diff --git a/python/paddle/fluid/tests/unittests/ir_memory_optimize_net_base.py b/python/paddle/fluid/tests/unittests/ir_memory_optimize_net_base.py index 8b3f9c485e982197bc7f43c81854f1afa7e46be3..84aa6b035272eb004b54c342d869ec2d97165071 100644 --- a/python/paddle/fluid/tests/unittests/ir_memory_optimize_net_base.py +++ b/python/paddle/fluid/tests/unittests/ir_memory_optimize_net_base.py @@ -49,6 +49,8 @@ class BuildIrMemOptBase(unittest.TestCase): 'Skip use_parallel_executor=True because Paddle comes without parallel support on windows' ) return + fluid.default_startup_program().random_seed = 100 + fluid.default_main_program().random_seed = 100 batch_size = 32 batch_size *= fluid.core.get_cuda_device_count() if use_cuda else int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) @@ -74,8 +76,6 @@ class BuildIrMemOptBase(unittest.TestCase): feeder = fluid.DataFeeder(feed_list=[data, label], place=place) reader = feeder.decorate_reader(train_reader, multi_devices=True) exe = fluid.Executor(place) - fluid.default_startup_program().random_seed = 100 - fluid.default_main_program().random_seed = 100 exe.run(fluid.default_startup_program()) train_cp = compiler.CompiledProgram(fluid.default_main_program()) @@ -139,7 +139,7 @@ class TestIrMemOptBase(BuildIrMemOptBase): self.network, use_cuda=use_cuda, memory_opt=use_python_mem_opt) - self.assertAlmostEquals(baseline_last_loss, - cur_last_loss, 1e-2) - self.assertAlmostEquals(baseline_first_loss, - cur_first_loss, 1e-2) + self.assertAlmostEquals(np.mean(baseline_last_loss), + np.mean(cur_last_loss), delta=1e-2) + self.assertAlmostEquals(np.mean(baseline_first_loss), + np.mean(cur_first_loss), delta=1e-2)