提交 a6f25f3d 编写于 作者: W wen-bo-yang

add sentiment data package

上级 6cb78c6e
...@@ -72,6 +72,8 @@ setup(name="py_paddle", ...@@ -72,6 +72,8 @@ setup(name="py_paddle",
packages=['py_paddle'], packages=['py_paddle'],
include_dirs = include_dirs, include_dirs = include_dirs,
install_requires = [ install_requires = [
'h5py',
'nltk',
'numpy>=1.8.0', # The numpy is required. 'numpy>=1.8.0', # The numpy is required.
'protobuf>=3.0.0' # The paddle protobuf version 'protobuf>=3.0.0' # The paddle protobuf version
], ],
......
import os
__all__ = ['DATA_HOME']
DATA_HOME = os.path.expanduser('~/.cache/paddle_data_set')
if not os.path.exists(DATA_HOME):
os.makedirs(DATA_HOME)
import random
import nltk
import numpy as np
from nltk.corpus import movie_reviews
from config import DATA_HOME
__all__ = ['train', 'test', 'get_label_dict', 'get_word_dict']
SPLIT_NUM = 800
TOTAL_DATASET_NUM = 1000
def get_label_dict():
label_dict = {'neg': 0, 'pos': 1}
return label_dict
def is_download_data():
try:
nltk.data.path.append(DATA_HOME)
movie_reviews.categories()
except LookupError:
print "dd"
nltk.download('movie_reviews', download_dir=DATA_HOME)
nltk.data.path.append(DATA_HOME)
def get_word_dict():
words_freq_sorted = list()
is_download_data()
words_freq = nltk.FreqDist(w.lower() for w in movie_reviews.words())
words_sort_list = words_freq.items()
words_sort_list.sort(cmp=lambda a, b: b[1] - a[1])
print words_sort_list
for index, word in enumerate(words_sort_list):
words_freq_sorted.append(word[0])
return words_freq_sorted
def load_sentiment_data():
label_dict = get_label_dict()
is_download_data()
words_freq = nltk.FreqDist(w.lower() for w in movie_reviews.words())
data_set = [([words_freq[word]
for word in movie_reviews.words(fileid)], label_dict[category])
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
random.shuffle(data_set)
return data_set
data_set = load_sentiment_data()
def reader_creator(data_type):
if data_type == 'train':
for each in data_set[0:SPLIT_NUM]:
train_sentences = np.array(each[0], dtype=np.int32)
train_label = np.array(each[1], dtype=np.int8)
yield train_sentences, train_label
else:
for each in data_set[SPLIT_NUM:]:
test_sentences = np.array(each[0], dtype=np.int32)
test_label = np.array(each[1], dtype=np.int8)
yield test_sentences, test_label
def train():
return reader_creator('train')
def test():
return reader_creator('test')
if __name__ == '__main__':
for train in train():
print "train"
print train
for test in test():
print "test"
print test
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册