::OpDesc op_desc(op, nullptr);
// Declare inputs
int input_num = op_desc.Input("X").size();
PADDLE_ENFORCE(input_num == 1);
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
// Get output
size_t output_num = op_desc.Output("Out").size();
PADDLE_ENFORCE(output_num == 1);
// Get attrs
float alpha = boost::get<float>(op_desc.GetAttr("alpha"));
platform::CPUPlace place;
std::unique_ptr<framework::LoDTensor> alpha_tensor(
new framework::LoDTensor());
alpha_tensor->Resize(framework::make_ddim({2}));
float* alpha_data = alpha_tensor->mutable_data<float>(place);
alpha_data[0] = alpha;
alpha_data[1] = 1.f - alpha;
// the leaky relu formula y = (x > 0) ? x : alpha * x is equal to
// y = alpha * x + (x > 0) ? (1 - alpha) * x : 0
TensorRTEngine::Weight scale{nvinfer1::DataType::kFLOAT, &alpha_data[0], 1};
TensorRTEngine::Weight shift{nvinfer1::DataType::kFLOAT, nullptr, 0};
TensorRTEngine::Weight power{nvinfer1::DataType::kFLOAT, nullptr, 0};
// y_scale = alpha * x
auto* scale_layer = TRT_ENGINE_ADD_LAYER(
engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM, shift.get(),
scale.get(), power.get());
PADDLE_ENFORCE(nullptr != scale_layer);
// y_relu = (x > 0) : x : 0
auto* relu_layer = TRT_ENGINE_ADD_LAYER(engine_, Activation, *input,
nvinfer1::ActivationType::kRELU);
PADDLE_ENFORCE(nullptr != relu_layer);
//
TensorRTEngine::Weight sub_scale{nvinfer1::DataType::kFLOAT, &alpha_data[1],
1};
auto* scale_relu_layer =
TRT_ENGINE_ADD_LAYER(engine_, Scale, *(relu_layer->getOutput(0)),
nvinfer1::ScaleMode::kUNIFORM, shift.get(),
sub_scale.get(), power.get());
PADDLE_ENFORCE(nullptr != scale_relu_layer);
auto* output_layer =
TRT_ENGINE_ADD_LAYER(engine_, ElementWise, *(scale_layer->getOutput(0)),
*(scale_relu_layer->getOutput(0)),
nvinfer1::ElementWiseOperation::kSUM);
PADDLE_ENFORCE(nullptr != output_layer);
// keep alpha tensor to avoid release it's memory
std::string alpha_name = op_desc.Output("Out")[0] + "_alpha";
PADDLE_ENFORCE(engine_->weight_map.find(alpha_name) ==
engine_->weight_map.end());
engine_->weight_map[alpha_name] = std::move(alpha_tensor);
std::string layer_name = "leaky_relu (Output: ";
auto output_name = op_desc.Output("Out")[0];
output_layer->getOutput(0)->setName(output_name.c_str());
engine_->SetITensor(output_name, output_layer->getOutput(0));
layer_name += output_name;
if (test_mode) {
engine_->DeclareOutput(output_name);
}
output_layer->setName((layer_name + ")").c_str());
}
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(leaky_relu, LeakyReluOpConverter);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
namespace paddle {
namespace inference {
namespace tensorrt {
TEST(leaky_relu_op, test_leaky_relu) {
std::unordered_set<std::string> parameters;
framework::Scope scope;
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("leaky_relu_input", nvinfer1::DimsCHW(3, 2, 2));
validator.DeclOutputVar("leaky_relu_out", nvinfer1::DimsCHW(3, 2, 2));
// Prepare Op description
framework::OpDesc desc;
desc.SetType("leaky_relu");
desc.SetInput("X", {"leaky_relu_input"});
desc.SetOutput("Out", {"leaky_relu_out"});
desc.SetAttr("alpha", 0.1f);
validator.SetOp(*desc.Proto());
validator.Execute(1);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
// USE_OP(leaky_relu);
USE_OP(leaky_relu);
nv_library(tensorrt_plugin
SRCS trt_plugin.cc split_op_plugin.cu elementwise_op_plugin.cu prelu_op_plugin.cu
DEPS enforce device_context)
DEPS enforce tensorrt_engine)
set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor)
if(WITH_GPU AND TENSORRT_FOUND)
set(INFERENCE_EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor)
endif()
function(download_model install_dir model_name)
if (NOT EXISTS ${install_dir})
inference_download_and_uncompress(${install_dir} ${INFERENCE_URL} ${model_name})
......@@ -27,14 +31,14 @@ function(inference_analysis_api_test_with_fake_data target install_dir filename
endfunction()
# RNN1
if(NOT APPLE)
if(NOT APPLE AND WITH_MKLML)
set(RNN1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/rnn1")
download_model_and_data(${RNN1_INSTALL_DIR} "rnn1%2Fmodel.tar.gz" "rnn1%2Fdata.txt.tar.gz")
inference_analysis_api_test(test_analyzer_rnn1 ${RNN1_INSTALL_DIR} analyzer_rnn1_tester.cc)
else()
# TODO: fix this test on MACOS, the reason is that
# fusion_seqexpand_concat_fc_op is not supported on MACOS
message(WARNING "These tests has been disabled in OSX before being fixed: \n test_analyzer_rnn1")
# TODO: fix this test on MACOS and OPENBLAS, the reason is that
# fusion_seqexpand_concat_fc_op is not supported on MACOS and OPENBLAS
message(WARNING "These tests has been disabled in OSX or WITH_MKL=OFF before being fixed: \n test_analyzer_rnn1")
endif()
# RNN2
......@@ -109,6 +113,6 @@ if(WITH_GPU AND TENSORRT_FOUND)
inference_download_and_uncompress(${TRT_MODEL_INSTALL_DIR} ${INFERENCE_URL}/tensorrt_test "trt_test_models.tar.gz")
endif()
inference_analysis_test(test_trt_models SRCS trt_models_tester.cc
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor
EXTRA_DEPS ${INFERENCE_EXTRA_DEPS}
ARGS --infer_model=${TRT_MODEL_INSTALL_DIR}/trt_test_models SERIAL)
endif()
......@@ -222,7 +222,23 @@ void TestMultiThreadPrediction(
// The inputs of each thread are all the same.
std::vector<PaddleTensor> outputs_tid;
auto &predictor = predictors[tid];
LOG(INFO) << "running thread " << tid;
// warmup run
LOG(INFO) << "Running thread " << tid << ", warm up run...";
{
Timer warmup_timer;
warmup_timer.tic();
predictor->Run(inputs[0], outputs, batch_size);
PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1);
#if !defined(_WIN32)
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
#endif
}
LOG(INFO) << "Thread " << tid << " run " << num_times << " times...";
{
Timer timer;
timer.tic();
for (int i = 0; i < num_times; i++) {
......@@ -235,6 +251,7 @@ void TestMultiThreadPrediction(
total_time += time;
PrintTime(batch_size, num_times, num_threads, tid, time / num_times,
inputs.size());
}
});
}
for (int i = 0; i < num_threads; ++i) {
......
......@@ -145,5 +145,3 @@ TEST(TensorRT_mobilenet, analysis) {
} // namespace inference
} // namespace paddle
USE_PASS(tensorrt_subgraph_pass);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <mkldnn/include/mkldnn.hpp>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "xbyak.h"
#include "xbyak_util.h"
namespace paddle {
namespace operators {
using framework::DataLayout;
using mkldnn::memory;
static mkldnn::memory::format StringToMKLDNNFormat(std::string& format) {
std::transform(format.begin(), format.end(), format.begin(), ::tolower);
if (!format.compare("nchw")) {
return memory::format::nchw;
} else if (!format.compare("nchw16c")) {
return memory::format::nChw16c;
} else if (!format.compare("nchw8c")) {
return memory::format::nChw8c;
} else if (!format.compare("nhwc")) {
return memory::format::nhwc;
} else {
return memory::format::any;
}
}
static void UpdateDataFormat(const framework::ExecutionContext& ctx,
framework::Tensor* tensor, const char* attribute) {
if (ctx.op().HasAttr(attribute)) {
auto format_as_string = ctx.Attr<std::string>(attribute);
auto format = StringToMKLDNNFormat(format_as_string);
if (format != memory::format::any) {
tensor->set_format(format);
}
}
}
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
const platform::Place& place,
const mkldnn::engine& engine, bool isFourDim) {
using platform::to_void_cast;
auto dims = paddle::framework::vectorize2int(tensor->dims());
framework::Tensor out_tensor;
out_tensor.Resize(tensor->dims());
out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
out_tensor.set_layout(tensor->layout());
mkldnn::memory input_memory = {
{{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
to_void_cast<T>(tensor->data<T>())};
mkldnn::memory output_memory = {
{{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
to_void_cast<T>(out_tensor.mutable_data<T>(place))};
platform::Reorder(input_memory, output_memory);
tensor->ShareDataWith(out_tensor);
}
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
int axis = ctx.Attr<int>("axis");
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
const T* x_data = x->data<T>();
const T* y_data = y->data<T>();
T* z_data = z->mutable_data<T>(ctx.GetPlace());
auto x_dims = x->dims();
auto y_dims_untrimmed = y->dims();
auto x_int_dims = paddle::framework::vectorize2int(x_dims);
UpdateDataFormat(ctx, (Tensor*)x, "x_data_format");
UpdateDataFormat(ctx, (Tensor*)y, "y_data_format");
Xbyak::util::Cpu cpu;
const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
const bool are_dims_divisable = !(x_int_dims[1] % 16);
const bool is_x_format_correct = x->format() == memory::format::nChw16c;
const bool is_y_format_correct = y->format() == memory::format::nc;
if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
is_avx512_enabled) {
int pre, n, post;
get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
if (post == 1) {
PADDLE_THROW("Not implemented when post is 1");
} else {
// Just check whether it works for RE-Resnext.
PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
int n = x_dims[0];
int c = x_dims[1];
int h = x_dims[2];
int w = x_dims[3];
PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
"Y should be in nc format");
constexpr int simd_width = 16;
int C = c / simd_width;
const auto& multiply =
math::jitkernel::KernelPool::Instance()
.template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
#pragma omp parallel for collapse(2)
for (int ni = 0; ni < n; ni++) {
for (int ci = 0; ci < C; ci++) {
auto ptr_x =
x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
auto ptr_z =
z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
}
}
}
z->set_layout(DataLayout::kMKLDNN);
z->set_format(x->format());
} else {
// Fallback to naive version:
const bool are_inputs_in_same_format = x->format() == y->format();
const bool is_x_nchw = x->format() == memory::format::nchw;
const bool is_x_nc = x->format() == memory::format::nc;
const bool is_y_nchw = y->format() == memory::format::nchw;
const bool is_y_nc = y->format() == memory::format::nc;
if (!are_inputs_in_same_format) {
using platform::MKLDNNDeviceContext;
auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine();
if (!(is_x_nchw || is_x_nc))
ReorderInput<T>((Tensor*)x, ctx.GetPlace(), mkldnn_engine,
x->dims().size() == 4);
if (!(is_y_nchw || is_y_nc))
ReorderInput<T>((Tensor*)y, ctx.GetPlace(), mkldnn_engine,
y->dims().size() == 4);
}
auto mul_func = [](T a, T b) -> T { return a * b; };
TransformFunctor<decltype(mul_func), T,
paddle::platform::CPUDeviceContext, T>
functor(
x, y, z,
ctx.template device_context<paddle::platform::CPUDeviceContext>(),
mul_func);
axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) {
functor.RunRowWise(n, pre);
} else {
functor.RunMidWise(n, pre, post);
}
z->set_layout(DataLayout::kMKLDNN);
z->set_format(x->format());
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
ops::ElementwiseMulMKLDNNKernel<float>)
......@@ -97,6 +97,20 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
.EqualGreaterThan(-1);
AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
.SetDefault(false);
AddAttr<std::string>(
"x_data_format",
"(string, default NCHW) Only used in mkldnn"
"An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
"Defaults to \"\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("");
AddAttr<std::string>(
"y_data_format",
"(string, default \"\") Only used in mkldnn"
"An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
"Defaults to \"\". Specify the data format of the output data, "
"the input will be transformed automatically. ")
.SetDefault("");
AddComment(string::Sprintf(R"DOC(
Elementwise %s Operator
......
......@@ -322,6 +322,42 @@ class VActJitCode : public JitCode {
ymm_t ymm_dst = ymm_t(1);
};
#ifdef PADDLE_WITH_MKLDNN
struct EltwiseMulnChw16cNC : public Xbyak::CodeGenerator {
explicit EltwiseMulnChw16cNC(size_t code_size = 256 * 1024)
: Xbyak::CodeGenerator(code_size) {
// RDI is ptr x_input
// RSI is ptr y_input
// RDX is ptr output
// RCX is height
// r8 is width
push(rbx);
xor_(rax, rax);
xor_(r10, r10);
vmovups(zmm3, ptr[rsi]);
L("h_loop");
xor_(rbx, rbx);
L("w_loop");
vmovups(zmm2, ptr[rdi + rax]);
vmulps(zmm1, zmm2, zmm3);
vmovups(ptr[rdx + rax], zmm1);
add(rax, 64);
inc(rbx);
cmp(r8, rbx);
jnz("w_loop");
inc(r10);
cmp(r10, rcx);
jnz("h_loop");
pop(rbx);
ret();
}
};
#endif
} // namespace gen
} // namespace jitkernel
} // namespace math
......
......@@ -95,6 +95,15 @@ class VAddBiasKernel : public Kernel {
void (*Compute)(const T *, const T *, T *, int);
};
#ifdef PADDLE_WITH_MKLDNN
template <typename T>
class EltwiseMulnChw16cNCKernel : public Kernel {
public:
// nChw16c = nChw16c .* NC
void (*Compute)(const float *, const float *, float *, int, int);
};
#endif
template <typename T>
class VActKernel : public Kernel {
public:
......
......@@ -226,6 +226,44 @@ bool VAddKernelImpl<double>::useMKL(int d) {
}
#endif
#ifdef PADDLE_WITH_MKLDNN
/* EltwiseMul for nChw16c & NC inputs JitKernel */
template <typename T>
class EltwiseMulnChw16cNCKernelImpl
: public math::jitkernel::EltwiseMulnChw16cNCKernel<T> {
public:
JITKERNEL_DECLARE_STATIC_FUNC;
explicit EltwiseMulnChw16cNCKernelImpl(int d)
: EltwiseMulnChw16cNCKernel<T>() {
using mul_func_t = void (*)(const float*, const float*, float*, int, int);
#ifdef PADDLE_WITH_XBYAK
if (useJIT(d)) {
// roughly estimate the size of code
size_t sz = 96 + d / YMM_FLOAT_BLOCK * 4 * 8;
sz = sz > 4096 ? sz : 4096;
jitcode_.reset(new gen::EltwiseMulnChw16cNC(sz));
this->Compute = (mul_func_t)jitcode_->getCode();
return;
}
#endif
PADDLE_THROW(
"This kernel shouldn't be used in Non-Xbyak, Non-MKL-DNN "
"environemnt");
}
#ifdef PADDLE_WITH_XBYAK
private:
std::unique_ptr<gen::EltwiseMulnChw16cNC> jitcode_{nullptr};
};
template <>
bool EltwiseMulnChw16cNCKernelImpl<float>::useJIT(int d) {
return true;
}
#endif
#endif
/* VAddRelu JitKernel */
template <typename T>
class VAddReluKernelImpl : public VAddReluKernel<T> {
......@@ -394,6 +432,9 @@ REGISTER_JITKERNEL(vscal, VScalKernel);
REGISTER_JITKERNEL(vaddbias, VAddBiasKernel);
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
#ifdef PADDLE_WITH_MKLDNN
REGISTER_JITKERNEL(eltwise_mul_nchw16c, EltwiseMulnChw16cNCKernel);
#endif
} // namespace jitkernel
} // namespace math
......
if (NOT WIN32)
proto_library(profiler_proto SRCS profiler.proto DEPS framework_proto)
py_proto_compile(profiler_py_proto SRCS profiler.proto)
......@@ -6,11 +5,19 @@ add_custom_target(profiler_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch _
add_dependencies(profiler_py_proto profiler_py_proto_init)
if (NOT WIN32)
add_custom_command(TARGET profiler_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/profiler
COMMAND cp *.py ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/profiler
COMMENT "Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
else(NOT WIN32)
string(REPLACE "/" "\\" proto_dstpath "${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/profiler/")
add_custom_command(TARGET profiler_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_BINARY_DIR}/python/paddle/fluid/proto/profiler
COMMAND copy /Y *.py ${proto_dstpath}
COMMENT "Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif(NOT WIN32)
if(WITH_GPU)
......@@ -60,12 +67,9 @@ cc_test(init_test SRCS init_test.cc DEPS device_context)
nv_test(cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda)
nv_test(transform_test SRCS transform_test.cu DEPS memory place device_context)
if (NOT WIN32)
cc_library(device_tracer SRCS device_tracer.cc DEPS boost profiler_proto framework_proto ${GPU_CTX_DEPS})
cc_library(profiler SRCS profiler.cc DEPS device_context device_tracer)
cc_test(profiler_test SRCS profiler_test.cc DEPS profiler)
endif(NOT WIN32)
nv_test(float16_gpu_test SRCS float16_test.cu DEPS lod_tensor)
cc_test(float16_test SRCS float16_test.cc DEPS lod_tensor)
......
......@@ -13,17 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#if !defined(_WIN32)
#include <sys/time.h>
#else
#include <windows.h>
#endif // !_WIN32
#include <time.h>
#include <chrono> // NOLINT
#include <string>
#include "paddle/fluid/platform/dynload/cupti.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.pb.h"
namespace paddle {
......@@ -32,15 +26,11 @@ namespace platform {
///////////////////////
// WARN: Under Development. Don't depend on it yet.
//////////////////////
#if !defined(_WIN32)
inline uint64_t PosixInNsec() {
struct timeval tv;
gettimeofday(&tv, nullptr);
return 1000 * (static_cast<uint64_t>(tv.tv_sec) * 1000000 + tv.tv_usec);
}
#else
inline uint64_t PosixInNsec() { return static_cast<uint64_t>(0); }
#endif // !_WIN32
// DeviceTracer performs the following tasks:
// 1. Register cuda callbacks for various events: kernel, memcpy, etc.
......
......@@ -38,6 +38,7 @@ std::once_flag p2p_init_flag;
void InitGflags(std::vector<std::string> argv) {
std::call_once(gflags_init_flag, [&]() {
FLAGS_logtostderr = true;
argv.insert(argv.begin(), "dummy");
int argc = argv.size();
char **arr = new char *[argv.size()];
......
......@@ -17,6 +17,7 @@
#include <cstdio>
#include <stdexcept>
#include <time.h>
#include <memory>
#include <string>
......@@ -27,6 +28,7 @@
#include <dlfcn.h> // dladdr
#include <execinfo.h> // backtrace
#include <sys/stat.h>
#include <sys/time.h>
#include <algorithm> // std::accumulate
#else
#include <io.h> // _popen, _pclose
......@@ -57,6 +59,25 @@ static void *dlopen(const char *filename, int flag) {
return reinterpret_cast<void *>(hModule);
}
static int gettimeofday(struct timeval *tp, void *tzp) {
time_t clock;
struct tm tm;
SYSTEMTIME wtm;
GetLocalTime(&wtm);
tm.tm_year = wtm.wYear - 1900;
tm.tm_mon = wtm.wMonth - 1;
tm.tm_mday = wtm.wDay;
tm.tm_hour = wtm.wHour;
tm.tm_min = wtm.wMinute;
tm.tm_sec = wtm.wSecond;
tm.tm_isdst = -1;
clock = mktime(&tm);
tp->tv_sec = clock;
tp->tv_usec = wtm.wMilliseconds * 1000;
return (0);
}
#endif // !_WIN32
static void ExecShellCommand(const std::string &cmd, std::string *message) {
......
......@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/port.h"
#include <sys/time.h>
#include <algorithm>
#include <iomanip>
#include <limits>
......@@ -438,10 +438,10 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
event_items[index].total_time += event_time;
// min time
event_items[index].min_time =
std::min(event_time, event_items[index].min_time);
(std::min)(event_time, event_items[index].min_time);
// max time
event_items[index].max_time =
std::max(event_time, event_items[index].max_time);
(std::max)(event_time, event_items[index].max_time);
}
// remove the push marker from the list
......
......@@ -69,7 +69,6 @@ void PushEvent(const std::string& name, const DeviceContext* dev_ctx);
void PopEvent(const std::string& name, const DeviceContext* dev_ctx);
#if !defined(_WIN32)
struct RecordEvent {
// dev_ctx can be set to nullptr if device is cpu.
RecordEvent(const std::string& name, const DeviceContext* dev_ctx);
......@@ -106,15 +105,6 @@ struct RecordBlock {
std::string name_;
uint64_t start_ns_;
};
#else
// windows do not support profiler temporarily.
struct RecordEvent {
RecordEvent(const std::string& name, const DeviceContext* dev_ctx) {}
};
struct RecordBlock {
explicit RecordBlock(int block_id) {}
};
#endif
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
......
......@@ -45,16 +45,15 @@ class StreamCallbackManager {
inline void AddCallback(Callback &&callback) const {
auto *stream_callback_context =
new StreamCallbackContext(this, std::forward<Callback>(callback));
PADDLE_ENFORCE(
#if CUDA_VERSION >= 10000
cudaLaunchHostFunc(stream_, StreamCallbackManager::StreamCallbackFunc,
stream_callback_context)
#else
cudaStreamAddCallback(stream_,
PADDLE_ENFORCE(cudaLaunchHostFunc(stream_,
StreamCallbackManager::StreamCallbackFunc,
stream_callback_context, 0)
stream_callback_context)); // NOLINT
#else
PADDLE_ENFORCE(cudaStreamAddCallback(
stream_, StreamCallbackManager::StreamCallbackFunc,
stream_callback_context, 0)); // NOLINT
#endif
); // NOLINT
}
void Wait() const { thread_pool_.reset(new ThreadPool(1)); }
......
set(PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder)
set(PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder parallel_executor profiler)
set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc)
if(NOT WIN32)
list(APPEND PYBIND_DEPS parallel_executor profiler)
endif(NOT WIN32)
if(WITH_PYTHON)
if(WITH_AMD_GPU)
hip_library(paddle_pybind SHARED
......
......@@ -36,9 +36,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#ifndef _WIN32
#include "paddle/fluid/framework/parallel_executor.h"
#endif
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
......@@ -637,7 +635,6 @@ All parameter, weight, gradient are variables in Paddle.
#endif
#endif
#ifndef _WIN32
py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
.value("kDisabled", platform::ProfilerState::kDisabled)
.value("kCPU", platform::ProfilerState::kCPU)
......@@ -658,7 +655,6 @@ All parameter, weight, gradient are variables in Paddle.
m.def("disable_profiler", platform::DisableProfiler);
m.def("is_profiler_enabled", platform::IsProfileEnabled);
m.def("reset_profiler", platform::ResetProfiler);
#endif
py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
pass.def(py::init())
......@@ -687,7 +683,6 @@ All parameter, weight, gradient are variables in Paddle.
.def("remove_pass",
[](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });
#ifndef _WIN32
// -- python binds for parallel executor.
py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
......@@ -913,7 +908,6 @@ All parameter, weight, gradient are variables in Paddle.
pybind11::gil_scoped_release release;
self.Run(fetch_tensors, fetched_var_name);
});
#endif
BindRecordIOWriter(&m);
return m.ptr();
......
......@@ -47,8 +47,7 @@ from . import profiler
from . import unique_name
from . import recordio_writer
from . import parallel_executor
if os.name != 'nt':
from .parallel_executor import *
from .parallel_executor import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor = LoDTensor
......
......@@ -25,11 +25,11 @@ import os
__all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy']
if os.name != 'nt':
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
class ParallelExecutor(object):
class ParallelExecutor(object):
"""
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
......@@ -160,8 +160,7 @@ if os.name != 'nt':
for p in main.global_block().iter_parameters()
if not p.stop_gradient
]),
set(cpt.to_text(var)
for var in self.persistable_vars), main.desc,
set(cpt.to_text(var) for var in self.persistable_vars), main.desc,
cpt.to_text(loss_name)
if loss_name else six.u(''), scope, local_scopes, exec_strategy,
build_strategy, num_trainers, trainer_id)
......
......@@ -45,6 +45,10 @@ if(APPLE)
list(REMOVE_ITEM TEST_OPS test_dist_se_resnext)
list(REMOVE_ITEM TEST_OPS test_fuse_elewise_add_act_pass)
endif()
if(NOT WITH_MKLML)
# this op is not support on openblas
list(REMOVE_ITEM TEST_OPS test_fusion_seqexpand_concat_fc_op)
endif()
function(py_test_modules TARGET_NAME)
if(WITH_TESTING)
......
......@@ -362,7 +362,9 @@ class OpTest(unittest.TestCase):
else:
return []
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type):
cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
and not cpu_only:
places.append(core.CUDAPlace(0))
return places
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
from test_elementwise_mul_op import *
class TestElementwiseMulMKLDNNOp_BroadcastNCHW16c(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.y = np.random.rand(1, 16).astype(self.dtype)
self.out = x * self.y.reshape(1, 16, 1, 1)
self.out = self.out.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
def setUp(self):
super(TestElementwiseMulMKLDNNOp_BroadcastNCHW16c, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nc"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
@unittest.skip(
"Not implemented yet.") # TODO(mgallus): enable when implemented.
class TestElementwiseMulMKLDNNOp_BroadcastNCHW8c(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 8, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 8, 2, 2)
self.y = np.random.rand(1, 8).astype(self.dtype)
self.out = x * self.y.reshape(1, 8, 1, 1)
self.out = self.out.transpose(0, 2, 3, 1).reshape(1, 8, 2, 2)
def setUp(self):
super(TestElementwiseMulMKLDNNOp_BroadcastNCHW8c, self).setUp()
self.attrs["x_data_format"] = "nchw8c"
self.attrs["y_data_format"] = "nc"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNCHW(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = np.random.rand(1, 16).astype(self.dtype)
self.out = self.x * self.y.reshape(1, 16, 1, 1)
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNCHW16C(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = y.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = self.x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackNCHW16C, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nchw16c"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNoReorders(ElementwiseMulOp):
def init_input_output(self):
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = y.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = self.x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackNoReorders, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nchw16c"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackWithReorder1(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.y = y.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = self.x * y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackWithReorder1, self).setUp()
self.attrs["x_data_format"] = "nchw"
self.attrs["y_data_format"] = "nchw16c"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackWithReorder2(ElementwiseMulOp):
def init_input_output(self):
self.y = np.random.rand(1, 16, 2, 2).astype(self.dtype)
x = np.random.rand(1, 16, 2, 2).astype(self.dtype)
self.x = x.transpose(0, 2, 3, 1).reshape(1, 16, 2, 2)
self.out = x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackWithReorder2, self).setUp()
self.attrs["x_data_format"] = "nchw16c"
self.attrs["y_data_format"] = "nchw"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
class TestElementwiseMulMKLDNNOp_FallbackNoReorders2(ElementwiseMulOp):
def init_input_output(self):
self.x = np.random.rand(1, 16).astype(self.dtype)
self.y = np.random.rand(1, 16).astype(self.dtype)
self.out = self.x * self.y
def setUp(self):
super(TestElementwiseMulMKLDNNOp_FallbackNoReorders2, self).setUp()
self.attrs["x_data_format"] = "nc"
self.attrs["y_data_format"] = "nc"
self._cpu_only = True
def init_kernel_type(self):
self.use_mkldnn = True
def init_axis(self):
self.axis = 0
def test_check_grad_normal(self):
pass
def test_check_grad_ingore_x(self):
pass
def test_check_grad_ingore_y(self):
pass
if __name__ == '__main__':
unittest.main()
......@@ -21,13 +21,24 @@ from paddle.fluid.op import Operator
class ElementwiseMulOp(OpTest):
def init_kernel_type(self):
self.use_mkldnn = False
def setUp(self):
self.op_type = "elementwise_mul"
self.dtype = np.float32
self.axis = -1
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()
self.inputs = {
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
self.outputs = {'Out': self.out}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
def test_check_output(self):
self.check_output()
......@@ -41,6 +52,17 @@ class ElementwiseMulOp(OpTest):
def test_check_grad_ingore_y(self):
self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
def init_input_output(self):
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
self.out = np.multiply(self.x, self.y)
def init_dtype(self):
pass
def init_axis(self):
pass
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
def setUp(self):
......@@ -63,17 +85,13 @@ class TestElementwiseMulOp_Vector(ElementwiseMulOp):
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
def setUp(self):
self.op_type = "elementwise_mul"
self.inputs = {
'X': np.random.rand(2, 3, 4).astype(np.float64),
'Y': np.random.rand(2).astype(np.float64)
}
def init_input_output(self):
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
self.y = np.random.rand(2).astype(self.dtype)
self.out = self.x * self.y.reshape(2, 1, 1)
self.attrs = {'axis': 0}
self.outputs = {
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
}
def init_axis(self):
self.axis = 0
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册