Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
a764cd1e
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a764cd1e
编写于
3月 09, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
3月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] polish slim model zoo (#313)
* polish slim README
上级
3aa5cbf7
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
138 addition
and
80 deletion
+138
-80
slim/README.md
slim/README.md
+138
-80
未找到文件。
slim/README.md
浏览文件 @
a764cd1e
...
...
@@ -43,27 +43,41 @@
### YOLOv3 on COCO
| 骨架网络 | 剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | Box AP | 下载 |
| :----------------| :-------: | :---------: | :------------: | :------: | :-----: | :-----------------------------------------------------: |
| ResNet50-vd-dcn | sensity | 18.41% | 15.46% | 608 | 39.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune1x.tar
)
|
| ResNet50-vd-dcn | r578 | 43.69% | 36.61% | 608 | 38.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune578.tar
)
|
| MobileNetV1 | sensity | 28.76% | 28.54% | 608 | 30.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | sensity | 28.76% | 28.54% | 416 | 29.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | sensity | 28.76% | 28.54% | 320 | 27.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | r578 | 67.56% | 66.90% | 608 | 27.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| MobileNetV1 | r578 | 67.56% | 66.90% | 416 | 26.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| MobileNetV1 | r578 | 67.56% | 66.90% | 320 | 24.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| 骨架网络 | 剪裁策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | Box AP | 下载 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------: | :-----------------------------------------------------: |
| ResNet50-vd-dcn | baseline | 44.71 | 176.82 | 608 | 39.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar
)
|
| ResNet50-vd-dcn | sensity | 37.53(-16.06%) | 149.49(-15.46%) | 608 | 39.8(+0.7) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune1x.tar
)
|
| ResNet50-vd-dcn | r578 | 29.98(-32.94%) | 112.08(-36.61%) | 608 | 38.3(-0.8) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune578.tar
)
|
| MobileNetV1 | baseline | 20.64 | 94.60 | 608 | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | baseline | 9.66 | 94.60 | 416 | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | baseline | 5.72 | 94.60 | 320 | 27.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | sensity | 13.57(-34.27%) | 67.60(-28.54%) | 608 | 30.2(+0.9) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | sensity | 6.35(-34.27%) | 67.60(-28.54%) | 416 | 29.7(+0.4) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | sensity | 3.76(-34.27%) | 67.60(-28.54%) | 320 | 27.2(+0.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune1x.tar
)
|
| MobileNetV1 | r578 | 6.27(-69.64%) | 31.30(-66.90%) | 608 | 27.8(-1.5) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| MobileNetV1 | r578 | 2.93(-69.64%) | 31.30(-66.90%) | 416 | 26.8(-2.5) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
| MobileNetV1 | r578 | 1.74(-69.64%) | 31.30(-66.90%) | 320 | 24.0(-3.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中
`YOLOv3-MobileNetV1`
提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
在使用
`sensity`
剪裁策略下,
`YOLOv3-ResNet50-vd-dcn`
和
`YOLOv3-MobileNetV1`
分别减少了
`16.06%`
和
`34.27%`
的FLOPs,输入图像尺寸为608时精度分别提高
`0.7`
和
`0.9`
-
在使用
`r578`
剪裁策略下,
`YOLOv3-ResNet50-vd-dcn`
和
`YOLOv3-MobileNetV1`
分别减少了
`32.98%`
和
`69.64%`
的FLOPs,输入图像尺寸为608时精度分别降低
`0.8`
和
`1.5`
### YOLOv3 on Pascal VOC
| 骨架网络 | 剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | Box AP | 下载 |
| :----------------| :-------: | :---------: | :------------: | :------: | :-----: | :-----------------------------------------------------: |
| MobileNetV1 | sensity | 34.55% | 28.75% | 608 | 78.4 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar
)
|
| MobileNetV1 | sensity | 34.55% | 28.75% | 416 | 78.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar
)
|
| MobileNetV1 | sensity | 34.55% | 28.75% | 320 | 76.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar
)
|
| MobileNetV1 | r578 | 69.57% | 67.00% | 608 | 77.6 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar
)
|
| MobileNetV1 | r578 | 69.57% | 67.00% | 416 | 77.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar
)
|
| MobileNetV1 | r578 | 69.57% | 67.00% | 320 | 75.5 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar
)
|
| 骨架网络 | 剪裁策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | Box AP | 下载 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------: | :-----------------------------------------------------: |
| MobileNetV1 | baseline | 20.20 | 93.37 | 608 | 76.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | baseline | 9.46 | 93.37 | 416 | 76.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | baseline | 5.60 | 93.37 | 320 | 75.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | sensity | 13.22(-34.55%) | 66.53(-28.74%) | 608 | 78.4(+2.2) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar
)
|
| MobileNetV1 | sensity | 6.19(-34.55%) | 66.53(-28.74%) | 416 | 78.7(+2.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar
)
|
| MobileNetV1 | sensity | 3.66(-34.55%) | 66.53(-28.74%) | 320 | 76.1(+0.8) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune1x.tar
)
|
| MobileNetV1 | r578 | 6.15(-69.57%) | 30.81(-67.00%) | 608 | 77.6(+1.4) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar
)
|
| MobileNetV1 | r578 | 2.88(-69.57%) | 30.81(-67.00%) | 416 | 77.7(+1.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar
)
|
| MobileNetV1 | r578 | 1.70(-69.57%) | 30.81(-67.00%) | 320 | 75.5(+0.2) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中
`YOLOv3-MobileNetV1`
提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
在使用
`sensity`
和
`r578`
剪裁策略下,
`YOLOv3-MobileNetV1`
分别减少了
`34.55%`
和
`69.57%`
的FLOPs,输入图像尺寸为608时精度分别提高
`2.2`
和
`1.4`
### 蒸馏通道剪裁模型
...
...
@@ -71,20 +85,34 @@
COCO数据集上蒸馏通道剪裁模型库如下。
| 骨架网络 | 剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | teacher模型 | Box AP | 下载 |
| :----------------| :-------: | :---------: | :------------: | :------: | :--------------------- | :-----: | :-----------------------------------------------------: |
| ResNet50-vd-dcn | r578 | 43.69% | 36.61% | 608 | YOLOv3-ResNet50-vd-dcn | 39.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune578_distill.tar
)
|
| MobileNetV1 | r578 | 67.56% | 66.90% | 608 | YOLOv3-ResNet34 | 29.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 67.56% | 66.90% | 416 | YOLOv3-ResNet34 | 28.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 67.56% | 66.90% | 320 | YOLOv3-ResNet34 | 25.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar
)
|
| 骨架网络 | 剪裁策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | teacher模型 | Box AP | 下载 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------------------------: | :--------: | :-----------------------------------------------------: |
| ResNet50-vd-dcn | baseline | 44.71 | 176.82 | 608 | - | 39.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar
)
|
| ResNet50-vd-dcn | r578 | 29.98(-32.94%) | 112.08(-36.61%) | 608 | YOLOv3-ResNet50-vd-dcn(39.1) | 39.7(+0.6) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_r50vd_dcn_prune578_distill.tar
)
|
| MobileNetV1 | baseline | 20.64 | 94.60 | 608 | - | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | baseline | 9.66 | 94.60 | 416 | - | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | baseline | 5.72 | 94.60 | 320 | - | 27.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | r578 | 6.27(-69.64%) | 31.30(-66.90%) | 608 | YOLOv3-ResNet34(36.2) | 29.0(-0.3) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 2.93(-69.64%) | 31.30(-66.90%) | 416 | YOLOv3-ResNet34(34.3) | 28.0(-1.3) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 1.74(-69.64%) | 31.30(-66.90%) | 320 | YOLOv3-ResNet34(31.4) | 25.1(-2.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_prune578_distillby_r34.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中
`YOLOv3-MobileNetV1`
提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
在使用
`r578`
剪裁策略并使用
`YOLOv3-ResNet50-vd-dcn`
作为teacher模型蒸馏,
`YOLOv3-ResNet50-vd-dcn`
模型减少了
`32.94%`
的FLOPs,输入图像尺寸为608时精度提高
`0.6`
-
在使用
`r578`
剪裁策略并使用
`YOLOv3-ResNet34`
作为teacher模型蒸馏下,
`YOLOv3-MobileNetV1`
模型减少了
`69.64%`
的FLOPs,输入图像尺寸为608时精度降低
`0.3`
Pascal VOC数据集上蒸馏通道剪裁模型库如下。
| 骨架网络 | 剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | teacher模型 | Box AP | 下载 |
| :----------------| :-------: | :---------: | :------------: | :------: | :--------------------- | :-----: | :-----------------------------------------------------: |
| MobileNetV1 | r578 | 69.57% | 67.00% | 608 | YOLOv3-ResNet34 | 78.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 69.57% | 67.00% | 416 | YOLOv3-ResNet34 | 78.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 69.57% | 67.00% | 320 | YOLOv3-ResNet34 | 76.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar
)
|
| 骨架网络 | 剪裁策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | teacher模型 | Box AP | 下载 |
| :----------------| :-------: | :------------: | :-------------: | :------: | :--------------------: | :--------: | :-----------------------------------------------------: |
| MobileNetV1 | baseline | 20.20 | 93.37 | 608 | - | 76.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | baseline | 9.46 | 93.37 | 416 | - | 76.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | baseline | 5.60 | 93.37 | 320 | - | 75.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | r578 | 6.15(-69.57%) | 30.81(-67.00%) | 608 | YOLOv3-ResNet34(82.6) | 78.8(+2.6) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 2.88(-69.57%) | 30.81(-67.00%) | 416 | YOLOv3-ResNet34(81.9) | 78.7(+2.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar
)
|
| MobileNetV1 | r578 | 1.70(-69.57%) | 30.81(-67.00%) | 320 | YOLOv3-ResNet34(80.1) | 76.3(+2.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中
`YOLOv3-MobileNetV1`
提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
在使用
`r578`
剪裁策略并使用
`YOLOv3-ResNet34`
作为teacher模型蒸馏下,
`YOLOv3-MobileNetV1`
模型减少了
`69.57%`
的FLOPs,输入图像尺寸为608时精度提高
`2.6`
### YOLOv3通道剪裁模型推理时延
...
...
@@ -92,24 +120,20 @@ Pascal VOC数据集上蒸馏通道剪裁模型库如下。
-
Tesla P4时延为单卡并开启TensorRT推理时延
-
高通835/高通855/麒麟970时延为使用PaddleLite部署,使用
`arm8`
架构并使用4线程(4 Threads)推理时延
| 骨架网络 | 数据集 | 剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | Tesla P4 | 麒麟970 | 高通835 | 高通855 |
| :--------------- | :----: | :------: | :---------: | :------------: | :------: | :------: | :-----: | :-----: | :-----: |
| MobileNetV1 | VOC | baseline | - | - | 608 | 16.556 | 748.404 | 734.970 | 289.878 |
| MobileNetV1 | VOC | baseline | - | - | 416 | 9.031 | 371.214 | 349.065 | 140.877 |
| MobileNetV1 | VOC | baseline | - | - | 320 | 6.235 | 221.705 | 200.498 | 80.515 |
| MobileNetV1 | VOC | r578 | 69.57% | 67.00% | 608 | 10.064 | 314.531 | 323.537 | 123.414 |
| MobileNetV1 | VOC | r578 | 69.57% | 67.00% | 416 | 5.478 | 151.562 | 146.014 | 56.420 |
| MobileNetV1 | VOC | r578 | 69.57% | 67.00% | 320 | 3.880 | 91.132 | 87.440 | 31.470 |
| ResNet50-vd-dcn | COCO | baseline | - | - | 608 | 36.127 | - | - | - |
| ResNet50-vd-dcn | COCO | baseline | - | - | 416 | 20.437 | - | - | - |
| ResNet50-vd-dcn | COCO | baseline | - | - | 320 | 14.037 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 18.41% | 15.46% | 608 | 33.245 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 18.41% | 15.46% | 416 | 19.246 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 18.41% | 15.46% | 320 | 13.656 | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 43.69% | 36.61% | 608 | 29.138 | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 43.69% | 36.61% | 416 | 16.439 | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 43.69% | 36.61% | 320 | 11.339 | - | - | - |
| 骨架网络 | 数据集 | 剪裁策略 | GFLOPs | 模型体积(MB) | 输入尺寸 | Tesla P4 | 麒麟970 | 高通835 | 高通855 |
| :--------------- | :----: | :------: | :------------: | :-------------: | :------: | :-------------: | :--------------: | :--------------: | :--------------: |
| MobileNetV1 | VOC | baseline | 20.20 | 93.37 | 608 | 16.556 | 748.404 | 734.970 | 289.878 |
| MobileNetV1 | VOC | baseline | 9.46 | 93.37 | 416 | 9.031 | 371.214 | 349.065 | 140.877 |
| MobileNetV1 | VOC | baseline | 5.60 | 93.37 | 320 | 6.235 | 221.705 | 200.498 | 80.515 |
| MobileNetV1 | VOC | r578 | 6.15(-69.57%) | 30.81(-67.00%) | 608 | 10.064(-39.21%) | 314.531(-57.97%) | 323.537(-55.98%) | 123.414(-57.43%) |
| MobileNetV1 | VOC | r578 | 2.88(-69.57%) | 30.81(-67.00%) | 416 | 5.478(-39.34%) | 151.562(-59.17%) | 146.014(-58.17%) | 56.420(-59.95%) |
| MobileNetV1 | VOC | r578 | 1.70(-69.57%) | 30.81(-67.00%) | 320 | 3.880(-37.77%) | 91.132(-58.90%) | 87.440(-56.39%) | 31.470(-60.91%) |
| ResNet50-vd-dcn | COCO | baseline | 44.71 | 176.82 | 608 | 36.127 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 37.53(-16.06%) | 149.49(-15.46%) | 608 | 33.245(-7.98%) | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 29.98(-32.94%) | 112.08(-36.61%) | 608 | 29.138(-19.35%) | - | - | - |
-
在使用
`r578`
剪裁策略下,
`YOLOv3-MobileNetV1`
模型减少了
`69.57%`
的FLOPs,输入图像尺寸为608时在单卡Tesla P4(TensorRT)推理时间减少
`39.21%`
,在麒麟970/高通835/高通855上推理时延分别减少
`57.97%`
,
`55.98%`
和
`57.43%`
-
在使用
`sensity`
和
`r578`
剪裁策略下,
`YOLOv3-ResNet50-vd-dcn`
模型分别减少了
`16.06%`
和
`32.94%`
的FLOPs,输入图像尺寸为608时在单卡Tesla P4(TensorRT)推理时间分别减少
`7.98%`
和
`19.35%`
## 蒸馏模型库
...
...
@@ -117,22 +141,36 @@ Pascal VOC数据集上蒸馏通道剪裁模型库如下。
-
蒸馏模型训练时teacher模型使用
[
PaddleDetection模型库
](
https://paddledetection.readthedocs.io/zh/latest/MODEL_ZOO_cn.html
)
发布的模型权重作为预训练权重。
-
蒸馏模型训练时student模型使用backbone的预训练权重
-
蒸馏策略
`l2_distiil`
为使用teacher模型和student模型特征图的L2损失作为蒸馏损失进行蒸馏,为
`slim/distillation/distill.py`
的默认策略
-
蒸馏策略
`split_distiil`
为使用YOLOv3细粒度损失进行蒸馏,通过
`-o use_fine_grained_loss=true`
指定
### YOLOv3 on COCO
| 骨架网络 | 蒸馏策略 | 输入尺寸 | Box AP | 下载 |
| :----------------| :-----------: | :------: |:------: | :-----------------------------------------------------: |
| MobileNetV1 | split_distiil | 608 | 31.4 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar
)
|
| MobileNetV1 | split_distiil | 416 | 30.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar
)
|
| MobileNetV1 | split_distiil | 320 | 27.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar
)
|
| 骨架网络 | 蒸馏策略 | 输入尺寸 | teacher模型 | Box AP | 下载 |
| :----------------| :-----------: | :------: | :--------------------: | :----------: | :-----------------------------------------------------: |
| MobileNetV1 | baseline | 608 | - | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | baseline | 416 | - | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | baseline | 320 | - | 27.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | split_distiil | 608 | YOLOv3-ResNet34(36.2) | 31.4(+2.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar
)
|
| MobileNetV1 | split_distiil | 416 | YOLOv3-ResNet34(34.3) | 30.0(+0.7) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar
)
|
| MobileNetV1 | split_distiil | 320 | YOLOv3-ResNet34(31.4) | 27.1(+0.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中
`YOLOv3-MobileNetV1`
提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
在使用
`YOLOv3-ResNet34`
模型通过
`split_distiil`
策略蒸馏下,输入图像尺寸为608时
`YOLOv3-MobileNetV1`
模型精度提高
`2.1`
### YOLOv3 on Pascal VOC
| 骨架网络 | 蒸馏策略 | 输入尺寸 | Box AP | 下载 |
| :----------------| :-----------: | :------: |:------: | :-----------------------------------------------------: |
| MobileNetV1 | l2_distiil | 608 | 79.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar
)
|
| MobileNetV1 | l2_distiil | 416 | 78.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar
)
|
| MobileNetV1 | l2_distiil | 320 | 75.5 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar
)
|
| 骨架网络 | 蒸馏策略 | 输入尺寸 | teacher模型 | Box AP | 下载 |
| :----------------| :-----------: | :------: | :--------------------: | :--------: | :-----------------------------------------------------: |
| MobileNetV1 | baseline | 608 | - | 76.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | baseline | 416 | - | 76.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | baseline | 320 | - | 75.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar
)
|
| MobileNetV1 | l2_distiil | 608 | YOLOv3-ResNet34(82.6) | 79.0(+2.8) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar
)
|
| MobileNetV1 | l2_distiil | 416 | YOLOv3-ResNet34(81.9) | 78.2(+1.5) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar
)
|
| MobileNetV1 | l2_distiil | 320 | YOLOv3-ResNet34(80.1) | 75.5(+0.2) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中
`YOLOv3-MobileNetV1`
提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
在使用
`YOLOv3-ResNet34`
模型通过
`l2_distiil`
策略蒸馏下,输入图像尺寸为608时
`YOLOv3-MobileNetV1`
模型精度提高
`2.8`
## 量化模型库
...
...
@@ -143,28 +181,48 @@ Pascal VOC数据集上蒸馏通道剪裁模型库如下。
### YOLOv3 on COCO
| 骨架网络 | 预训练权重 | 量化策略 | 输入尺寸 | Box AP | 下载 |
| :----------------| :--------: | :------: | :------: |:------: | :-----------------------------------------------------: |
| MobileNetV1 | ImageNet | post | 608 | 27.9 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar
)
|
| MobileNetV1 | ImageNet | post | 416 | 28.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar
)
|
| MobileNetV1 | ImageNet | post | 320 | 26.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar
)
|
| MobileNetV1 | ImageNet | aware | 608 | 28.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar
)
|
| MobileNetV1 | ImageNet | aware | 416 | 28.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar
)
|
| MobileNetV1 | ImageNet | aware | 320 | 25.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar
)
|
| ResNet34 | ImageNet | post | 608 | 35.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar
)
|
| ResNet34 | ImageNet | aware | 608 | 35.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar
)
|
| ResNet34 | ImageNet | aware | 416 | 33.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar
)
|
| ResNet34 | ImageNet | aware | 320 | 30.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar
)
|
| R50vd-dcn | object365 | aware | 608 | 40.6 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar
)
|
| R50vd-dcn | object365 | aware | 416 | 37.5 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar
)
|
| R50vd-dcn | object365 | aware | 320 | 34.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar
)
|
| :----------------| :--------: | :------: | :------: | :--------: | :-----------------------------------------------------: |
| MobileNetV1 | ImageNet | baseline | 608 | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | ImageNet | baseline | 416 | 29.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | ImageNet | baseline | 320 | 27.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
)
|
| MobileNetV1 | ImageNet | post | 608 | 27.9(-1.4) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar
)
|
| MobileNetV1 | ImageNet | post | 416 | 28.0(-1.3) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar
)
|
| MobileNetV1 | ImageNet | post | 320 | 26.0(-1.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar
)
|
| MobileNetV1 | ImageNet | aware | 608 | 28.1(-1.2) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar
)
|
| MobileNetV1 | ImageNet | aware | 416 | 28.2(-1.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar
)
|
| MobileNetV1 | ImageNet | aware | 320 | 25.8(-1.3) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_aware.tar
)
|
| ResNet34 | ImageNet | baseline | 608 | 36.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | ImageNet | baseline | 416 | 34.3 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | ImageNet | baseline | 320 | 31.4 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar
)
|
| ResNet34 | ImageNet | post | 608 | 35.7(-0.5) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar
)
|
| ResNet34 | ImageNet | aware | 608 | 35.2(-1.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar
)
|
| ResNet34 | ImageNet | aware | 416 | 33.3(-1.0) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar
)
|
| ResNet34 | ImageNet | aware | 320 | 30.3(-1.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar
)
|
| R50vd-dcn | object365 | baseline | 608 | 41.4 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar
)
|
| R50vd-dcn | object365 | aware | 608 | 40.6(-0.8) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar
)
|
| R50vd-dcn | object365 | aware | 416 | 37.5(-) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar
)
|
| R50vd-dcn | object365 | aware | 320 | 34.1(-) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar
)
|
-
YOLO v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型权重不同尺寸图片,表中部分模型提供了在
`608/416/320`
三种不同尺寸下的精度结果
-
`YOLOv3-MobileNetV1`
使用离线(post)和在线(aware)两种量化方式,输入图像尺寸为608时精度分别降低
`1.4`
和
`1.2`
-
`YOLOv3-ResNet34`
使用离线(post)和在线(aware)两种量化方式,输入图像尺寸为608时精度分别降低
`0.5`
和
`1.1`
-
`YOLOv3-R50vd-dcn`
使用在线(aware)量化方式,输入图像尺寸为608时精度降低
`0.8`
### BlazeFace on WIDER FACE
| 模型 | 量化策略 | 输入尺寸 | Easy Set | Medium Set | Hard Set | 下载 |
| :--------------- | :------: | :------: | :------: | :--------: | :------: | :-----------------------------------------------------: |
| BlazeFace | post | 640 | 87.8 | 85.1 | 74.9 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar
)
|
| BlazeFace | aware | 640 | 90.5 | 87.9 | 77.6 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar
)
|
| BlazeFace-Lite | post | 640 | 89.4 | 86.7 | 75.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar
)
|
| BlazeFace-Lite | aware | 640 | 89.7 | 87.3 | 77.0 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar
)
|
| BlazeFace-NAS | post | 640 | 81.6 | 78.3 | 63.6 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar
)
|
| BlazeFace-NAS | aware | 640 | 83.1 | 79.7 | 64.2 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar
)
|
| :--------------- | :------: | :------: | :--------: | :--------: | :--------: | :-----------------------------------------------------: |
| BlazeFace | baseline | 640 | 91.5 | 89.2 | 79.7 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar
)
|
| BlazeFace | post | 640 | 87.8(-3.7) | 85.1(-3.9) | 74.9(-4.8) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar
)
|
| BlazeFace | aware | 640 | 90.5(-1.0) | 87.9(-1.3) | 77.6(-2.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar
)
|
| BlazeFace-Lite | baseline | 640 | 90.9 | 88.5 | 78.1 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar
)
|
| BlazeFace-Lite | post | 640 | 89.4(-1.5) | 86.7(-1.8) | 75.7(-2.4) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar
)
|
| BlazeFace-Lite | aware | 640 | 89.7(-1.2) | 87.3(-1.2) | 77.0(-1.1) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar
)
|
| BlazeFace-NAS | baseline | 640 | 83.7 | 80.7 | 65.8 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar
)
|
| BlazeFace-NAS | post | 640 | 81.6(-2.1) | 78.3(-2.4) | 63.6(-2.2) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar
)
|
| BlazeFace-NAS | aware | 640 | 83.1(-0.6) | 79.7(-1.0) | 64.2(-1.6) |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar
)
|
-
`BlazeFace`
系列模型中在线(aware)量化性能明显优于离线(post)量化
-
`BlazeFace`
模型使用在线(aware)量化方式,在
`Easy/Medium/Hard`
数据集上精度分别降低
`1.0`
,
`1.3`
和
`2.1`
-
`BlazeFace-Lite`
模型使用在线(aware)量化方式,在
`Easy/Medium/Hard`
数据集上精度分别降低
`1.2`
,
`1.2`
和
`1.1`
-
`BlazeFace-NAS`
模型使用在线(aware)量化方式,在
`Easy/Medium/Hard`
数据集上精度分别降低
`0.6`
,
`1.0`
和
`1.6`
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录