Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
9e736215
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9e736215
编写于
5月 15, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/exec_strategy
上级
7c777dd5
5f6fd26f
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
210 addition
and
158 deletion
+210
-158
doc/fluid/design/dist_train/async_update.md
doc/fluid/design/dist_train/async_update.md
+18
-15
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+3
-3
paddle/fluid/framework/data_type.cc
paddle/fluid/framework/data_type.cc
+101
-0
paddle/fluid/framework/data_type.h
paddle/fluid/framework/data_type.h
+5
-62
paddle/fluid/framework/framework.proto
paddle/fluid/framework/framework.proto
+2
-0
paddle/fluid/framework/op_kernel_type_test.cc
paddle/fluid/framework/op_kernel_type_test.cc
+1
-1
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+2
-42
paddle/fluid/operators/detail/grpc_server.cc
paddle/fluid/operators/detail/grpc_server.cc
+1
-1
paddle/fluid/operators/detail/grpc_server.h
paddle/fluid/operators/detail/grpc_server.h
+4
-3
paddle/fluid/operators/detail/grpc_server_test.cc
paddle/fluid/operators/detail/grpc_server_test.cc
+1
-1
paddle/fluid/operators/listen_and_serv_op.cc
paddle/fluid/operators/listen_and_serv_op.cc
+1
-2
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+2
-0
python/paddle/fluid/tests/unittests/test_split_var.py
python/paddle/fluid/tests/unittests/test_split_var.py
+21
-10
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+48
-18
未找到文件。
doc/fluid/design/dist_train/async_update.md
浏览文件 @
9e736215
...
...
@@ -4,34 +4,37 @@
For the typical synchronous distributed training, some significant steps are as follows:
1.
A
Trainer will compute the gradients and SEND them to the Parameter Server(PServer
) nodes.
1.
After the PS
erver
node received gradients came from all the Trainers, It will aggregate the
1.
A
trainer process will compute the gradients and
**send**
them to the parameter server (PS
) nodes.
1.
After the PS node received gradients came from all the Trainers, It will aggregate the
gradient variables for the same parameter into one gradient variable and then apply the aggregated
gradient to the respective parameter, finally using an optimize algorithms(SGD, Monument...)
to update the parameters.
1.
The Trainer would wait for the PS
ervers finished the optimize stage, and GET the parameters from PServer
,
1.
The Trainer would wait for the PS
finished the optimize stage, and GET the parameters from PS
,
so all the Trainers would get the same parameters.
In the synchronously distributed training, there should be a
`Barrier`
to synchronise the
parameters after the optimizing stage. The performance of a distributed training job would
depend on the slowest node if there were hundreds or thousands of training nodes in a
Job, the performance of synchronously distributed training might be very poor because of
the slow node. So this design doc would introduce an approach to implement
*asynchronously*
distributed training in PaddlePaddle Fluid.
In Synchronous Distributed Training, there is a
**barrier**
on each PS to wait until all trainers processes
have completed running current mini-batch. After that, all trainers can continue to run the next
mini-batch. So, we can find that the overall performance of Synchronous Distributed Training depends
on the slowest node.
In Asynchronous Distributed Training, we don't need to wait for a global mini-bach, the optimizer on
the PS will run immediately when the gradient is uploaded to the PS from one trainer. This mode would
train such models that achieve scaling, better throughput. In this design doc, we will introduce how to
implement the Asynchronous Distributed Training base on PaddlePaddle Fluid.
## Design
<img
src=
"./src/async_update.png"
width=
"600"
/>
As the figure above, we describe a global view of
asynchronously
update process and use
As the figure above, we describe a global view of
the asynchronous
update process and use
the parameter
`w1`
as an example to introduce the steps:
1.
For each gradient variables, they may distribute on different GPU card and aggregate
them while they are all calculated.
1.
Split the gradient variable into multiple blocks according to the number of PS
erver
1.
Split the gradient variable into multiple blocks according to the number of PS
instances and then send them.
1.
PS
erver
would run an
`Optimize Block`
using a specified optimize algorithm to update
1.
PS would run an
`Optimize Block`
using a specified optimize algorithm to update
the specified parameter.
1.
The trainer will fetch
latest parameter from PServer
before running forward Op which depends
1.
The trainer will fetch
the latest parameter from PS
before running forward Op which depends
on the specified parameter.
1.
Broadcast the received variable into multiple GPU cards and continue to run the next
mini-batch.
...
...
@@ -40,8 +43,8 @@ mini-batch.
-
For the multiple devices distributed training, we need to aggregate the gradient
variables which placed on different devices firstly and then schedule a
`SendVars`
Operator to
send the gradient variables to the multiple PS
erver
instances.
-
Schedule
`FetchVars`
operator to fetch the latest parameter from PS
erver
before running
send the gradient variables to the multiple PS instances.
-
Schedule
`FetchVars`
operator to fetch the latest parameter from PS before running
the forward ops.
-
There could be a large number of gradient variables to be sent, so we need to use another
thread pool(IO Threadpool) whose a number of the schedulable threads is larger than the
...
...
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
9e736215
...
...
@@ -5,11 +5,11 @@ proto_library(framework_proto SRCS framework.proto)
cc_library
(
ddim SRCS ddim.cc DEPS eigen3 boost
)
cc_test
(
ddim_test SRCS ddim_test.cc DEPS ddim
)
nv_test
(
dim_test SRCS dim_test.cu DEPS ddim
)
cc_library
(
data_type SRCS data_type.cc DEPS framework_proto ddim device_context
)
if
(
WITH_GPU
)
nv_library
(
tensor SRCS tensor.cc tensor_util.cu DEPS
ddim place memory device_context framework_proto
)
nv_library
(
tensor SRCS tensor.cc tensor_util.cu DEPS
place memory data_type
)
else
()
cc_library
(
tensor SRCS tensor.cc tensor_util.cc DEPS
ddim place memory device_context framework_proto
)
cc_library
(
tensor SRCS tensor.cc tensor_util.cc DEPS
place memory data_type
)
endif
()
cc_test
(
tensor_test SRCS tensor_test.cc DEPS tensor
)
...
...
paddle/fluid/framework/data_type.cc
0 → 100644
浏览文件 @
9e736215
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/data_type.h"
#include <stdint.h>
#include <string>
#include <unordered_map>
namespace
paddle
{
namespace
framework
{
struct
DataTypeMap
{
std
::
unordered_map
<
std
::
type_index
,
proto
::
VarType
::
Type
>
cpp_to_proto_
;
std
::
unordered_map
<
int
,
std
::
type_index
>
proto_to_cpp_
;
std
::
unordered_map
<
int
,
std
::
string
>
proto_to_str_
;
std
::
unordered_map
<
std
::
type_index
,
size_t
>
cpp_to_size_
;
};
static
DataTypeMap
*
InitDataTypeMap
();
static
DataTypeMap
&
gDataTypeMap
()
{
static
DataTypeMap
*
g_data_type_map_
=
InitDataTypeMap
();
return
*
g_data_type_map_
;
}
template
<
typename
T
>
static
inline
void
RegisterType
(
DataTypeMap
*
map
,
proto
::
VarType
::
Type
proto_type
,
const
std
::
string
&
name
)
{
map
->
proto_to_cpp_
.
emplace
(
static_cast
<
int
>
(
proto_type
),
typeid
(
T
));
map
->
cpp_to_proto_
.
emplace
(
typeid
(
T
),
proto_type
);
map
->
proto_to_str_
.
emplace
(
static_cast
<
int
>
(
proto_type
),
name
);
map
->
cpp_to_size_
.
emplace
(
typeid
(
T
),
sizeof
(
T
));
}
static
DataTypeMap
*
InitDataTypeMap
()
{
auto
retv
=
new
DataTypeMap
();
#define RegType(cc_type, proto_type) \
RegisterType<cc_type>(retv, proto_type, #cc_type)
// NOTE: Add your customize type here.
RegType
(
platform
::
float16
,
proto
::
VarType
::
FP16
);
RegType
(
float
,
proto
::
VarType
::
FP32
);
RegType
(
double
,
proto
::
VarType
::
FP64
);
RegType
(
int
,
proto
::
VarType
::
INT32
);
RegType
(
int64_t
,
proto
::
VarType
::
INT64
);
RegType
(
bool
,
proto
::
VarType
::
BOOL
);
RegType
(
size_t
,
proto
::
VarType
::
SIZE_T
);
RegType
(
int16_t
,
proto
::
VarType
::
INT16
);
#undef RegType
return
retv
;
}
proto
::
VarType
::
Type
ToDataType
(
std
::
type_index
type
)
{
auto
it
=
gDataTypeMap
().
cpp_to_proto_
.
find
(
type
);
if
(
it
!=
gDataTypeMap
().
cpp_to_proto_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support %s as tensor type"
,
type
.
name
());
}
std
::
type_index
ToTypeIndex
(
proto
::
VarType
::
Type
type
)
{
auto
it
=
gDataTypeMap
().
proto_to_cpp_
.
find
(
static_cast
<
int
>
(
type
));
if
(
it
!=
gDataTypeMap
().
proto_to_cpp_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support proto::VarType::Type(%d) as tensor type"
,
static_cast
<
int
>
(
type
));
}
std
::
string
DataTypeToString
(
const
proto
::
VarType
::
Type
type
)
{
auto
it
=
gDataTypeMap
().
proto_to_str_
.
find
(
static_cast
<
int
>
(
type
));
if
(
it
!=
gDataTypeMap
().
proto_to_str_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support proto::VarType::Type(%d) as tensor type"
,
static_cast
<
int
>
(
type
));
}
size_t
SizeOfType
(
std
::
type_index
type
)
{
auto
it
=
gDataTypeMap
().
cpp_to_size_
.
find
(
type
);
if
(
it
!=
gDataTypeMap
().
cpp_to_size_
.
end
())
{
return
it
->
second
;
}
PADDLE_THROW
(
"Not support %s as tensor type"
,
type
.
name
());
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/data_type.h
浏览文件 @
9e736215
...
...
@@ -17,51 +17,14 @@ limitations under the License. */
#include <typeindex>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
framework
{
inline
proto
::
VarType
::
Type
ToDataType
(
std
::
type_index
type
)
{
if
(
typeid
(
platform
::
float16
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
FP16
;
}
else
if
(
typeid
(
const
float
).
hash_code
()
==
type
.
hash_code
())
{
// CPPLint complains Using C-style cast. Use static_cast<float>() instead
// One fix to this is to replace float with const float because
// typeid(T) == typeid(const T)
// http://en.cppreference.com/w/cpp/language/typeid
return
proto
::
VarType
::
FP32
;
}
else
if
(
typeid
(
const
double
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
FP64
;
}
else
if
(
typeid
(
const
int
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
INT32
;
}
else
if
(
typeid
(
const
int64_t
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
INT64
;
}
else
if
(
typeid
(
const
bool
).
hash_code
()
==
type
.
hash_code
())
{
return
proto
::
VarType
::
BOOL
;
}
else
{
PADDLE_THROW
(
"Not supported"
);
}
}
inline
std
::
type_index
ToTypeIndex
(
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
proto
::
VarType
::
FP16
:
return
typeid
(
platform
::
float16
);
case
proto
::
VarType
::
FP32
:
return
typeid
(
float
);
case
proto
::
VarType
::
FP64
:
return
typeid
(
double
);
case
proto
::
VarType
::
INT32
:
return
typeid
(
int
);
case
proto
::
VarType
::
INT64
:
return
typeid
(
int64_t
);
case
proto
::
VarType
::
BOOL
:
return
typeid
(
bool
);
default:
PADDLE_THROW
(
"Not support type %d"
,
type
);
}
}
extern
proto
::
VarType
::
Type
ToDataType
(
std
::
type_index
type
);
extern
std
::
type_index
ToTypeIndex
(
proto
::
VarType
::
Type
type
);
template
<
typename
Visitor
>
inline
void
VisitDataType
(
proto
::
VarType
::
Type
type
,
Visitor
visitor
)
{
...
...
@@ -89,32 +52,12 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
}
}
inline
std
::
string
DataTypeToString
(
const
proto
::
VarType
::
Type
type
)
{
switch
(
type
)
{
case
proto
::
VarType
::
FP16
:
return
"float16"
;
case
proto
::
VarType
::
FP32
:
return
"float32"
;
case
proto
::
VarType
::
FP64
:
return
"float64"
;
case
proto
::
VarType
::
INT16
:
return
"int16"
;
case
proto
::
VarType
::
INT32
:
return
"int32"
;
case
proto
::
VarType
::
INT64
:
return
"int64"
;
case
proto
::
VarType
::
BOOL
:
return
"bool"
;
default:
PADDLE_THROW
(
"Not support type %d"
,
type
);
}
}
extern
std
::
string
DataTypeToString
(
const
proto
::
VarType
::
Type
type
);
extern
size_t
SizeOfType
(
std
::
type_index
type
);
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
proto
::
VarType
::
Type
&
type
)
{
out
<<
DataTypeToString
(
type
);
return
out
;
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/framework.proto
浏览文件 @
9e736215
...
...
@@ -101,6 +101,8 @@ message VarType {
FP16
=
4
;
FP32
=
5
;
FP64
=
6
;
// Tensor<size_t> is used in C++.
SIZE_T
=
19
;
// Other types that may need additional descriptions
LOD_TENSOR
=
7
;
...
...
paddle/fluid/framework/op_kernel_type_test.cc
浏览文件 @
9e736215
...
...
@@ -27,7 +27,7 @@ TEST(OpKernelType, ToString) {
LibraryType
::
kCUDNN
);
ASSERT_EQ
(
paddle
::
framework
::
KernelTypeToString
(
op_kernel_type
),
"data_type[float
32
]:data_layout[NCHW]:place[CPUPlace]:library_type["
"data_type[float]:data_layout[NCHW]:place[CPUPlace]:library_type["
"CUDNN]"
);
}
...
...
paddle/fluid/framework/tensor_impl.h
浏览文件 @
9e736215
...
...
@@ -13,54 +13,14 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
framework
{
template
<
typename
...
T
>
struct
SizeOfTypeFunctor
;
template
<
typename
T
>
struct
SizeOfTypeFunctor
<
T
>
{
size_t
operator
()(
std
::
type_index
type
)
const
{
if
(
typeid
(
T
).
hash_code
()
==
type
.
hash_code
())
{
return
sizeof
(
T
);
}
else
{
return
0UL
;
}
}
};
template
<
>
struct
SizeOfTypeFunctor
<>
{
size_t
operator
()(
std
::
type_index
type
)
const
{
return
0UL
;
}
};
template
<
typename
HEAD
,
typename
...
TAIL
>
struct
SizeOfTypeFunctor
<
HEAD
,
TAIL
...
>
{
size_t
operator
()(
std
::
type_index
type
)
const
{
SizeOfTypeFunctor
<
HEAD
>
head
;
size_t
head_size
=
head
(
type
);
if
(
head_size
!=
0
)
{
return
head_size
;
}
SizeOfTypeFunctor
<
TAIL
...
>
tail
;
return
tail
(
type
);
}
};
static
inline
size_t
SizeOfType
(
std
::
type_index
type
)
{
SizeOfTypeFunctor
<
int
,
float
,
double
,
int16_t
,
int64_t
,
bool
,
size_t
,
platform
::
float16
>
functor
;
size_t
size
=
functor
(
type
);
PADDLE_ENFORCE
(
size
!=
0UL
,
"Cannot get size of type %s"
,
type
.
name
());
return
size
;
}
extern
size_t
SizeOfType
(
std
::
type_index
type
);
inline
void
Tensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"Tensor holds no memory. Call Tensor::mutable_data first."
);
...
...
paddle/fluid/operators/detail/grpc_server.cc
浏览文件 @
9e736215
...
...
@@ -306,7 +306,7 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() {
}
RequestPrefetch
*
prefetch
=
new
RequestPrefetch
(
&
service_
,
cq_prefetch_
.
get
(),
sync_mode_
,
scope_
,
dev_ctx_
,
executor_
,
program_
,
prefetch_ctx_
);
dev_ctx_
,
executor_
,
program_
,
prefetch_ctx_
.
get
()
);
VLOG
(
4
)
<<
"Create RequestPrefetch status:"
<<
prefetch
->
Status
();
}
...
...
paddle/fluid/operators/detail/grpc_server.h
浏览文件 @
9e736215
...
...
@@ -64,8 +64,9 @@ class AsyncGRPCServer final {
void
SetExecutor
(
framework
::
Executor
*
executor
)
{
executor_
=
executor
;
}
void
SetPrefetchPreparedCtx
(
framework
::
ExecutorPrepareContext
*
prepared
)
{
prefetch_ctx_
=
prepared
;
void
SetPrefetchPreparedCtx
(
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prepared
)
{
prefetch_ctx_
.
reset
(
prepared
.
release
());
}
int
GetSelectedPort
()
const
{
return
selected_port_
;
}
...
...
@@ -116,7 +117,7 @@ class AsyncGRPCServer final {
std
::
unique_ptr
<
std
::
thread
>
t_get_
;
std
::
unique_ptr
<
std
::
thread
>
t_prefetch_
;
framework
::
ExecutorPrepareContext
*
prefetch_ctx_
;
std
::
unique_ptr
<
framework
::
ExecutorPrepareContext
>
prefetch_ctx_
;
framework
::
ProgramDesc
*
program_
;
framework
::
Executor
*
executor_
;
int
selected_port_
;
...
...
paddle/fluid/operators/detail/grpc_server_test.cc
浏览文件 @
9e736215
...
...
@@ -100,7 +100,7 @@ void StartServer(const std::string& endpoint) {
InitTensorsOnServer
(
&
scope
,
&
place
,
10
);
rpc_service_
->
SetProgram
(
&
program
);
rpc_service_
->
SetPrefetchPreparedCtx
(
prepared
.
get
(
));
rpc_service_
->
SetPrefetchPreparedCtx
(
std
::
move
(
prepared
));
rpc_service_
->
SetDevCtx
(
&
ctx
);
rpc_service_
->
SetScope
(
&
scope
);
rpc_service_
->
SetExecutor
(
&
exe
);
...
...
paddle/fluid/operators/listen_and_serv_op.cc
浏览文件 @
9e736215
...
...
@@ -322,8 +322,7 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
// prepare for prefetch
VLOG
(
3
)
<<
"prefetch block id is "
<<
prefetch_block
->
ID
();
auto
prefetch_prepared
=
executor
.
Prepare
(
*
program
,
prefetch_block
->
ID
());
rpc_service_
->
SetPrefetchPreparedCtx
(
prefetch_prepared
.
get
());
prefetch_prepared
.
release
();
rpc_service_
->
SetPrefetchPreparedCtx
(
std
::
move
(
prefetch_prepared
));
// start the server listening after all member initialized.
server_thread_
.
reset
(
new
std
::
thread
(
RunServer
,
rpc_service_
));
...
...
python/paddle/fluid/backward.py
浏览文件 @
9e736215
...
...
@@ -480,6 +480,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
program
.
current_block_idx
=
current_block_idx
program
.
sync_with_cpp
()
# FIXME(zcd): prevent loss.grad optimized by mem_opt.
loss
.
block
.
var
(
_append_grad_suffix_
(
loss
.
name
)).
persistable
=
True
if
parameter_list
is
not
None
:
parameters
=
parameter_list
...
...
python/paddle/fluid/tests/unittests/test_split_var.py
浏览文件 @
9e736215
...
...
@@ -21,15 +21,7 @@ import random
class
TestSplitVar
(
unittest
.
TestCase
):
def
test_check_output
(
self
):
# split below shapes to 10 servers
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
]]
expected_sizes
=
[
[
15
],
[
1024
],
[
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
784
],
[
2040
,
2040
,
2040
,
2040
],
[
1150
,
1150
,
1150
,
1150
,
1150
,
1150
,
1100
]
]
def
check_split_output
(
self
,
shapes
,
expected_sizes
,
min_size
):
var_list
=
[]
program
=
fluid
.
Program
()
for
shape
in
shapes
:
...
...
@@ -39,7 +31,7 @@ class TestSplitVar(unittest.TestCase):
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape
=
shape
)
var_list
.
append
(
var
)
blocks
=
split_dense_variable
(
var_list
,
10
)
blocks
=
split_dense_variable
(
var_list
,
10
,
min_size
)
all_sizes
=
[]
for
s
in
expected_sizes
:
for
s2
in
s
:
...
...
@@ -48,6 +40,25 @@ class TestSplitVar(unittest.TestCase):
varname
,
block_id
,
size
=
block_str
.
split
(
":"
)
self
.
assertEqual
(
int
(
size
),
all_sizes
[
i
])
def
test_1k
(
self
):
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
]]
expected_sizes
=
[
[
15
],
[
1024
],
[
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
2352
,
784
],
[
2040
,
2040
,
2040
,
2040
],
[
1150
,
1150
,
1150
,
1150
,
1150
,
1150
,
1100
]
]
self
.
check_split_output
(
shapes
,
expected_sizes
,
1024
)
def
test_check_output_8k
(
self
):
shapes
=
[[
3
,
5
],
[
1024
],
[
28
,
784
],
[
8
,
1020
],
[
800
,
10
],
[
6
,
33
,
33
,
33
]]
expected_sizes
=
[[
15
],
[
1024
],
[
10976
,
10976
],
[
8160
],
[
8000
],
[
35937
,
35937
,
35937
,
35937
,
35937
,
35937
]]
self
.
check_split_output
(
shapes
,
expected_sizes
,
8192
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
9e736215
...
...
@@ -93,10 +93,7 @@ def same_or_split_var(p_name, var_name):
return
p_name
==
var_name
or
p_name
.
startswith
(
var_name
+
".block"
)
def
split_dense_variable
(
var_list
,
pserver_count
,
min_block_size
=
1024
,
max_block_size
=
1048576
):
def
split_dense_variable
(
var_list
,
service_count
,
min_block_size
=
8192
):
"""
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
...
...
@@ -104,19 +101,25 @@ def split_dense_variable(var_list,
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
minimum block size is 1024. The max block size is used to prevent
very large blocks that may cause send error.
:return: A list of VarBlocks. Each VarBlock specifies a shard of
the var.
minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
Args:
var_list (list): List of variables.
service_count (int): Numel of pserver services. A pserver may have two
or more listening ports.
min_block_size (int): Minimum splitted block size.
Returns:
blocks (list[(varname, block_id, current_block_size)]): A list
of VarBlocks. Each VarBlock specifies a shard of the var.
"""
blocks
=
[]
for
var
in
var_list
:
split_count
=
pserver
_count
split_count
=
service
_count
var_numel
=
reduce
(
lambda
x
,
y
:
x
*
y
,
var
.
shape
)
max_pserver_count
=
int
(
math
.
floor
(
var_numel
/
float
(
min_block_size
)))
if
max_pserver_count
==
0
:
max_pserver_count
=
1
if
max_pserver_count
<
pserver
_count
:
if
max_pserver_count
<
service
_count
:
split_count
=
max_pserver_count
block_size
=
int
(
math
.
ceil
(
var_numel
/
float
(
split_count
)))
...
...
@@ -270,6 +273,7 @@ class DistributeTranspiler:
grad_var_mapping
=
self
.
_append_split_op
(
program
,
grad_blocks
)
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
param_blocks
)
# step3: Add gradients as send op inputs and parameters as send
# op outputs.
send_inputs
=
[]
...
...
@@ -277,9 +281,11 @@ class DistributeTranspiler:
for
b
in
grad_blocks
:
# append by order
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_inputs
.
append
(
grad_var_mapping
[
varname
][
int
(
block_id
)])
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
...
...
@@ -751,9 +757,18 @@ class DistributeTranspiler:
Create vars for each split.
NOTE: only grads need to be named for different trainers, use
add_trainer_suffix to rename the grad vars.
:return: A dict mapping from original var name to each var split.
Args:
program (ProgramDesc): ProgramDesc which gradients blong.
block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
Returns:
var_mapping (dict(varname->[new_varname_variable])):A dict mapping
from original var name to each var split.
"""
# varname->[(block_id, current_block_size)]
block_map
=
dict
()
var_mapping
=
dict
()
for
block_str
in
block_list
:
varname
,
offset
,
size
=
block_str
.
split
(
":"
)
...
...
@@ -824,7 +839,16 @@ class DistributeTranspiler:
persistable
=
persistable
)
def
_append_split_op
(
self
,
program
,
gradblocks
):
# Split variables that need to be split and append respective ops
"""
Split variables that need to be split and append respective ops
Args:
program (ProgramDesc): ProgramDesc that gradients blong.
gradblocks (list[(varname, block_id, block_size)]): List of gradient blocks.
Returns:
var_mapping (dict(varname->[new_splitted_variable])):A dict mapping
from original var name to each var split.
"""
add_suffix
=
False
if
self
.
trainer_num
>
1
:
add_suffix
=
True
...
...
@@ -1148,6 +1172,12 @@ class DistributeTranspiler:
return
lr_ops
def
_get_optimize_pass
(
self
):
"""
Get optimizer operators, paramters and gradients from origin_program
Returns:
opt_ops (list): optimize operators.
params_grads (dict): paramter->gradient.
"""
block
=
self
.
origin_program
.
global_block
()
opt_ops
=
[]
params_grads
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录