@@ -124,7 +125,7 @@ PaddleDetection整理工业、农业、林业、交通、医疗、金融、能
- **🔍旋转框小目标检测专题**
- `文章传送门`:[Yes, PP-YOLOE!80.73mAP、38.5mAP,旋转框、小目标检测能力双SOTA!](https://mp.weixin.qq.com/s/6ji89VKqoXDY6SSGkxS8NQ)
-
+
@@ -258,10 +259,10 @@ PaddleDetection整理工业、农业、林业、交通、医疗、金融、能
Common
-
+
- Sync-BN
- Group Norm
- DCNv2
@@ -350,13 +351,14 @@ PaddleDetection整理工业、农业、林业、交通、医疗、金融、能
- Cascade-RCNN
- PSS-Det
- RetinaNet
- - YOLOv3
- - YOLOv5
- - YOLOX
- - YOLOv6
- - YOLOv7
- - YOLOv8
- - RTMDet
+ - YOLOv3
+ - YOLOF
+ - YOLOX
+ - YOLOv5
+ - YOLOv6
+ - YOLOv7
+ - YOLOv8
+ - RTMDet
- PP-YOLO
- PP-YOLO-Tiny
- PP-PicoDet
@@ -368,6 +370,7 @@ PaddleDetection整理工业、农业、林业、交通、医疗、金融、能
- SSD
- CenterNet
- FCOS
+ - FCOSR
- TTFNet
- TOOD
- GFL
@@ -468,7 +471,7 @@ PaddleDetection整理工业、农业、林业、交通、医疗、金融、能
- Cascade-Faster-RCNN为Cascade-Faster-RCNN-ResNet50vd-DCN,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS
- PP-YOLOE是对PP-YOLO v2模型的进一步优化,L版本在COCO数据集mAP为51.6%,Tesla V100预测速度78.1FPS
- PP-YOLOE+是对PPOLOE模型的进一步优化,L版本在COCO数据集mAP为53.3%,Tesla V100预测速度78.1FPS
-- YOLOX和YOLOv5均为基于PaddleDetection复现算法,YOLOv5代码在PaddleYOLO中,参照PaddleYOLO_MODEL
+- YOLOX和YOLOv5均为基于PaddleDetection复现算法,YOLOv5代码在[PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO)中,参照[PaddleYOLO_MODEL](docs/feature_models/PaddleYOLO_MODEL.md)
- 图中模型均可在[📱模型库](#模型库)中获取
@@ -805,4 +808,7 @@ PP-Vehicle囊括四大交通场景核心功能:车牌识别、属性识别、
@misc{ppdet2019,
title={PaddleDetection, Object detection and instance segmentation toolkit based on PaddlePaddle.},
author={PaddlePaddle Authors},
-howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
\ No newline at end of file
+howpublished = {\url{https://github.com/PaddlePaddle/PaddleDetection}},
+year={2019}
+}
+```
diff --git a/README_en.md b/README_en.md
index 25d8a474512d46e7d07f2892f2a5f178770ce88b..26454eb5feb0eb48ac64dd7eea4f4f67e9aea400 100644
--- a/README_en.md
+++ b/README_en.md
@@ -47,7 +47,7 @@
- 💡 Cutting-edge algorithms:
- - Release [PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO) which overs classic and latest models of [YOLO family](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/docs/MODEL_ZOO_en.md): YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, YOLOv6, and YOLOv7
+ - Release [PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO) which overs classic and latest models of [YOLO family](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/docs/MODEL_ZOO_en.md): YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, YOLOv6, YOLOv7 and YOLOv8
- Newly add high precision detection model based on [ViT](configs/vitdet) backbone network, with a 55.7% mAP accuracy on COCO dataset; newly add multi-object tracking model [OC-SORT](configs/mot/ocsort); newly add [ConvNeXt](configs/convnext) backbone network.
- 📋 Industrial applications: Newly add [Smart Fitness](https://aistudio.baidu.com/aistudio/projectdetail/4385813), [Fighting recognition](https://aistudio.baidu.com/aistudio/projectdetail/4086987?channelType=0&channel=0),[ and Visitor Analysis](https://aistudio.baidu.com/aistudio/projectdetail/4230123?channelType=0&channel=0).
@@ -118,14 +118,21 @@
- PSS-Det
- RetinaNet
- YOLOv3
- - PP-YOLOv1/v2
+ - YOLOF
+ - YOLOX
+ - YOLOv5
+ - YOLOv6
+ - YOLOv7
+ - YOLOv8
+ - RTMDet
+ - PP-YOLO
- PP-YOLO-Tiny
+ - PP-PicoDet
+ - PP-YOLOv2
- PP-YOLOE
- PP-YOLOE+
- - PP-YOLOE-R
- PP-YOLOE-SOD
- - YOLOX
- - YOLOF
+ - PP-YOLOE-R
- SSD
- CenterNet
- FCOS
@@ -133,7 +140,7 @@
- TTFNet
- TOOD
- GFL
- - PP-PicoDet
+ - GFLv2
- DETR
- Deformable DETR
- Swin Transformer
diff --git a/docs/MODEL_ZOO_cn.md b/docs/MODEL_ZOO_cn.md
index 2eb099eec8831e45bf34fa8d1ff6883b2751bbb0..44bd25bceabaedad5c27b713ca1f9829250b21d5 100644
--- a/docs/MODEL_ZOO_cn.md
+++ b/docs/MODEL_ZOO_cn.md
@@ -28,7 +28,7 @@
## 通用设置
- 所有模型均在COCO17数据集中训练和测试。
-- [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)、[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6)和[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7)这3类模型的代码在[PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO)中,**PaddleYOLO库开源协议为GPL 3.0**。
+- [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)、[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6)、[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7)和[YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov8)这几类模型的代码在[PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO)中,**PaddleYOLO库开源协议为GPL 3.0**。
- 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。
- **推理时间(fps)**: 推理时间是在一张Tesla V100的GPU上通过'tools/eval.py'测试所有验证集得到,单位是fps(图片数/秒), cuDNN版本是7.5,包括数据加载、网络前向执行和后处理, batch size是1。
@@ -171,7 +171,7 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
请参考[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)
-### YOLOv6
+### YOLOv6(v3.0)
请参考[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6)
@@ -179,6 +179,10 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型
请参考[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7)
+### YOLOv8
+
+请参考[YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov8)
+
### RTMDet
请参考[RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/rtmdet)
diff --git a/docs/MODEL_ZOO_en.md b/docs/MODEL_ZOO_en.md
index ac725bcf9a04831e72ffd3afcc4d66a954323950..057558f57e25a1e267c9a024c34f9f3f4d27bc1d 100644
--- a/docs/MODEL_ZOO_en.md
+++ b/docs/MODEL_ZOO_en.md
@@ -28,7 +28,7 @@
## General Settings
- All models were trained and tested in the COCO17 dataset.
-- The codes of [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6) and [YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) can be found in [PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO). Note that **the LICENSE of PaddleYOLO is GPL 3.0**.
+- The codes of [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) and [YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov8) can be found in [PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO). Note that **the LICENSE of PaddleYOLO is GPL 3.0**.
- Unless special instructions, all the ResNet backbone network using [ResNet-B](https://arxiv.org/pdf/1812.01187) structure.
- **Inference time (FPS)**: The reasoning time was calculated on a Tesla V100 GPU by `tools/eval.py` testing all validation sets in FPS (number of pictures/second). CuDNN version is 7.5, including data loading, network forward execution and post-processing, and Batch size is 1.
@@ -170,7 +170,7 @@ Please refer to [Model Zoo for PaddleYOLO](https://github.com/PaddlePaddle/Paddl
Please refer to [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)
-### YOLOv6
+### YOLOv6(v3.0)
Please refer to [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6)
@@ -178,6 +178,10 @@ Please refer to [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop
Please refer to [YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7)
+### YOLOv8
+
+Please refer to [YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov8)
+
### RTMDet
Please refer to [RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/rtmdet)
diff --git a/docs/feature_models/PaddleYOLO_MODEL.md b/docs/feature_models/PaddleYOLO_MODEL.md
index e63580a0aa8b91e3a8ed51213a31515d33fb70e3..eb7db710967294f2c26e9e01c300870fa5525bba 100644
--- a/docs/feature_models/PaddleYOLO_MODEL.md
+++ b/docs/feature_models/PaddleYOLO_MODEL.md
@@ -5,11 +5,12 @@
## 内容
- [简介](#简介)
- [模型库](#模型库)
- - [PP-YOLOE+](#PP-YOLOE+)
+ - [PP-YOLOE](#PP-YOLOE)
- [YOLOX](#YOLOX)
- [YOLOv5](#YOLOv5)
- [YOLOv6](#YOLOv6)
- [YOLOv7](#YOLOv7)
+ - [YOLOv8](#YOLOv8)
- [RTMDet](#RTMDet)
- [VOC](#VOC)
- [使用指南](#使用指南)
@@ -18,9 +19,10 @@
## 简介
-**PaddleYOLO**是基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的YOLO系列模型库,**只包含YOLO系列模型的相关代码**,支持`YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`,`RTMDet`等模型,欢迎一起使用和建设!
+**PaddleYOLO**是基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的YOLO系列模型库,**只包含YOLO系列模型的相关代码**,支持`YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`,`YOLOv8`,`RTMDet`等模型,欢迎一起使用和建设!
## 更新日志
+* 【2022/01/10】支持[YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8)预测和部署;
* 【2022/09/29】支持[RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)预测和部署;
* 【2022/09/26】发布[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)模型套件;
* 【2022/09/19】支持[`YOLOv6`](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)新版,包括n/t/s/m/l模型;
@@ -28,7 +30,7 @@
**注意:**
- - **PaddleYOLO**代码库协议为**GPL 3.0**,[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)和[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)这3类模型代码不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection),其余YOLO模型推荐在[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)中使用,**会最先发布PP-YOLO系列特色检测模型的最新进展**;;
+ - **PaddleYOLO**代码库协议为**GPL 3.0**,[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)和[YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8)这几类模型代码不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection),其余YOLO模型推荐在[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)中使用,**会最先发布PP-YOLO系列特色检测模型的最新进展**;;
- **PaddleYOLO**代码库**推荐使用paddlepaddle-2.3.2以上的版本**,请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载对应适合版本,**Windows平台请安装paddle develop版本**;
- PaddleYOLO 的[Roadmap](https://github.com/PaddlePaddle/PaddleYOLO/issues/44) issue用于收集用户的需求,欢迎提出您的建议和需求。
- 训练**自定义数据集**请参照[文档](#自定义数据集)和[issue](https://github.com/PaddlePaddle/PaddleYOLO/issues/43)。请首先**确保加载了COCO权重作为预训练**,YOLO检测模型建议**总`batch_size`至少大于`64`**去训练,如果资源不够请**换小模型**或**减小模型的输入尺度**,为了保障较高检测精度,**尽量不要尝试单卡训和总`batch_size`小于`32`训**;
@@ -36,7 +38,7 @@
## 模型库
-### [PP-YOLOE+](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe)
+### [PP-YOLOE](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe)
基础模型
@@ -147,13 +149,10 @@
| 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP | AP50 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: |
-| YOLOv6-n | 416 | 32 | 400e | 1.0 | 31.1 | 45.3 | 4.74 | 5.16 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_416_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_416_400e_coco.yml) |
-| YOLOv6-n | 640 | 32 | 400e | 1.3 | 36.1 | 51.9 | 4.74 | 12.21 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_400e_coco.yml) |
-| *YOLOv6-t | 640 | 32 | 400e | 2.1 | 40.7 | 57.4 | 10.63 | 27.29 |[model](https://paddledet.bj.bcebos.com/models/yolov6_t_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_t_400e_coco.yml) |
-| *YOLOv6-s | 640 | 32 | 400e | 2.6 | 43.4 | 60.5 | 18.87 | 48.35 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_400e_coco.yml) |
-| *YOLOv6-m | 640 | 32 | 300e | 5.0 | 49.0 | 66.5 | 37.17 | 88.82 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) |
-| *YOLOv6-l | 640 | 32 | 300e | 7.9 | 51.0 | 68.9 | 63.54 | 155.89 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) |
-| *YOLOv6-l-silu | 640 | 32 | 300e | 9.6 | 51.7 | 69.6 | 58.59 | 142.66 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_silu_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_silu_300e_coco.yml) |
+| *YOLOv6-n | 640 | 16 | 300e(+300e) | 2.0 | 37.5 | 53.1 | 5.07 | 12.49 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_300e_coco.yml) |
+| *YOLOv6-s | 640 | 32 | 300e(+300e) | 2.7 | 44.8 | 61.7 | 20.18 | 49.36 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_300e_coco.yml) |
+| *YOLOv6-m | 640 | 32 | 300e(+300e) | - | 49.5 | 66.9 | 37.74 | 92.47 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) |
+| *YOLOv6-l(silu) | 640 | 32 | 300e(+300e) | - | 52.2 | 70.2 | 59.66 | 149.4 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) |
@@ -162,13 +161,10 @@
| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
-| yolov6-n | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.onnx) |
-| yolov6-n | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.onnx) |
-| yolov6-t | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.onnx) |
-| yolov6-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.onnx) |
-| yolov6-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.onnx) |
-| yolov6-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) |
-| yolov6-l-silu | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.onnx) |
+| yolov6-n | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_wo_nms.onnx) |
+| yolov6-s | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_wo_nms.onnx) |
+| yolov6-m | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.onnx) |
+| yolov6-l(silu) | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) |
@@ -208,6 +204,37 @@
+
+### [YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8)
+
+
+ 基础模型
+
+| 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAPval 0.5:0.95 | mAPval 0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
+| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
+| *YOLOv8-n | 640 | 16 | 500e | 2.4 | 37.3 | 53.0 | 3.16 | 8.7 | [model](https://paddledet.bj.bcebos.com/models/yolov8_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_n_300e_coco.yml) |
+| *YOLOv8-s | 640 | 16 | 500e | 3.4 | 44.9 | 61.8 | 11.17 | 28.6 | [model](https://paddledet.bj.bcebos.com/models/yolov8_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_s_300e_coco.yml) |
+| *YOLOv8-m | 640 | 16 | 500e | 6.5 | 50.2 | 67.3 | 25.90 | 78.9 | [model](https://paddledet.bj.bcebos.com/models/yolov8_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_m_300e_coco.yml) |
+| *YOLOv8-l | 640 | 16 | 500e | 10.0 | 52.8 | 69.6 | 43.69 | 165.2 | [model](https://paddledet.bj.bcebos.com/models/yolov8_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_l_300e_coco.yml) |
+| *YOLOv8-x | 640 | 16 | 500e | 15.1 | 53.8 | 70.6 | 68.23 | 257.8 | [model](https://paddledet.bj.bcebos.com/models/yolov8_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_x_300e_coco.yml) |
+| *YOLOv8-P6-x | 1280 | 16 | 500e | 55.0 | - | - | 97.42 | 522.93 | [model](https://paddledet.bj.bcebos.com/models/yolov8p6_x_500e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8p6_x_500e_coco.yml) |
+
+
+
+
+ 部署模型
+
+| 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) |
+| :-------- | :--------: | :---------------------: | :----------------: |
+| YOLOv8-n | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_wo_nms.onnx) |
+| YOLOv8-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_wo_nms.onnx) |
+| YOLOv8-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_wo_nms.onnx) |
+| YOLOv8-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_wo_nms.onnx) |
+| YOLOv8-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_wo_nms.onnx) |
+
+
+
+
### [RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)
@@ -215,11 +242,11 @@
| 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP | AP50 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: |
-| *RTMDet-t | 640 | 32 | 300e | 2.8 | 40.9 | 57.9 | 4.90 | 16.21 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_t_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_t_300e_coco.yml) |
-| *RTMDet-s | 640 | 32 | 300e | 3.3 | 44.5 | 62.0 | 8.89 | 29.71 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_s_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_s_300e_coco.yml) |
-| *RTMDet-m | 640 | 32 | 300e | 6.4 | 49.1 | 66.8 | 24.71 | 78.47 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_m_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_m_300e_coco.yml) |
-| *RTMDet-l | 640 | 32 | 300e | 10.2 | 51.2 | 68.8 | 52.31 | 160.32 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_l_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_l_300e_coco.yml) |
-| *RTMDet-x | 640 | 32 | 300e | 18.0 | 52.6 | 70.4 | 94.86 | 283.12 |[下载链接](https://paddledet.bj.bcebos.com/models/rtmdet_x_300e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_x_300e_coco.yml) |
+| *RTMDet-t | 640 | 32 | 300e | 2.8 | 40.9 | 57.9 | 4.90 | 16.21 |[model](https://paddledet.bj.bcebos.com/models/rtmdet_t_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_t_300e_coco.yml) |
+| *RTMDet-s | 640 | 32 | 300e | 3.3 | 44.5 | 62.0 | 8.89 | 29.71 |[model](https://paddledet.bj.bcebos.com/models/rtmdet_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_s_300e_coco.yml) |
+| *RTMDet-m | 640 | 32 | 300e | 6.4 | 49.1 | 66.8 | 24.71 | 78.47 |[model](https://paddledet.bj.bcebos.com/models/rtmdet_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_m_300e_coco.yml) |
+| *RTMDet-l | 640 | 32 | 300e | 10.2 | 51.2 | 68.8 | 52.31 | 160.32 |[model](https://paddledet.bj.bcebos.com/models/rtmdet_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_l_300e_coco.yml) |
+| *RTMDet-x | 640 | 32 | 300e | 18.0 | 52.6 | 70.4 | 94.86 | 283.12 |[model](https://paddledet.bj.bcebos.com/models/rtmdet_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet/rtmdet_x_300e_coco.yml) |
@@ -264,7 +291,6 @@
| 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | TRT-FP16-Latency(ms) | mAP(0.50,11point) | Params(M) | FLOPs(G) | 下载链接 | 配置文件 |
| :-----------: | :-------: | :-------: | :------: | :------------: | :---------------: | :------------------: |:-----------------: | :------: | :------: |
| YOLOv5-s | 640 | 16 | 60e | 3.2 | 80.3 | 7.24 | 16.54 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov5_s_60e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov5_s_60e_voc.yml) |
-| YOLOv6-s | 640 | 32 | 40e | 2.7 | 84.7 | 18.87 | 48.35 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov6_s_40e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov6_s_40e_voc.yml) |
| YOLOv7-tiny | 640 | 32 | 60e | 2.6 | 80.2 | 6.23 | 6.90 | [下载链接](https://paddledet.bj.bcebos.com/models/yolov7_tiny_60e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov7_tiny_60e_voc.yml) |
| YOLOX-s | 640 | 8 | 40e | 3.0 | 82.9 | 9.0 | 26.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_s_40e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolox_s_40e_voc.yml) |
| PP-YOLOE+_s | 640 | 8 | 30e | 2.9 | 86.7 | 7.93 | 17.36 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_30e_voc.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/ppyoloe_plus_crn_s_30e_voc.yml) |
diff --git a/docs/feature_models/PaddleYOLO_MODEL_en.md b/docs/feature_models/PaddleYOLO_MODEL_en.md
index 46d3483589bf52b5874fd2c31f1adfd5d69af4b5..b73634759811e9f8854495ebe26a3e1ede23115b 100644
--- a/docs/feature_models/PaddleYOLO_MODEL_en.md
+++ b/docs/feature_models/PaddleYOLO_MODEL_en.md
@@ -5,11 +5,12 @@
## Introduction
- [Introduction](#Introduction)
- [ModelZoo](#ModelZoo)
- - [PP-YOLOE+](#PP-YOLOE+)
+ - [PP-YOLOE](#PP-YOLOE)
- [YOLOX](#YOLOX)
- [YOLOv5](#YOLOv5)
- [YOLOv6](#YOLOv6)
- [YOLOv7](#YOLOv7)
+ - [YOLOv8](#YOLOv8)
- [RTMDet](#RTMDet)
- [VOC](#VOC)
- [UserGuide](#UserGuide)
@@ -18,10 +19,11 @@
## Introduction
-**PaddleYOLO** is a YOLO Series toolbox based on [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), **only relevant codes of YOLO series models are included**. It supports `YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`,`RTMDet` and so on. Welcome to use and build it together!
+**PaddleYOLO** is a YOLO Series toolbox based on [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), **only relevant codes of YOLO series models are included**. It supports `YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`,`YOLOv8`,`RTMDet` and so on. Welcome to use and build it together!
## Updates
+* 【2023/01/10】Support [YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8) inference and deploy;
* 【2022/09/29】Support [RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet) inference and deploy;
* 【2022/09/26】Release [`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO);
* 【2022/09/19】Support the new version of [`YOLOv6`](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6), including n/t/s/m/l model;
@@ -29,13 +31,13 @@
**Notes:**
- - The Licence of **PaddleYOLO** is **GPL 3.0**, the codes of [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7) and [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6) will not be merged into [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection). Except for these three YOLO models, other YOLO models are recommended to use in [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), **which will be the first to release the latest progress of PP-YOLO series detection model**;
+ - The Licence of **PaddleYOLO** is **GPL 3.0**, the codes of [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7) and [YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8) will not be merged into [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection). Except for these three YOLO models, other YOLO models are recommended to use in [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), **which will be the first to release the latest progress of PP-YOLO series detection model**;
- To use **PaddleYOLO**, **PaddlePaddle-2.3.2 or above is recommended**,please refer to the [official website](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html) to download the appropriate version. **For Windows platforms, please install the paddle develop version**;
- Training **Custom dataset** please refer to [doc](#CustomDataset) and [issue](https://github.com/PaddlePaddle/PaddleYOLO/issues/43). Please **ensure COCO trained weights are loaded as pre-train** at first. We recommend to use YOLO detection model **with a total `batch_size` at least greater than `64` to train**. If the resources are insufficient, please **use the smaller model** or **reduce the input size of the model**. To ensure high detection accuracy, **you'd better never try to using single GPU or total `batch_size` less than `32` for training**;
## ModelZoo
-### [PP-YOLOE+](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe)
+### [PP-YOLOE](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/ppyoloe)
Baseline
@@ -147,13 +149,10 @@
| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval 0.5:0.95 | mAPval 0.5 | Params(M) | FLOPs(G) | download | config |
| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: |
-| YOLOv6-n | 416 | 32 | 400e | 1.0 | 31.1 | 45.3 | 4.74 | 5.16 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_416_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_416_400e_coco.yml) |
-| YOLOv6-n | 640 | 32 | 400e | 1.3 | 36.1 | 51.9 | 4.74 | 12.21 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_400e_coco.yml) |
-| *YOLOv6-t | 640 | 32 | 400e | 2.1 | 40.7 | 57.4 | 10.63 | 27.29 |[model](https://paddledet.bj.bcebos.com/models/yolov6_t_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_t_400e_coco.yml) |
-| *YOLOv6-s | 640 | 32 | 400e | 2.6 | 43.4 | 60.5 | 18.87 | 48.35 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_400e_coco.yml) |
-| *YOLOv6-m | 640 | 32 | 300e | 5.0 | 49.0 | 66.5 | 37.17 | 88.82 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) |
-| *YOLOv6-l | 640 | 32 | 300e | 7.9 | 51.0 | 68.9 | 63.54 | 155.89 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) |
-| *YOLOv6-l-silu | 640 | 32 | 300e | 9.6 | 51.7 | 69.6 | 58.59 | 142.66 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_silu_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_silu_300e_coco.yml) |
+| *YOLOv6-n | 640 | 16 | 300e(+300e) | 2.0 | 37.5 | 53.1 | 5.07 | 12.49 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_300e_coco.yml) |
+| *YOLOv6-s | 640 | 32 | 300e(+300e) | 2.7 | 44.8 | 61.7 | 20.18 | 49.36 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_300e_coco.yml) |
+| *YOLOv6-m | 640 | 32 | 300e(+300e) | - | 49.5 | 66.9 | 37.74 | 92.47 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) |
+| *YOLOv6-l(silu) | 640 | 32 | 300e(+300e) | - | 52.2 | 70.2 | 59.66 | 149.4 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) |
@@ -162,13 +161,10 @@
| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) |
| :-------- | :--------: | :---------------------: | :----------------: |
-| yolov6-n | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.onnx) |
-| yolov6-n | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.onnx) |
-| yolov6-t | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.onnx) |
-| yolov6-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.onnx) |
-| yolov6-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.onnx) |
-| yolov6-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) |
-| yolov6-l-silu | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.onnx) |
+| yolov6-n | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_300e_coco_wo_nms.onnx) |
+| yolov6-s | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_300e_coco_wo_nms.onnx) |
+| yolov6-m | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.onnx) |
+| yolov6-l(silu) | 640 | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [(w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) | [(w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) |
@@ -209,6 +205,36 @@
+### [YOLOv8](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8)
+
+
+ Baseline
+
+| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval 0.5:0.95 | mAPval 0.5 | Params(M) | FLOPs(G) | download | config |
+| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: |
+| *YOLOv8-n | 640 | 16 | 500e | 2.4 | 37.3 | 53.0 | 3.16 | 8.7 | [model](https://paddledet.bj.bcebos.com/models/yolov8_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_n_300e_coco.yml) |
+| *YOLOv8-s | 640 | 16 | 500e | 3.4 | 44.9 | 61.8 | 11.17 | 28.6 | [model](https://paddledet.bj.bcebos.com/models/yolov8_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_s_300e_coco.yml) |
+| *YOLOv8-m | 640 | 16 | 500e | 6.5 | 50.2 | 67.3 | 25.90 | 78.9 | [model](https://paddledet.bj.bcebos.com/models/yolov8_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_m_300e_coco.yml) |
+| *YOLOv8-l | 640 | 16 | 500e | 10.0 | 52.8 | 69.6 | 43.69 | 165.2 | [model](https://paddledet.bj.bcebos.com/models/yolov8_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_l_300e_coco.yml) |
+| *YOLOv8-x | 640 | 16 | 500e | 15.1 | 53.8 | 70.6 | 68.23 | 257.8 | [model](https://paddledet.bj.bcebos.com/models/yolov8_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8_x_300e_coco.yml) |
+| *YOLOv8-P6-x | 1280 | 16 | 500e | 55.0 | - | - | 97.42 | 522.93 | [model](https://paddledet.bj.bcebos.com/models/yolov8p6_x_500e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov8/yolov8p6_x_500e_coco.yml) |
+
+
+
+
+ Deploy Models
+
+| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) |
+| :-------- | :--------: | :---------------------: | :----------------: |
+| YOLOv8-n | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_n_500e_coco_wo_nms.onnx) |
+| YOLOv8-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_s_500e_coco_wo_nms.onnx) |
+| YOLOv8-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_m_500e_coco_wo_nms.onnx) |
+| YOLOv8-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_l_500e_coco_wo_nms.onnx) |
+| YOLOv8-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov8/yolov8_x_500e_coco_wo_nms.onnx) |
+
+
+
+
### [RTMDet](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/rtmdet)
@@ -254,7 +280,6 @@
| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAP(0.50,11point) | Params(M) | FLOPs(G) | download | config |
| :-----------: | :-------: | :-------: | :------: | :------------: | :---------------: | :------------------: |:-----------------: | :------: | :------: |
| YOLOv5-s | 640 | 16 | 60e | 3.2 | 80.3 | 7.24 | 16.54 | [model](https://paddledet.bj.bcebos.com/models/yolov5_s_60e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov5_s_60e_voc.yml) |
-| YOLOv6-s | 640 | 32 | 40e | 2.7 | 84.7 | 18.87 | 48.35 | [model](https://paddledet.bj.bcebos.com/models/yolov6_s_40e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov6_s_40e_voc.yml) |
| YOLOv7-tiny | 640 | 32 | 60e | 2.6 | 80.2 | 6.23 | 6.90 | [model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_60e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolov7_tiny_60e_voc.yml) |
| YOLOX-s | 640 | 8 | 40e | 3.0 | 82.9 | 9.0 | 26.8 | [model](https://paddledet.bj.bcebos.com/models/yolox_s_40e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/yolox_s_40e_voc.yml) |
| PP-YOLOE+_s | 640 | 8 | 30e | 2.9 | 86.7 | 7.93 | 17.36 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_30e_voc.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/voc/ppyoloe_plus_crn_s_30e_voc.yml) |
|