提交 a459764d 编写于 作者: C chengduoZH

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_fetchop

......@@ -80,6 +80,8 @@ parser.add_argument(
type=str,
default="",
help="Comma-separated list of hostname:port pairs")
parser.add_argument(
"--profile", action='store_true', help="If set, profile a few steps.")
# Flags for defining the tf.train.Server
parser.add_argument(
......@@ -183,8 +185,8 @@ def main():
start_time = time.time()
num_samples = 0
train_pass_acc.reset()
for batch_id, data in enumerate(train_reader()):
ts = time.time()
def run_step(batch_id, data):
img_data = np.array(
map(lambda x: x[0].reshape(data_shape), data)).astype(
"float32")
......@@ -196,13 +198,27 @@ def main():
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost, batch_acc, batch_size])
return loss, acc, b_size
if args.profile and args.task_index == 0:
# warmup.
for batch_id, data in enumerate(train_reader()):
if batch_id > 5: break
run_step(batch_id, data)
with profiler.profiler('All', 'total', '/tmp/profile_vgg'):
for batch_id, data in enumerate(train_reader()):
if batch_id > 5: break
run_step(batch_id, data)
for batch_id, data in enumerate(train_reader()):
ts = time.time()
loss, acc, b_size = run_step(batch_id, data)
iters += 1
num_samples += len(data)
train_pass_acc.add(value=acc, weight=b_size)
print(
"Task:%d Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, "
"Speed = %.2f img/s " % (args.task_index, pass_id, iters,
loss, acc,
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, "
"Speed = %.2f img/s" % (pass_id, iters, loss, acc,
len(data) / (time.time() - ts))
) # The accuracy is the accumulation of batches, but not the current batch.
......
# Float16 Inference in PaddlePaddle Fluid
Kexin Zhao <zhaokexin01@baidu.com>
## Introduction
Working with deep neural networks (DNN) is a two-stage process. First we train DNN using labeled examples of inputs and desired outputs to obtain the model parameters (weights), then we deploy DNN along with the trained weights to run inference on unknown inputs. Typically, these weights are in float data type and hence we run inference in float mode using these weights. This post focuses on the discussion of how to use low precision float16 data type to represent these trained weights and run inference in float16 mode as well as the advantages of float16 inference over its float counterpart by showing some experiment results.
Deep learning is usually a two-stage work: training and inference. The training stage estimates model parameters (weights) from data. The inference stage loads the weights and uses them to interpret inputs. Typically, weights are 32-bit float values (float32). Some new devices, including NVIDIA Volta GPUs, support higher speed computation using 16-bit float values (float16).
This article explains our efforts with PaddlePaddle to train using float32 and to inference using float16. We describe a [*transpiler*](https://github.com/PaddlePaddle/Paddle/blob/a4d3de0071e1f3912230c3ab3f9ac74cf06b093a/doc/fluid/design/motivation/fluid_compiler.md), which converts a PaddlePaddle Fluid model, which, to be precise, should be called a [Fluid *program*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/program.md), into the inference program, and converts the weights from float32 into float16.
## What is float16?
float16 (or FP16) is a half-precision floating-point format that uses 16 bits in memory to represent a value. The advantage over 32-bit single-precision floating-point format (commonly known as float data type) is that it requires half the storage and bandwidth at the expense of precision and range. Fortunately, DNN inference has high tolerance against the loss of precision and range when using float16 to represent the weights and the inference accuracy will only be minimally affected in most cases. This gives us the opportunity to use float16 data type to speedup the inference.
float16 (or FP16) is a half-precision floating-point format that uses 16 bits in memory to represent a value. The advantage over 32-bit single-precision floating-point format (commonly known as float or float32 data type) is that it requires half the storage and bandwidth at the expense of precision and range. Fortunately, DNN inference has a high tolerance for the loss of precision and range when using float16 to represent the weights, and the inference accuracy will only be minimally affected in most cases, which gives us the opportunity to use float16 data type to speed up the inference.
Interested readers can refer to our [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/data_type/float16.md) and [code](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/platform/float16.h) for more details on how we implement the float16 data type.
## Why float16?
The trend in today's deep learning community is to use bigger and deeper model. This translates to larger memory footprint, higher computation demands, and as a result higher energy consumption on computing devices. The advantages of float16 over float are correspondingly three-fold:
The trend in today's deep learning community is to use bigger and deeper model, which translates to larger memory footprint, higher computation demands, and as a result higher energy consumption on computing devices. The advantages of float16 over float32 are correspondingly three-fold:
1. We only need half the memory size to load the same model using float16 representations. Moreover, most of the intermediate results generated during float16 inference are also of float16 data type. This makes the whole memory footprint of float16 inference roughly about half of its float counterpart. This is especially useful when deploying inference on mobile devices with limited available memory. Also given the same available memory, the maximum batch size for float16 inference is about twice that for float inference.
1. We only need half the memory size to load the same model using float16 representations. Moreover, most of the intermediate results generated during float16 inference are also of the float16 data type. As a result, the whole memory footprint of float16 inference is roughly half of its float counterpart, which is especially useful when deploying inference on mobile devices with limited available memory. Also given the same available memory, the maximum batch size for float16 inference is about twice that for float inference.
2. Because float16 occupies less memory than float, in theory hardware devices can achieve much higher floating point operators per second (FLOPS) for float16 data than float data. Right now, an outstanding example of hardware devices that actually deliver such advantages is Nvidia's latest Volta architecture GPUs, including Tesla V100 and Titan V. Moreover float16 takes less time to read from or write to memory and hence float16 can make inference more efficient especially in memory-bound applications where the performance is largely affected by how fast it is to read and write data.
2. Because float16 occupies less memory than float, in theory, hardware devices can achieve much higher floating point operators per second (FLOPS) for float16 data than float data. Right now, NVIDIA's latest Volta GPUs, including Tesla V100 and Titan V, can deliver significantly higher FLOPS for float16 using Tensor Cores. Moreover, float16 takes less time to read from or write to memory, and hence float16 can make inference more efficient especially in memory-bound applications where the performance is mostly affected by how fast it is to read and write data.
3. From the energy efficiency perspective, the energy needed to read, write, and compute float16 data is much less that its float counterpart, which can significantly reduce the battery power consumption on mobile devices or the total cost of ownership (TCO) of data centers.
3. From the energy efficiency perspective, the energy needed to read, write, and compute float16 data is much less than its float counterpart, which can significantly reduce the battery power consumption on mobile devices or the total cost of ownership (TCO) of data centers.
## Fluid implementation of float16 inference
### Overview
Fluid use [Program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#program) instead of computation graph to describe a neural network model and the optimization procedure. Fluid program is a python wrapper around a protobuf message called [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/program.md). Similar to programming languages, the basic structure of a Fluid program is some nested [blocks](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#block), where each block consists of some [variable](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#variable) definitions and a sequence of [operators](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#operator). An [executor](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/executor.md) will run a given program by sequentially executing the operators in the entrance block.
### Basic requirement
When an operator is run by an executor, it uses a kernel to perform computations on tensors contained in the input variables, and then write the results to the tensors in the output variables. Each operator has multiple kernels for different combinations of data types, devices, and library types, respectively. The operator will select the appropriate kernel to run based on, among other things, the data type of the input tensors. By default, every Fluid operator has a kernel for float data type that takes float inputs and generates float outputs.
When an executor runs an operator, it uses a kernel to perform computations on tensors contained in the input variables, and then writes the results to the tensors in the output variables. Each operator has multiple kernels for different combinations of data types, devices, and library types, respectively. The operator will select the appropriate kernel to run based on, among other things, the data type of the input tensors. By default, every Fluid operator has a kernel for float data type that takes float inputs and generates float outputs.
This means that if we provide float input to the first operator in a program, then each operator will use float kernel to compute float output and send it as input to the next operator to trigger its float kernel. This chain effect will makes the program run in float mode and gives us a final output of float data type.
If we provide float input to the first operator in a program, then each operator will use float kernel to compute float output and send it as input to the next operator to trigger its float kernel. This chain effect will make the program run in float mode and gives us a final output of float data type.
The same principle applies if we want a program to run in float16 mode. We provide input variable of float16 data type to the first operator and every subsequent operator will invoke the float16 kernel until we get the final output in float16 data type. So the preliminary requirements for float16 inference is to add float16 kernels to operators that are needed in a specific kind of neural networks. Our current focus is on Convolutional Neural Networks (CNN) and hence we have added float16 kernels to the following operators: convolution, pooling, GEMM, elementwise addition, batch norm, dropout, various activations including relu and tanh, and softmax.
The same principle applies if we want a program to run in float16 mode. We provide input variable of the float16 data type to the first operator, and every subsequent operator will invoke the float16 kernel until we get the final output in float16. So the preliminary requirements for float16 inference are to add float16 kernels to operators that are needed in a specific kind of neural networks. Our current focus is on Convolutional Neural Networks (CNN) and hence we have added float16 kernels to the following operators: convolution, pooling, GEMM, elementwise addition, batch norm, dropout, various activations including relu and tanh, and softmax.
### float16 transpiler
Furthermore, we need a float16 transpiler to achieve the following usage code:
Furthermore, we need a transpiler to write float16 inference code similar to the following:
```python
# Get the float32 inference program and load the associated float32 weights
......@@ -64,14 +71,15 @@ fluid.io.save_inference_model(fp16_save_dirname, feed_target_names,
float16_inference_program)
```
In this scenario, we already have a float32 inference program and some associated float32 weights that can do float32 inference. We can easily use the `transpile` method of the `Float16Transpiler` class to do certain modifications to the existing program and weights so that we have a new float16 program and the associated float16 weights.
In this scenario, we already have a float32 inference program and some associated float32 weights. We can simply use the `transpile` method of the `Float16Transpiler` class to do certain modifications to the existing program and weights so that we have a new float16 program and the associated float16 weights.
We can then run various inference experiments in float16 mode and save the float16 program and weights on disk for future deployment. To enhance the code usability, we maintain a consistent API so that user can use the same float32 input data to run inference program in either float32 and float16 mode and obtain output data both of float32 data type. This requires us to add some cast operators in the program to convert between float16 tensor and float32 tensor.
We can then run various inference experiments in float16 mode and save the float16 program and weights on disk for future deployment. To enhance the code usability, we maintain a consistent API so that user can use the same float32 input data to run inference program in either float32 and float16 mode and obtain output data both of float32 data type. Consequently, we need to add cast operators in the float16 inference program for conversions between the float16 tensor and float32 tensor.
The float16 transpiler is implemented to fulfill the requirements mentioned above. The details of the float16 transpiler can be found [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/data_type/float16.md#float16-inference).
### Experiment results
We provide demo codes that can be used to reproduce the experiment results by doing:
Simply running the following commands to reproduce the experiment results presented in this section:
```bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
......@@ -84,8 +92,8 @@ nvidia-docker build -t paddle:float16 .
nvidia-docker run -it -v $PWD:/paddle paddle:float16 /paddle/contrib/float16/run_float16_demo.sh
```
#### Correctness
As is mentioned before, DNN inference has been found to be tolerant against the loss of precision and range incured by float16 and we want to see how good this tolerance is.
#### Accuracy
As is mentioned before, DNN inference has been found to be tolerant against the loss of precision and range incurred by float16, and we want to see how good this tolerance is.
We train a resnet32 model using cifar10 data set, save it when test set accuracy is above 60%, and then test the inference accuracy on the 10000 examples of the cifar10 test set in float16 and float32 mode, respectively.
......@@ -105,18 +113,18 @@ We repeat the test ten times and get the following results:
| #10 | 62.53% | 62.48% |
| average| 62.63% | 62.62% |
We can see that the accuracy of float16 inference is very close to that of float32 inference in every experiment (within 0.05% difference) and is overall 0.01% better than its float32 counterpart averaged over 10 tests.
We can see that the accuracy of float16 inference is very close to that of float32 inference in every experiment (within 0.05% difference) and is overall 0.01% better than its float32 counterpart averaged over ten tests.
#### Performance benchmark
Currently, Fluid inference in float16 mode is only supported on Nvidia GPU device. There is no motivation to support float16 inference on non-ARM CPUs because float16 is not natively supported there and float16 calculation will only be slower than its float counterpart.
Currently, Fluid only supports float16 inference on NVIDIA GPUs. There is no motivation to support float16 inference on non-ARM CPUs where float16 is not natively supported, and float16 calculation will only be slower than its float32 counterpart.
Nvidia started to support its native float16 data type (which has the same internal memory representation as Fluid float16 class) on CUDA 7.5. Moreover, float16 speedups on common computational intensive tasks including GEMM (general matrix-matrix multiplication) and convolution are supported since cublas 7.5 and cuDNN 5.0.
NVIDIA started to support its native float16 data type (which has the same internal memory representation as Fluid's float16 class) on CUDA 7.5. Moreover, float16 speedups on computationally intensive tasks including GEMM (general matrix-matrix multiplication) and convolution are supported since cuBLAS 7.5 and cuDNN 5.0.
Recently, the introduction of [tensor core](https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/) in volta architecture GPUs and the support of tensor core calculation in CUDA 9.0 and cuDNN 7 make float16 truly superior to float in certain deep learning applications.
Recently, the introduction of [Tensor Core](https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/) in Volta architecture GPUs and the support of Tensor Core computation in CUDA 9.0 and cuDNN 7 make float16 genuinely superior to float in some deep learning applications.
We thus benchmark the float16 inference performance on a single Nvidia Tesla V100 GPU (volta architecture and with tensor cores) and compare it with its float32 counterpart. All the following results are in ms (millisecond) averaged over 1000 mini-batches with respective to different mini-batch(mb) sizes.
We thus benchmark the float16 inference performance on a single NVIDIA Tesla V100 GPU (Volta architecture and with Tensor Cores) and compare it with its float32 counterpart. All the following results are in ms (millisecond) averaged over 1000 mini-batches with respective to different mini-batch(mb) sizes.
Average inference time for one mini-batch on Vgg16 model tested on imagenet data set:
Average inference time for one mini-batch on Vgg16 model tested on ImageNet dataset:
| total | mb=1 | mb=2 | mb=4 | mb=8 | mb=16 | mb=32 | mb=64 |
|-------|-----: |-----: |-----: |-----: |------: |------:|-------:|
......@@ -124,7 +132,7 @@ Average inference time for one mini-batch on Vgg16 model tested on imagenet data
|float16| 3.32 | 4.11 | 5.88 | 9.41 | 16.54 | 30.47 | 60.23 |
|Speedup| 4.22 | 2.36  | 3.91 | 3.00 | 3.26  | 2.77 | 2.97 |
We can see that float16 inference provides 2x ~ 4x speedup on different batch sizes.
We can see that float16 inference provides **2x ~ 4x** speedup on different batch sizes.
Convolution operation is ususally the computational bottleneck of CNN, so we also check the average time spent on the Fluid convolution operators for one mini-batch as follows:
......@@ -134,9 +142,9 @@ Convolution operation is ususally the computational bottleneck of CNN, so we als
|float16| 1.78 | 2.10 | 2.93 | 4.55 | 7.99 | 14.63 | 28.67 |
|Speedup| 6.71 | 3.31  | 6.37 | 4.71 | 5.18  | 4.14 | 4.54 |
Fluid convolution operator uses cuDNN 7 to implement the kernel and we can see that with the help of tensor core, float16 convolution is significantly faster than its float32 counterpart, which makes the overall float16 inference performance much better.
Fluid convolution operator uses cuDNN 7 to implement the kernel, and we can see that with the help of Tensor Core, float16 convolution is significantly faster than its float32 counterpart, which makes the overall float16 inference performance much better.
Similarly, we also list the benchmark results of Resnet50 model tested on imagenet data set:
Similarly, we also list the benchmark results of Resnet50 model tested on the ImageNet dataset:
| total | mb=1 | mb=2 | mb=4 | mb=8 | mb=16 | mb=32 | mb=64 | mb=128 |
|-------|-----: |-----: |-----: |-----: |------: |------:|-------:|-------:|
......@@ -150,14 +158,14 @@ Similarly, we also list the benchmark results of Resnet50 model tested on imagen
|float16| 4.19 | 4.30 | 3.96 | 4.21 | 5.63 | 8.77 | 15.24 | 28.40 |
|Speedup| 1.30 | 1.27  | 1.64  | 1.99 | 2.45  | 2.79 | 2.70 | 2.59 |
We find that the speedup provided by float16 inference starts relatively small at 1.15x for batch size 1 and gradually increase to about 2x for larger batch sizes. Similar trend can be found for the time spent on the convolution operator. Note that right now the tensor core will only be utilized in the convolution operation when certain dimentional requirements are met for the input data and filter. The speedup by float16 inference for Resnet50 is smaller than the Vgg16 counterpart partially because the convolution operation in Resnet is much simpler than the Vgg counterpart and this makes the tensor core less utilized in Resnet than in Vgg.
We find that the speedup provided by float16 inference starts relatively small at 1.15x for batch size 1 and gradually increases to about 2x for larger batch sizes. A similar trend can be found for the time spent on the convolution operator. Note that right now Tensor Cores will only be utilized in the convolution operation when the input data and filter meet specific dimensional requirements. The speedup by float16 inference for Resnet50 is smaller than the Vgg16 counterpart partially because the convolution operation in Resnet is much simpler than its Vgg counterpart and this makes the tensor core less utilized in Resnet than in Vgg.
We also did the same benchmark on a Nvidia GeForce GTX 1080 Ti GPU that does not support tensor core. The results show that for Vgg16, float16 inference provides consistent small speedup (around 1.15x) for all mini-batch sizes, while for Resnet50, float16 inference is slower than its float32 counterpart in small batch sizes (mb = 1 and 2) and then deliver around 1.15x speedup for all larger batch sizes. By comparing the benchmarks on 1080 Ti and V100, we find that tensor core, which is specialized for float16 computations, is a critical component for high performance float16 inference.
We also did the same benchmark on a single NVIDIA GeForce GTX 1080 Ti GPU that does not support Tensor Core. The results show that for Vgg16, float16 inference provides consistent small speedup (around 1.15x) for all mini-batch sizes, while for Resnet50, float16 inference is slower than its float32 counterpart in small batch sizes (mb = 1 and 2) and then delivers around 1.15x speedup for all larger batch sizes. By comparing the benchmarks on 1080 Ti and V100, we find that Tensor Core, which is specialized for float16 computations, is a critical component of high performance float16 inference.
Please refer to [here](https://github.com/PaddlePaddle/Paddle/blob/develop/contrib/float16/float16_benchmark.md) for comprehensive benchmark results.
Please refer to [here](https://github.com/PaddlePaddle/Paddle/blob/develop/contrib/float16/float16_benchmark.md) for complete benchmark results.
### Summary
1. Fluid is now able to run inference in float16 mode via a float16 transpiler. We currently support CNN programs, including Vgg and Resnet, to run in float16 inference mode.
2. The accuracy of float16 inference is verified to be almost identical to the float32 counterpart at least on CNNs.
3. float16 inference provides significant speedup on large and computationally intensive Vgg16 network on image net data set. For the much smaller and simpler Resnet50, the speedup provided by float16 inference is less significant than on Vgg16 but still favorable especially for large batch size.
4. We cannot achieve the superior float16 inference performance without the help of the newly introduced tensor cores on the Nvidia Volta architecture GPUs.
2. The accuracy of float16 inference is verified to be almost identical to its float32 counterpart at least on CNN models.
3. float16 inference provides a significant speedup on large and computationally intensive Vgg16 model on ImageNet dataset. For the much smaller and simpler Resnet50 model, the speedup provided by float16 inference is less significant than for Vgg16 model but still favorable, especially for large batch sizes.
4. We cannot achieve the superior float16 inference performance without the help of the newly introduced Tensor Cores on NVIDIA Volta architecture GPUs.
../../v2/build_and_install/paddleci.png
\ No newline at end of file
......@@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime
## Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_op_with_kern_class_diagram.dot)
---
## Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op.dot)
* `Operator` is the fundamental building block of the user interface.
* Operator stores input/output variable names and attributes.
......@@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime
## OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot)
![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map.
......
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map&#60;string, string[]&#62; inputs_\lmap&#60;string, string[]&#62; outputs_ \l AttributeMap attrs_\l}"];
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map&#60;string, string[]&#62; inputs_\lmap&#60;string, string[]&#62; outputs_ \l AttributeMap attrs_\l}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map&#60;OpKernelKey,OpKernel&#62;kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
mul_op [label="MulOp"]
op_with_kern -> mul_op [dir=back, arrowtail=onormal]
mul_kernel [label="template &#60;typename Place&#62;\lclass MulOpKernel\l"]
op_kernel -> mul_kernel [dir=back, arrowtail=onormal]
mul_op -> mul_kernel [arrowhead=vee, label="register many"]
{
rank=same;
mul_op;
mul_kernel;
}
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map&#60;OpKernelKey,OpKernel&#62;kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
}
\ No newline at end of file
......@@ -460,6 +460,11 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
classification_cost
-------------------
.. autoclass:: paddle.v2.layer.classification_cost
:noindex:
huber_regression_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost
......
......@@ -41,7 +41,7 @@ Training docker image needs to package the paddle pserver and paddle trainer run
- Generating the initialization arguments for `Paddle PServer` and `Paddle Training` processes.
Since the paddlepaddle official docker image already has the runtimes we need, we'll take it as the base image and pack some additional scripts for the processes mentioned above to build our training image. for more detail, please find from the following link:
- https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile
- https://github.com/PaddlePaddle/Paddle/tree/develop/doc/v2/howto/cluster/multi_cluster/src/k8s_train/Dockerfile
```bash
......@@ -62,7 +62,7 @@ represent the Docker Image which built in this step.
### Prepare Training Data
We can download and split the training job by creating a Kubernetes Job, or custom your image
by editing [k8s_train](./src/k8s_train/).
by editing [k8s_train](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/v2/howto/cluster/multi_cluster/src/k8s_train).
Before creating a Job, we need to bind a [persistenVolumeClaim](https://kubernetes.io/docs/user-guide/persistent-volumes) by the different type of
the different file system, the generated dataset would be saved on this volume.
......
......@@ -348,8 +348,12 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
}
platform::DeviceContextPool::Instance().Get(place_)->Wait();
if (create_vars && create_local_scope) {
scope->DeleteScope(local_scope);
} else {
// Delete the local scopes created in operators.
scope->DropKids();
}
if (FLAGS_benchmark) {
VLOG(2) << "-------------------------------------------------------";
......
nv_test(test_tensorrt_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_tensorrt_activation_op SRCS test_activation_op.cc ${ENGINE_FILE} activation_op.cc
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_trt_activation_op SRCS test_activation_op.cc ${ENGINE_FILE} activation_op.cc
DEPS ${FLUID_CORE_MODULES} activation_op)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/inference/tensorrt/convert/io_converter.h"
#include <cuda.h>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
namespace tensorrt {
using platform::is_gpu_place;
using platform::is_cpu_place;
class DefaultInputConverter : public EngineInputConverter {
public:
DefaultInputConverter() {}
// NOTE out is GPU memory.
virtual void operator()(const LoDTensor& in, void* out,
size_t max_size) override {
PADDLE_ENFORCE(out != nullptr);
PADDLE_ENFORCE_LE(in.memory_size(), max_size);
const auto& place = in.place();
if (is_cpu_place(place)) {
PADDLE_ENFORCE(stream_ != nullptr);
PADDLE_ENFORCE_EQ(0,
cudaMemcpyAsync(out, in.data<float>(), in.memory_size(),
cudaMemcpyHostToDevice, *stream_));
} else if (is_gpu_place(place)) {
PADDLE_ENFORCE_EQ(0,
cudaMemcpyAsync(out, in.data<float>(), in.memory_size(),
cudaMemcpyHostToHost, *stream_));
} else {
PADDLE_THROW("Unknown device for converter");
}
cudaStreamSynchronize(*stream_);
}
};
REGISTER_TENSORRT_INPUT_CONVERTER(default, DefaultInputConverter);
} // namespace tensorrt
} // namespace inference
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <unordered_map>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace paddle {
namespace inference {
namespace tensorrt {
using framework::LoDTensor;
/*
* Convert Input from Fluid to an Engine.
* TensorRT's ITensor follows row major, NCHW. Fluid is also row major, so in
* most cases just need to copy the data.
*/
class EngineInputConverter {
public:
EngineInputConverter() {}
virtual void operator()(const LoDTensor& in, void* out, size_t max_size) {}
void SetStream(cudaStream_t* stream) { stream_ = stream; }
static void Run(const std::string& in_op_type, const LoDTensor& in, void* out,
size_t max_size, cudaStream_t* stream) {
PADDLE_ENFORCE(stream != nullptr);
auto* converter = Registry<EngineInputConverter>::Lookup(
in_op_type, "default" /* default_type */);
PADDLE_ENFORCE_NOT_NULL(converter);
converter->SetStream(stream);
(*converter)(in, out, max_size);
}
virtual ~EngineInputConverter() {}
protected:
cudaStream_t* stream_{nullptr};
};
} // namespace tensorrt
} // namespace inference
} // namespace paddle
#define REGISTER_TENSORRT_INPUT_CONVERTER(in_op_type__, Converter__) \
struct trt_input_##in_op_type__##_converter { \
trt_input_##in_op_type__##_converter() { \
::paddle::inference::Registry<EngineInputConverter>::Register< \
Converter__>(#in_op_type__); \
} \
}; \
trt_input_##in_op_type__##_converter trt_input_##in_op_type__##_converter__;
......@@ -19,6 +19,7 @@ limitations under the License. */
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace paddle {
namespace inference {
......@@ -32,34 +33,23 @@ class OpConverter {
OpConverter() {}
virtual void operator()(const framework::OpDesc& op) {}
void Execute(const framework::OpDesc& op, TensorRTEngine* engine) {
void Run(const framework::OpDesc& op, TensorRTEngine* engine) {
std::string type = op.Type();
auto it = converters_.find(type);
PADDLE_ENFORCE(it != converters_.end(), "no OpConverter for optype [%s]",
type);
it->second->SetEngine(engine);
(*it->second)(op);
}
static OpConverter& Global() {
static auto* x = new OpConverter;
return *x;
}
template <typename T>
void Register(const std::string& key) {
converters_[key] = new T;
auto* it = Registry<OpConverter>::Lookup(type);
PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]", type);
it->SetEngine(engine);
(*it)(op);
}
// convert fluid op to tensorrt layer
void ConvertOp(const framework::OpDesc& op, TensorRTEngine* engine) {
OpConverter::Global().Execute(op, engine);
OpConverter::Run(op, engine);
}
// convert fluid block to tensorrt network
void ConvertBlock(const framework::BlockDesc& block, TensorRTEngine* engine) {
for (auto op : block.AllOps()) {
OpConverter::Global().Execute(*op, engine);
OpConverter::Run(*op, engine);
}
}
......@@ -81,7 +71,7 @@ class OpConverter {
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter { \
trt_##op_type__##_converter() { \
OpConverter::Global().Register<Converter__>(#op_type__); \
Registry<OpConverter>::Register<Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__;
......
......@@ -26,7 +26,7 @@ namespace paddle {
namespace inference {
namespace tensorrt {
void compare(float input, float expect) {
void Compare(float input, float expect) {
framework::Scope scope;
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
......@@ -85,8 +85,8 @@ void compare(float input, float expect) {
}
TEST(OpConverter, ConvertRelu) {
compare(1, 1); // relu(1) = 1
compare(-5, 0); // relu(-5) = 0
Compare(1, 1); // relu(1) = 1
Compare(-5, 0); // relu(-5) = 0
}
} // namespace tensorrt
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/tensorrt/convert/io_converter.h"
#include <gtest/gtest.h>
namespace paddle {
namespace inference {
namespace tensorrt {
class EngineInputConverterTester : public ::testing::Test {
public:
void SetUp() override { tensor.Resize({10, 10}); }
framework::LoDTensor tensor;
};
TEST_F(EngineInputConverterTester, DefaultCPU) {
void* buffer;
tensor.mutable_data<float>(platform::CPUPlace());
ASSERT_EQ(cudaMalloc(&buffer, tensor.memory_size()), 0);
cudaStream_t stream;
EngineInputConverter::Run("test", tensor, buffer, tensor.memory_size(),
&stream);
}
TEST_F(EngineInputConverterTester, DefaultGPU) {
void* buffer;
tensor.mutable_data<float>(platform::CUDAPlace());
ASSERT_EQ(cudaMalloc(&buffer, tensor.memory_size()), 0);
cudaStream_t stream;
EngineInputConverter::Run("test", tensor, buffer, tensor.memory_size(),
&stream);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -20,7 +20,7 @@ namespace paddle {
namespace inference {
namespace tensorrt {
TEST(BlockConverter, ConvertBlock) {
TEST(OpConverter, ConvertBlock) {
framework::ProgramDesc prog;
auto* block = prog.MutableBlock(0);
auto* mul_op = block->AppendOp();
......
......@@ -24,6 +24,11 @@ function(inference_test TARGET_NAME)
endforeach()
endfunction(inference_test)
####################
# Inference tests here depend on fluid/tests/book. If users want to run
# individual test with ctest, they need to run tests in fluid/tests/book
# first to generate saved model.
####################
# This unittest is buggy!
#inference_test(fit_a_line)
inference_test(image_classification ARGS vgg resnet)
......@@ -31,5 +36,5 @@ inference_test(label_semantic_roles)
inference_test(recognize_digits ARGS mlp conv)
inference_test(recommender_system)
#inference_test(rnn_encoder_decoder)
inference_test(understand_sentiment ARGS conv)
#inference_test(understand_sentiment ARGS conv)
inference_test(word2vec)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace inference {
// NOTE not thread-safe.
template <typename T>
struct Singleton {
static T& Global() {
static T* x = new T;
return *x;
}
Singleton() = delete;
Singleton& operator=(const Singleton&) = delete;
};
/*
* An registor for any type.
* NOTE not thread-safe.
*/
template <typename ItemParent>
struct Registry {
static Registry& Global() {
static auto* x = new Registry<ItemParent>;
return *x;
}
template <typename ItemChild>
static void Register(const std::string& name) {
PADDLE_ENFORCE_EQ(items_.count(name), 0);
items_[name] = new ItemChild;
}
static ItemParent* Lookup(const std::string& name,
const std::string& default_name = "") {
auto it = items_.find(name);
if (it == items_.end()) {
if (default_name == "")
return nullptr;
else
return items_.find(default_name)->second;
}
return it->second;
}
~Registry() {
for (auto& item : items_) {
delete item.second;
}
}
private:
Registry() = default;
static std::unordered_map<std::string, ItemParent*> items_;
};
template <typename ItemParent>
std::unordered_map<std::string, ItemParent*> Registry<ItemParent>::items_;
} // namespace inference
} // namespace paddle
......@@ -366,7 +366,8 @@ REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvOpKernel<float>,
paddle::operators::CUDNNConvOpKernel<double>);
paddle::operators::CUDNNConvOpKernel<double>,
paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
paddle::operators::CUDNNConvGradOpKernel<float>,
paddle::operators::CUDNNConvGradOpKernel<double>);
......@@ -187,7 +187,8 @@ class GemmConvKernel : public framework::OpKernel<T> {
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(filter_slice, col_matrix, &out_slice);
blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
T(0.0));
}
}
}
......@@ -304,7 +305,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
col_matrix.ShareDataWith(in_grad_slice);
col_matrix.Resize(col_matrix_shape);
}
blas.MatMul(filter_slice, true, out_grad_slice, false, &col_matrix);
blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
&col_matrix, T(0.0));
if (is_expand && data_dim == 2U) {
col2im(dev_ctx, col, dilations, strides,
......@@ -351,8 +353,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// gemm
Tensor filter_grad_slice =
filter_grad_.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(out_grad_slice, false, col_matrix, true,
&filter_grad_slice);
blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
&filter_grad_slice, T(1.0));
}
}
}
......
......@@ -135,7 +135,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
blas.MatMul(filter, true, input_batch, false, &col_matrix);
blas.MatMul(filter, true, input_batch, false, static_cast<T>(1.0),
&col_matrix, static_cast<T>(0.0));
if (data_dim == 2U) {
// col2im: col_matrix -> dy
......@@ -267,7 +268,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
blas.MatMul(filter, false, col_matrix, false, &input_grad_batch);
blas.MatMul(filter, false, col_matrix, false, static_cast<T>(1.0),
&input_grad_batch, static_cast<T>(0.0));
}
if (filter_grad) {
// input batch
......@@ -277,7 +279,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
blas.MatMul(in_batch, false, col_matrix, true, &filter_grad_);
blas.MatMul(in_batch, false, col_matrix, true, static_cast<T>(1.0),
&filter_grad_, static_cast<T>(1.0));
}
}
}
......
......@@ -69,6 +69,10 @@ message VariableMessage {
bytes rows = 9;
// Look up table block execution output variable name.
string out_varname = 10;
// If true, the ps server will start profiling, the ps
// server stops profiling and generates a profile to /tmp/profile_ps_*
// when profile switches from true to false.
bool profile = 11;
}
message VoidMessage {}
......@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
#include "paddle/fluid/operators/detail/variable_response.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
......@@ -45,6 +46,13 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
void* payload = nullptr;
size_t payload_size;
ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
// Note: normally the profiler is enabled in 1 trainer, hence only
// 1 trainer returns true for ShouldSendProfileState(). It tells PS
// servers the trainer's profiling state so that PS can follow the
// trainer.
if (platform::ShouldSendProfileState()) {
e.WriteBool(VarMsg::kProfileFieldNumber, platform::IsProfileEnabled());
}
e.WriteString(VarMsg::kVarnameFieldNumber, name);
if (var->IsType<framework::LoDTensor>()) {
e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
......
......@@ -17,6 +17,7 @@
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/operators/detail/send_recv.pb.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
......@@ -427,7 +428,26 @@ int VariableResponse::Parse(Source* source) {
meta_.set_out_varname(temp);
break;
}
case sendrecv::VariableMessage::kProfileFieldNumber: {
bool profiling;
if (!input.ReadRaw(reinterpret_cast<void*>(&profiling), 1)) {
return tag;
}
meta_.set_profile(profiling);
int64_t listener_id = platform::ListenerId();
if (listener_id <= 0) {
break;
}
if (profiling && !platform::IsProfileEnabled()) {
platform::EnableProfiler(platform::ProfilerState::kCPU);
} else if (!profiling && platform::IsProfileEnabled()) {
// TODO(panyx0718): Should we allow to customize file dir.
platform::DisableProfiler(
platform::EventSortingKey::kDefault,
string::Sprintf("/tmp/profile_ps_%lld", listener_id));
}
break;
}
default: {
// Unknown tag, return unknown error.
return -1;
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
......@@ -294,6 +295,8 @@ void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
void ListenAndServOp::RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const {
// Mark this as PS that it should decide profiling by listening from trainer.
platform::SetProfileListener();
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope();
......
......@@ -46,8 +46,7 @@ class LoDResetKernel : public framework::OpKernel<T> {
auto* lod = lod_t->data<int>();
if (platform::is_gpu_place(ctx.GetPlace())) {
framework::Tensor lod_cpu;
framework::TensorCopy(*lod_t, platform::CPUPlace(),
ctx.device_context(), &lod_cpu);
framework::TensorCopySync(*lod_t, platform::CPUPlace(), &lod_cpu);
lod = lod_cpu.data<int>();
}
level0 = std::vector<int>(lod, lod + lod_t->numel());
......
......@@ -69,8 +69,8 @@ void testConcat() {
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
std::vector<paddle::framework::Tensor> input;
......@@ -86,7 +86,7 @@ void testConcat() {
int* out_ptr;
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
......@@ -142,8 +142,8 @@ void testConcat() {
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
input.clear();
......@@ -157,7 +157,7 @@ void testConcat() {
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
......@@ -215,8 +215,8 @@ void testConcat() {
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
input.clear();
......@@ -230,7 +230,7 @@ void testConcat() {
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
......@@ -290,8 +290,8 @@ void testConcat() {
}
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
paddle::framework::TensorCopySync(input_a_cpu, Place(), &input_a);
paddle::framework::TensorCopySync(input_b_cpu, Place(), &input_b);
}
input.clear();
......@@ -305,7 +305,7 @@ void testConcat() {
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) {
paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
paddle::framework::TensorCopySync(out, paddle::platform::CPUPlace(),
&out_cpu);
out_ptr = out_cpu.data<int>();
} else {
......
......@@ -41,7 +41,7 @@ void TestSequencePadding(const paddle::framework::LoD& lod,
if (paddle::platform::is_cpu_place(*place)) {
seq = cpu_seq;
} else {
TensorCopy(cpu_seq, *place, *context, &seq);
TensorCopySync(cpu_seq, *place, &seq);
seq.set_lod(lod);
}
......@@ -64,7 +64,7 @@ void TestSequencePadding(const paddle::framework::LoD& lod,
if (paddle::platform::is_cpu_place(*place)) {
cpu_seq_back = seq_back;
} else {
TensorCopy(seq_back, paddle::platform::CPUPlace(), *context, &cpu_seq_back);
TensorCopySync(seq_back, paddle::platform::CPUPlace(), &cpu_seq_back);
cpu_seq_back.set_lod(lod);
}
......
......@@ -33,7 +33,7 @@ class MultiplexGPUKernel : public framework::OpKernel<T> {
auto cols = ins[0]->numel() / rows;
// copy index to cpu
Tensor index_t_cpu;
TensorCopy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu);
TensorCopySync(*ids, platform::CPUPlace(), &index_t_cpu);
auto* index = index_t_cpu.data<int32_t>();
auto stream = ctx.cuda_device_context().stream();
platform::CUDAPlace place = boost::get<platform::CUDAPlace>(ctx.GetPlace());
......@@ -69,7 +69,7 @@ class MultiplexGradGPUKernel : public framework::OpKernel<T> {
auto cols = ins[0]->numel() / rows;
// copy index to cpu
Tensor index_t_cpu;
TensorCopy(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu);
TensorCopySync(*ids, platform::CPUPlace(), &index_t_cpu);
auto* index = index_t_cpu.data<int32_t>();
auto stream = ctx.cuda_device_context().stream();
......
......@@ -174,7 +174,8 @@ REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>);
ops::PoolCUDNNOpKernel<double>,
ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>);
......@@ -66,13 +66,11 @@ class SequenceSliceOpKernel : public framework::OpKernel<T> {
if (platform::is_gpu_place(ctx.GetPlace())) {
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
framework::TensorCopy(*offset, platform::CPUPlace(), ctx.device_context(),
&offset_cpu);
framework::TensorCopySync(*offset, platform::CPUPlace(), &offset_cpu);
offset_data = offset_cpu.data<int64_t>();
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
framework::TensorCopy(*length, platform::CPUPlace(), ctx.device_context(),
&length_cpu);
framework::TensorCopySync(*length, platform::CPUPlace(), &length_cpu);
length_data = length_cpu.data<int64_t>();
}
......@@ -127,13 +125,11 @@ class SequenceSliceGradOpKernel : public framework::OpKernel<T> {
if (platform::is_gpu_place(ctx.GetPlace())) {
offset_cpu.mutable_data<T>(offset->dims(), platform::CPUPlace());
framework::TensorCopy(*offset, platform::CPUPlace(), ctx.device_context(),
&offset_cpu);
framework::TensorCopySync(*offset, platform::CPUPlace(), &offset_cpu);
offset_data = offset_cpu.data<int64_t>();
length_cpu.mutable_data<T>(length->dims(), platform::CPUPlace());
framework::TensorCopy(*length, platform::CPUPlace(), ctx.device_context(),
&length_cpu);
framework::TensorCopySync(*length, platform::CPUPlace(), &length_cpu);
length_data = length_cpu.data<int64_t>();
}
......
......@@ -63,6 +63,7 @@ __device__ T reduceSum(T val, int tid, int len) {
val += platform::CudaShuffleDownSync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
......
......@@ -13,12 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include <sys/time.h>
#include <time.h>
#include <algorithm>
#include <iomanip>
#include <limits>
#include <map>
#include <mutex> // NOLINT
#include <random>
#include <string>
#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
......@@ -33,6 +36,9 @@ namespace platform {
struct EventList;
static int64_t profiler_lister_id = 0;
static bool should_send_profile_state = false;
// The profiler state, the initial value is ProfilerState::kDisabled
static ProfilerState g_state = ProfilerState::kDisabled;
// The thread local event list only can be accessed by the specific thread
......@@ -219,13 +225,12 @@ void EnableProfiler(ProfilerState state) {
PADDLE_ENFORCE(state != ProfilerState::kDisabled,
"Can't enbale profling, since the input state is ",
"ProfilerState::kDisabled");
PADDLE_ENFORCE(g_state == ProfilerState::kDisabled,
"The profiling state should be disabled when calling ",
"EnableProfiler.");
if (state == g_state) {
return;
}
g_state = state;
if (g_state == ProfilerState::kAll) {
should_send_profile_state = true;
GetDeviceTracer()->Enable();
}
#ifdef PADDLE_WITH_CUDA
if (g_state == ProfilerState::kCUDA) {
// Generate some dummy events first to reduce the startup overhead.
......@@ -435,8 +440,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
void DisableProfiler(EventSortingKey sorted_key,
const std::string& profile_path) {
PADDLE_ENFORCE(g_state != ProfilerState::kDisabled,
"Can't disable profiling, since it's not starting.");
if (g_state == ProfilerState::kDisabled) return;
// Mark the profiling stop.
Mark("_stop_profiler_", nullptr);
......@@ -444,12 +448,25 @@ void DisableProfiler(EventSortingKey sorted_key,
ParseEvents(all_events, sorted_key);
ResetProfiler();
DeviceTracer* tracer = GetDeviceTracer();
if (g_state == ProfilerState::kAll && tracer && tracer->IsEnabled()) {
if (tracer->IsEnabled()) {
tracer->Disable();
tracer->GenProfile(profile_path);
}
g_state = ProfilerState::kDisabled;
should_send_profile_state = true;
}
bool IsProfileEnabled() { return g_state != ProfilerState::kDisabled; }
bool ShouldSendProfileState() { return should_send_profile_state; }
void SetProfileListener() {
std::mt19937 rng;
rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int64_t>::max());
profiler_lister_id = dist6(rng);
}
int64_t ListenerId() { return profiler_lister_id; }
} // namespace platform
} // namespace paddle
......@@ -114,5 +114,13 @@ void ResetProfiler();
void DisableProfiler(EventSortingKey sorted_key,
const std::string& profile_path);
// Test if the profiler is currently enabled.
bool IsProfileEnabled();
// Whether the trainer should send profiling state to PS.
bool ShouldSendProfileState();
// Mark current process as PS by assigning a lister id.
void SetProfileListener();
int64_t ListenerId();
} // namespace platform
} // namespace paddle
......@@ -40,16 +40,14 @@ import backward
import regularizer
import average
import metrics
import transpiler
from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace
from distribute_transpiler import DistributeTranspiler
from distribute_transpiler_simple import SimpleDistributeTranspiler
from transpiler import DistributeTranspiler, SimpleDistributeTranspiler, InferenceTranspiler, memory_optimize, release_memory
from concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select)
from inference_transpiler import InferenceTranspiler
import clip
from memory_optimization_transpiler import memory_optimize, release_memory
import profiler
import unique_name
import recordio_writer
......@@ -58,10 +56,11 @@ from parallel_executor import ParallelExecutor
Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\
trainer.__all__ + inferencer.__all__ + [
trainer.__all__ + inferencer.__all__ + transpiler.__all__ + [
'io',
'initializer',
'layers',
'transpiler'
'nets',
'optimizer',
'learning_rate_decay',
......@@ -76,11 +75,6 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\
'WeightNormParamAttr',
'DataFeeder',
'clip',
'SimpleDistributeTranspiler',
'DistributeTranspiler',
'InferenceTranspiler',
'memory_optimize',
'release_memory',
'profiler',
'unique_name',
'recordio_writer',
......
......@@ -1042,13 +1042,14 @@ class Program(object):
Returns(Program):
The cloned Program object.
"""
p = Program()
if for_test:
p.desc = core.inference_optimize(self.desc)
p = self.inference_optimize()
else:
p = Program()
p.desc = core.ProgramDesc(self.desc)
p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
p.sync_with_cpp()
p.copy_param_info_from(self)
return p
......@@ -1087,8 +1088,16 @@ class Program(object):
return res
def inference_optimize(self):
# this is an alternative implement before
# core.inference_optimize being fixed.
res = Program()
res.desc = core.inference_optimize(self.desc)
res.desc = core.ProgramDesc(self.desc)
for i in xrange(res.desc.num_blocks()):
block = res.desc.block(i)
for j in xrange(block.op_size()):
op = block.op(j)
if op.has_attr('is_test'):
op.set_attr('is_test', True)
res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
res.sync_with_cpp()
return res
......
......@@ -251,7 +251,7 @@ class EditDistance(MetricBase):
self.instance_error += seq_num - seq_right_count
self.total_distance += total_distance
def eval():
def eval(self):
if self.seq_num == 0:
raise ValueError(
"There is no data in EditDistance Metric. Please check layers.edit_distance output has been added to EditDistance."
......@@ -280,6 +280,7 @@ class DetectionMAP(MetricBase):
super(DetectionMAP, self).__init__(name)
# the current map value
self.value = .0
self.weight = .0
def update(self, value, weight):
if not _is_number_or_matrix_(value):
......@@ -340,8 +341,8 @@ class Auc(MetricBase):
raise ValueError("The 'predictions' must be a numpy ndarray.")
kepsilon = 1e-7 # to account for floating point imprecisions
thresholds = [(i + 1) * 1.0 / (num_thresholds - 1)
for i in range(num_thresholds - 2)]
thresholds = [(i + 1) * 1.0 / (self._num_thresholds - 1)
for i in range(self._num_thresholds - 2)]
thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon]
# caculate TP, FN, TN, FP count
......@@ -358,19 +359,20 @@ class Auc(MetricBase):
fp += 1
else:
tn += 1
tp_list[idx_thresh] += tp
fn_list[idx_thresh] += fn
tn_list[idx_thresh] += tn
fp_list[idx_thresh] += fp
self.tp_list[idx_thresh] += tp
self.fn_list[idx_thresh] += fn
self.tn_list[idx_thresh] += tn
self.fp_list[idx_thresh] += fp
def eval(self):
epsilon = self._epsilon
num_thresholds = self._num_thresholds
tpr = (tp_list.astype("float32") + epsilon) / (
tp_list + fn_list + epsilon)
fpr = fp_list.astype("float32") / (fp_list + tn_list + epsilon)
rec = (tp_list.astype("float32") + epsilon) / (
tp_list + fp_list + epsilon)
tpr = (self.tp_list.astype("float32") + epsilon) / (
self.tp_list + self.fn_list + epsilon)
fpr = self.fp_list.astype("float32") / (
self.fp_list + self.tn_list + epsilon)
rec = (self.tp_list.astype("float32") + epsilon) / (
self.tp_list + self.fp_list + epsilon)
x = fpr[:num_thresholds - 1] - fpr[1:]
y = (tpr[:num_thresholds - 1] + tpr[1:]) / 2.0
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy
WORD_DICT, VERB_DICT, LABEL_DICT = paddle.dataset.conll05.get_dict()
WORD_DICT_LEN = len(WORD_DICT)
LABEL_DICT_LEN = len(LABEL_DICT)
PRED_DICT_LEN = len(VERB_DICT)
MARK_DICT_LEN = 2
def lstm_net(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark):
WORD_DIM = 32
MARK_DIM = 5
HIDDEN_DIM = 512
DEPTH = 8
EMBEDDING_NAME = 'emb'
# Data definitions
word = fluid.layers.data(
name='word_data', shape=[1], dtype='int64', lod_level=1)
predicate = fluid.layers.data(
name='verb_data', shape=[1], dtype='int64', lod_level=1)
ctx_n2 = fluid.layers.data(
name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
ctx_n1 = fluid.layers.data(
name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
ctx_0 = fluid.layers.data(
name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
ctx_p1 = fluid.layers.data(
name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
ctx_p2 = fluid.layers.data(
name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
mark = fluid.layers.data(
name='mark_data', shape=[1], dtype='int64', lod_level=1)
# 8 features
predicate_embedding = fluid.layers.embedding(
input=predicate,
size=[PRED_DICT_LEN, WORD_DIM],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='vemb')
mark_embedding = fluid.layers.embedding(
input=mark,
size=[MARK_DICT_LEN, MARK_DIM],
dtype='float32',
is_sparse=IS_SPARSE)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
fluid.layers.embedding(
size=[WORD_DICT_LEN, WORD_DIM],
input=x,
param_attr=fluid.ParamAttr(
name=EMBEDDING_NAME, trainable=False)) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0_layers = [
fluid.layers.fc(input=emb, size=HIDDEN_DIM, act='tanh')
for emb in emb_layers
]
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
lstm_0 = fluid.layers.dynamic_lstm(
input=hidden_0,
size=HIDDEN_DIM,
candidate_activation='relu',
gate_activation='sigmoid',
cell_activation='sigmoid')
# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, DEPTH):
mix_hidden = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=HIDDEN_DIM, act='tanh'),
fluid.layers.fc(input=input_tmp[1], size=HIDDEN_DIM, act='tanh')
])
lstm = fluid.layers.dynamic_lstm(
input=mix_hidden,
size=HIDDEN_DIM,
candidate_activation='relu',
gate_activation='sigmoid',
cell_activation='sigmoid',
is_reverse=((i % 2) == 1))
input_tmp = [mix_hidden, lstm]
feature_out = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=LABEL_DICT_LEN, act='tanh'),
fluid.layers.fc(input=input_tmp[1], size=LABEL_DICT_LEN, act='tanh')
])
return feature_out
def inference_network():
predict = lstm_net(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2,
mark)
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
return crf_decode
def train_network():
MIX_HIDDEN_LR = 1e-3
predict = lstm_net(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2,
mark)
target = fluid.layers.data(
name='target', shape=[1], dtype='int64', lod_level=1)
crf_cost = fluid.layers.linear_chain_crf(
input=predict,
label=target,
param_attr=fluid.ParamAttr(
name='crfw', learning_rate=MIX_HIDDEN_LR))
avg_cost = fluid.layers.mean(crf_cost)
return avg_cost
def train(use_cuda, save_path):
BATCH_SIZE = 128
EPOCH_NUM = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.conll05.train(), buf_size=8192),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.dataset.conll05.test(), batch_size=BATCH_SIZE)
def event_handler(event):
if isinstance(event, fluid.EndIteration):
if (event.batch_id % 10) == 0:
avg_cost = trainer.test(reader=test_reader)
print('BatchID {0:04}, Loss {1:2.2}'.format(event.batch_id + 1,
avg_cost))
if avg_cost > 0.01: # Low threshold for speeding up CI
trainer.save_params(save_path)
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=0.01,
decay_steps=100000,
decay_rate=0.5,
staircase=True))
trainer = fluid.Trainer(train_network, optimizer=sgd_optimizer, place=place)
trainer.train(train_reader, EPOCH_NUM, event_handler=event_handler)
def infer(use_cuda, save_path):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(
inference_program, param_path=save_path, place=place)
def create_random_lodtensor(lod, place, low, high):
data = np.random.random_integers(low, high,
[lod[-1], 1]).astype("int64")
res = fluid.LoDTensor()
res.set(data, place)
res.set_lod([lod])
return res
# Create an input example
lod = [0, 4, 10]
word = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
pred = create_random_lodtensor(lod, place, low=0, high=PRED_DICT_LEN - 1)
ctx_n2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_n1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_0 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p1 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
ctx_p2 = create_random_lodtensor(lod, place, low=0, high=WORD_DICT_LEN - 1)
mark = create_random_lodtensor(lod, place, low=0, high=MARK_DICT_LEN - 1)
results = inferencer.infer({
'word_data': word,
'verb_data': pred,
'ctx_n2_data': ctx_n2,
'ctx_n1_data': ctx_n1,
'ctx_0_data': ctx_0,
'ctx_p1_data': ctx_p1,
'ctx_p2_data': ctx_p2,
'mark_data': mark
})
print("infer results: ", results)
def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
save_path = "label_semantic_roles.inference.model"
train(use_cuda, save_path)
infer(use_cuda, save_path)
if __name__ == '__main__':
for use_cuda in (False, True):
main(use_cuda=use_cuda)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.fluid as fluid
import paddle
import sys
import numpy
import unittest
import math
import sys
import os
import paddle.v2.dataset as dataset
BATCH_SIZE = 64
def inference_program():
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
filter_size=5,
num_filters=50,
pool_size=2,
pool_stride=2,
act="relu")
prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return prediction
def train_program():
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
predict = inference_program()
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
return avg_cost, acc
def train(use_cuda, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
trainer = fluid.Trainer(train_program, place=place, optimizer=optimizer)
def event_handler(event):
if isinstance(event, fluid.EndIteration):
avg_cost, acc = event.values
print("avg_cost: %s" % avg_cost)
print("acc : %s" % acc)
if (event.batch_id + 1) % 10 == 0:
test_metrics = trainer.test(reader=dataset.mnist.test())
avg_cost_set = test_metrics[0]
acc_set = test_metrics[1]
# get test acc and loss
acc = numpy.array(acc_set).mean()
avg_cost = numpy.array(avg_cost_set).mean()
if float(acc) > 0.2: # Smaller value to increase CI speed
trainer.save_params(save_dirname)
else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.batch_id + 1, float(avg_cost), float(acc)))
if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.")
trainer.train(
reader=dataset.mnist.train(), num_pass=100, event_handler=event_handler)
def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(
inference_program, param_path=save_dirname, place=place)
batch_size = 1
tensor_img = numpy.random.uniform(-1.0, 1.0,
[batch_size, 1, 28, 28]).astype("float32")
results = inferencer.infer({'img': tensor_img})
print("infer results: ", results[0])
def main(use_cuda):
save_dirname = "recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train
train(use_cuda=use_cuda, save_dirname=save_dirname)
infer(use_cuda=use_cuda, save_dirname=save_dirname)
if __name__ == '__main__':
for use_cuda in (False, True):
main(use_cuda=use_cuda)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import paddle.fluid as fluid
import paddle
import sys
import numpy
import unittest
import math
import sys
import os
import paddle.v2.dataset as dataset
BATCH_SIZE = 64
def inference_program():
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
hidden = fluid.layers.fc(input=img, size=200, act='tanh')
hidden = fluid.layers.fc(input=hidden, size=200, act='tanh')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
return prediction
def train_program():
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
predict = inference_program()
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost)
acc = fluid.layers.accuracy(input=predict, label=label)
return avg_cost, acc
def train(use_cuda, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
trainer = fluid.Trainer(train_program, place=place, optimizer=optimizer)
def event_handler(event):
if isinstance(event, fluid.EndIteration):
avg_cost, acc = event.values
print("avg_cost: %s" % avg_cost)
print("acc : %s" % acc)
if (event.batch_id + 1) % 10 == 0:
test_metrics = trainer.test(reader=dataset.mnist.test())
avg_cost_set = test_metrics[0]
acc_set = test_metrics[1]
# get test acc and loss
acc = numpy.array(acc_set).mean()
avg_cost = numpy.array(avg_cost_set).mean()
if float(acc) > 0.2: # Smaller value to increase CI speed
trainer.save_params(save_dirname)
else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.batch_id + 1, float(avg_cost), float(acc)))
if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.")
trainer.train(
reader=dataset.mnist.train(), num_pass=100, event_handler=event_handler)
def infer(use_cuda, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(
inference_program, param_path=save_dirname, place=place)
batch_size = 1
tensor_img = numpy.random.uniform(-1.0, 1.0,
[batch_size, 1, 28, 28]).astype("float32")
results = inferencer.infer({'img': tensor_img})
print("infer results: ", results[0])
def main(use_cuda):
save_dirname = "recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train
train(use_cuda=use_cuda, save_dirname=save_dirname)
infer(use_cuda=use_cuda, save_dirname=save_dirname)
if __name__ == '__main__':
for use_cuda in (False, True):
main(use_cuda=use_cuda)
......@@ -70,9 +70,11 @@ def conv3d_forward_naive(input, filter, group, conv_param):
class TestConv3dOp(OpTest):
def setUp(self):
self.op_type = "conv3d"
self.use_cudnn = False
self.dtype = np.float32
self.init_kernel_type()
self.init_group()
self.init_op_type()
self.init_dilation()
self.init_test_case()
......@@ -80,20 +82,24 @@ class TestConv3dOp(OpTest):
'stride': self.stride,
'pad': self.pad,
'dilations': self.dilations,
'use_cudnn': self.use_cudnn,
'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter
}
input = np.random.random(self.input_size).astype("float32")
filter = np.random.random(self.filter_size).astype("float32")
input = np.random.random(self.input_size).astype(self.dtype)
filter = np.random.random(self.filter_size).astype(self.dtype)
output = conv3d_forward_naive(input, filter, self.groups,
conv3d_param).astype("float32")
conv3d_param).astype(self.dtype)
self.inputs = {'Input': input, 'Filter': filter}
self.inputs = {
'Input': OpTest.np_dtype_to_fluid_dtype(input),
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
}
self.attrs = {
'strides': self.stride,
'paddings': self.pad,
'groups': self.groups,
'dilations': self.dilations
'dilations': self.dilations,
'use_cudnn': self.use_cudnn
}
self.outputs = {'Output': output}
......@@ -108,6 +114,8 @@ class TestConv3dOp(OpTest):
self.check_output()
def test_check_grad(self):
if self.dtype == np.float16:
return
if self.testcudnn():
place = core.CUDAPlace(0)
self.check_grad_with_place(
......@@ -120,6 +128,8 @@ class TestConv3dOp(OpTest):
set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
def test_check_grad_no_filter(self):
if self.dtype == np.float16:
return
if self.testcudnn():
place = core.CUDAPlace(0)
self.check_grad_with_place(
......@@ -135,6 +145,8 @@ class TestConv3dOp(OpTest):
no_grad_set=set(['Filter']))
def test_check_grad_no_input(self):
if self.dtype == np.float16:
return
if self.testcudnn():
place = core.CUDAPlace(0)
self.check_grad_with_place(
......@@ -163,8 +175,8 @@ class TestConv3dOp(OpTest):
def init_group(self):
self.groups = 1
def init_op_type(self):
self.op_type = "conv3d"
def init_kernel_type(self):
pass
class TestCase1(TestConv3dOp):
......@@ -235,34 +247,90 @@ class TestWithDilation(TestConv3dOp):
self.groups = 3
#----------------Conv3dCUDNN----------------
class TestCUDNN(TestConv3dOp):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "conv3d"
class TestFP16CUDNN(TestConv3dOp):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
class TestWithGroup1CUDNN(TestWithGroup1):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "conv3d"
class TestFP16WithGroup1CUDNN(TestWithGroup1):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
class TestWithGroup2CUDNN(TestWithGroup2):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "conv3d"
class TestFP16WithGroup2CUDNN(TestWithGroup2):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
class TestWith1x1CUDNN(TestWith1x1):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "conv3d"
class TestFP16With1x1CUDNN(TestWith1x1):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
class TestWithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "conv3d"
class TestFP16WithInput1x1Filter1x1CUDNN(TestWithInput1x1Filter1x1):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=2e-2)
# FIXME(typhoonzero): find a way to determine if
......
......@@ -18,7 +18,7 @@ import unittest
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.memory_optimization_transpiler import memory_optimize
from paddle.fluid.transpiler import memory_optimize
class TestControlFlowGraph(unittest.TestCase):
......
......@@ -748,7 +748,7 @@ class TestFetchOp(unittest.TestCase):
data = fluid.layers.data(
name='image', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = lenet(data, class_dim=102)
out = Lenet(data, class_dim=102)
loss = fluid.layers.cross_entropy(input=out, label=label)
loss = fluid.layers.mean(loss)
......
......@@ -90,20 +90,22 @@ def avg_pool3D_forward_naive(x,
class TestPool3d_Op(OpTest):
def setUp(self):
self.op_type = "pool3d"
self.use_cudnn = False
self.dtype = np.float32
self.init_test_case()
self.init_global_pool()
self.init_op_type()
self.init_kernel_type()
self.init_pool_type()
self.init_ceil_mode()
if self.global_pool:
self.paddings = [0 for _ in range(len(self.paddings))]
input = np.random.random(self.shape).astype("float32")
input = np.random.random(self.shape).astype(self.dtype)
output = self.pool3D_forward_naive(input, self.ksize, self.strides,
self.paddings, self.global_pool,
self.ceil_mode).astype("float32")
self.inputs = {'X': input}
self.ceil_mode).astype(self.dtype)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
self.attrs = {
'strides': self.strides,
......@@ -116,7 +118,7 @@ class TestPool3d_Op(OpTest):
'data_format': 'AnyLayout' # TODO(dzhwinter) : should be fix latter
}
self.outputs = {'Out': output.astype('float32')}
self.outputs = {'Out': output}
def testcudnn(self):
return core.is_compiled_with_cuda() and self.use_cudnn
......@@ -129,6 +131,8 @@ class TestPool3d_Op(OpTest):
self.check_output()
def test_check_grad(self):
if self.dtype == np.float16:
return
if self.testcudnn() and self.pool_type != "max":
place = core.CUDAPlace(0)
self.check_grad_with_place(
......@@ -142,8 +146,8 @@ class TestPool3d_Op(OpTest):
self.strides = [1, 1, 1]
self.paddings = [0, 0, 0]
def init_op_type(self):
self.op_type = "pool3d"
def init_kernel_type(self):
pass
def init_pool_type(self):
self.pool_type = "avg"
......@@ -158,15 +162,11 @@ class TestPool3d_Op(OpTest):
class TestCase1(TestPool3d_Op):
def init_test_case(self):
self.op_type = "pool3d"
self.shape = [2, 3, 7, 7, 7]
self.ksize = [3, 3, 3]
self.strides = [1, 1, 1]
self.paddings = [0, 0, 0]
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive
......@@ -182,9 +182,6 @@ class TestCase2(TestPool3d_Op):
self.strides = [1, 1, 1]
self.paddings = [1, 1, 1]
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "avg"
self.pool3D_forward_naive = avg_pool3D_forward_naive
......@@ -194,27 +191,18 @@ class TestCase2(TestPool3d_Op):
class TestCase3(TestPool3d_Op):
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "max"
self.pool3D_forward_naive = max_pool3D_forward_naive
class TestCase4(TestCase1):
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "max"
self.pool3D_forward_naive = max_pool3D_forward_naive
class TestCase5(TestCase2):
def init_op_type(self):
self.op_type = "pool3d"
def init_pool_type(self):
self.pool_type = "max"
self.pool3D_forward_naive = max_pool3D_forward_naive
......@@ -222,39 +210,105 @@ class TestCase5(TestCase2):
#--------------------test pool3d--------------------
class TestCUDNNCase1(TestPool3d_Op):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "pool3d"
class TestFP16CUDNNCase1(TestPool3d_Op):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase2(TestCase1):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "pool3d"
class TestFP16CUDNNCase2(TestCase1):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase3(TestCase2):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "pool3d"
class TestFP16CUDNNCase3(TestCase2):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase4(TestCase3):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "pool3d"
class TestFP16CUDNNCase4(TestCase3):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase5(TestCase4):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "pool3d"
class TestFP16CUDNNCase5(TestCase4):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCUDNNCase6(TestCase5):
def init_op_type(self):
def init_kernel_type(self):
self.use_cudnn = True
self.op_type = "pool3d"
class TestFP16CUDNNCase6(TestCase5):
def init_kernel_type(self):
self.use_cudnn = True
self.dtype = np.float16
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
if core.is_float16_supported(place):
self.check_output_with_place(place, atol=1e-3)
class TestCeilModeCase1(TestCUDNNCase1):
......
......@@ -14,7 +14,7 @@
import math
import unittest
from paddle.fluid.distribute_transpiler import split_dense_variable
from paddle.fluid.transpiler.distribute_transpiler import split_dense_variable
import paddle.fluid as fluid
import paddle.fluid.core as core
import random
......
......@@ -19,10 +19,11 @@ import executor
import data_feeder
import contextlib
import io
import transpiler
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
import distribute_transpiler
from transpiler import distribute_transpiler
__all__ = [
'Trainer',
......@@ -172,9 +173,9 @@ class Trainer(object):
def save_params(self, param_path):
# reference: save_persistables in io.py
with self._prog_and_scope_guard():
exe = executor.Executor(self.place)
io.save_persistables(
exe, dirname=param_path, main_program=self.startup_program)
io.save_persistables(exe, dirname=param_path)
@staticmethod
def _check_and_get_place(place):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from distribute_transpiler import DistributeTranspiler
from inference_transpiler import InferenceTranspiler
from memory_optimization_transpiler import memory_optimize, release_memory
from distribute_transpiler_simple import SimpleDistributeTranspiler
__all__ = [
"DistributeTranspiler", "InferenceTranspiler", "SimpleDistributeTranspiler",
"memory_optimize", "release_memory"
]
......@@ -17,9 +17,8 @@ from __future__ import print_function
import math
import distributed_splitter as splitter
import framework
from framework import Program, default_main_program, Variable, Parameter
from . import core
from .. import core
from ..framework import Program, default_main_program, Variable, Parameter
LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
......@@ -135,6 +134,16 @@ def split_dense_variable(var_list,
return blocks
def delete_ops(block, ops):
try:
start = list(block.ops).index(ops[0])
end = list(block.ops).index(ops[-1])
[block.remove_op(start) for _ in xrange(end - start + 1)]
except Exception, e:
raise e
block.program.sync_with_cpp()
class DistributeTranspiler:
def transpile(self,
trainer_id,
......@@ -317,7 +326,7 @@ class DistributeTranspiler:
def get_trainer_program(self):
# remove optimize ops and add a send op to main_program
self.delete_ops(self.origin_program.global_block(), self.optimize_ops)
delete_ops(self.origin_program.global_block(), self.optimize_ops)
# FIXME(typhoonzero): serialize once will fix error occurs when clone.
self.origin_program.__str__()
return self.origin_program
......@@ -601,7 +610,7 @@ class DistributeTranspiler:
attrs={"axis": 0})
# delete lookup_table_op
self.delete_ops(program.global_block(), [op])
delete_ops(program.global_block(), [op])
# break for loop
break
......@@ -1164,12 +1173,3 @@ class DistributeTranspiler:
in_name.startswith("beta2_pow_acc"):
return True
return False
def delete_ops(self, block, ops):
try:
start = list(block.ops).index(ops[0])
end = list(block.ops).index(ops[-1])
[block.remove_op(start) for _ in xrange(end - start + 1)]
except Exception, e:
raise e
block.program.sync_with_cpp()
......@@ -12,10 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
from ..framework import Program, default_main_program, Parameter, Variable
from ..layer_helper import LayerHelper
def hash_name_to_server(params_grads, pserver_endpoints):
......
......@@ -13,9 +13,9 @@
# limitations under the License.
import numpy as np
from framework import Program
from executor import global_scope
from . import core
from .. import core
from ..framework import Program
from ..executor import global_scope
class InferenceTranspiler:
......
......@@ -13,11 +13,9 @@
# limitations under the License.
from collections import defaultdict
import framework
from framework import Program, default_main_program, Parameter, Variable
import backward
from backward import _rename_arg_
from . import core
from .. import core
from ..framework import Program, default_main_program, Parameter, Variable
from ..backward import _rename_arg_
dtype_to_size = {
core.VarDesc.VarType.FP16: 2,
......
......@@ -68,7 +68,8 @@ packages=['paddle',
'paddle.fluid',
'paddle.fluid.proto',
'paddle.fluid.proto.profiler',
'paddle.fluid.layers']
'paddle.fluid.layers',
'paddle.fluid.transpiler']
if '${WITH_FLUID_ONLY}'== 'OFF':
packages+=['paddle.proto',
......
......@@ -22,7 +22,11 @@ import paddle.fluid.proto.profiler.profiler_pb2 as profiler_pb2
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--profile_path', type=str, default='', help='Input profile file name.')
'--profile_path',
type=str,
default='',
help='Input profile file name. If there are multiple file, the format '
'should be trainer1=file1,trainer2=file2,ps=file3')
parser.add_argument(
'--timeline_path', type=str, default='', help='Output timeline file name.')
args = parser.parse_args()
......@@ -108,8 +112,8 @@ class _ChromeTraceFormatter(object):
class Timeline(object):
def __init__(self, profile_pb):
self._profile_pb = profile_pb
def __init__(self, profile_dict):
self._profile_dict = profile_dict
self._pid = 0
self._devices = dict()
self._chrome_trace = _ChromeTraceFormatter()
......@@ -120,27 +124,29 @@ class Timeline(object):
return cur_pid
def _allocate_pids(self):
for event in self._profile_pb.events:
for k, profile_pb in self._profile_dict.iteritems():
for event in profile_pb.events:
if event.type == profiler_pb2.Event.CPU:
if (event.device_id, "CPU") not in self._devices:
if (k, event.device_id, "CPU") not in self._devices:
pid = self._allocate_pid()
self._devices[(event.device_id, "CPU")] = pid
self._chrome_trace.emit_pid("cpu:block:%d" %
(event.device_id), pid)
self._devices[(k, event.device_id, "CPU")] = pid
self._chrome_trace.emit_pid("%s:cpu:block:%d" %
(k, event.device_id), pid)
elif event.type == profiler_pb2.Event.GPUKernel:
if (event.device_id, "GPUKernel") not in self._devices:
if (k, event.device_id, "GPUKernel") not in self._devices:
pid = self._allocate_pid()
self._devices[(event.device_id, "GPUKernel")] = pid
self._chrome_trace.emit_pid("gpu:%d" % (event.device_id),
pid)
self._devices[(k, event.device_id, "GPUKernel")] = pid
self._chrome_trace.emit_pid("%s:gpu:%d" %
(k, event.device_id), pid)
def _allocate_events(self):
for event in self._profile_pb.events:
for k, profile_pb in self._profile_dict.iteritems():
for event in profile_pb.events:
if event.type == profiler_pb2.Event.CPU:
type = "CPU"
elif event.type == profiler_pb2.Event.GPUKernel:
type = "GPUKernel"
pid = self._devices[(event.device_id, type)]
pid = self._devices[(k, event.device_id, type)]
args = {'name': event.name}
if event.memcopy.bytes > 0:
args = {'mem_bytes': event.memcopy.bytes}
......@@ -163,11 +169,23 @@ timeline_path = '/tmp/timeline'
if args.timeline_path:
timeline_path = args.timeline_path
with open(profile_path, 'r') as f:
profile_paths = profile_path.split(',')
profile_dict = dict()
if len(profile_path) == 1:
with open(profile_path, 'r') as f:
profile_s = f.read()
profile_pb = profiler_pb2.Profile()
profile_pb.ParseFromString(profile_s)
profile_dict['trainer'] = profile_pb
else:
for profile_path in profile_paths:
k, v = profile_path.split('=')
with open(v, 'r') as f:
profile_s = f.read()
profile_pb = profiler_pb2.Profile()
profile_pb.ParseFromString(profile_s)
profile_dict[k] = profile_pb
tl = Timeline(profile_pb)
tl = Timeline(profile_dict)
with open(timeline_path, 'w') as f:
f.write(tl.generate_chrome_trace())
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册