未验证 提交 9d0c8dbd 编写于 作者: F Feng Ni 提交者: GitHub

add exclude_nms and trt silu for YOLOX (#6020)

* add exclude_nms and trt silu for yolox

* fix silu act, fix readme
上级 93c173ce
# YOLOX (YOLOX: Exceeding YOLO Series in 2021)
## Model Zoo
## 内容
- [模型库](#模型库)
- [使用说明](#使用说明)
- [速度测试](#速度测试)
- [引用](#引用)
## 模型库
### YOLOX on COCO
| 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 |推理时间(fps) | Box AP | 下载链接 | 配置文件 |
| 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | 模型推理耗时(ms) | Box AP | 下载链接 | 配置文件 |
| :------------- | :------- | :-------: | :------: | :---------: | :-----: | :-------------: | :-----: |
| YOLOX-nano | 416 | 8 | 300e | ---- | 26.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams) | [配置文件](./yolox_nano_300e_coco.yml) |
| YOLOX-tiny | 416 | 8 | 300e | ---- | 32.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_tiny_300e_coco.pdparams) | [配置文件](./yolox_tiny_300e_coco.yml) |
| YOLOX-s | 640 | 8 | 300e | ---- | 40.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams) | [配置文件](./yolox_s_300e_coco.yml) |
| YOLOX-m | 640 | 8 | 300e | ---- | 46.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_m_300e_coco.pdparams) | [配置文件](./yolox_m_300e_coco.yml) |
| YOLOX-l | 640 | 8 | 300e | ---- | 50.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | [配置文件](./yolox_l_300e_coco.yml) |
| YOLOX-x | 640 | 8 | 300e | ---- | 51.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_x_300e_coco.pdparams) | [配置文件](./yolox_x_300e_coco.yml) |
| YOLOX-nano | 416 | 8 | 300e | 2.3 | 26.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams) | [配置文件](./yolox_nano_300e_coco.yml) |
| YOLOX-tiny | 416 | 8 | 300e | 2.8 | 32.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_tiny_300e_coco.pdparams) | [配置文件](./yolox_tiny_300e_coco.yml) |
| YOLOX-s | 640 | 8 | 300e | 3.0 | 40.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams) | [配置文件](./yolox_s_300e_coco.yml) |
| YOLOX-m | 640 | 8 | 300e | 5.8 | 46.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_m_300e_coco.pdparams) | [配置文件](./yolox_m_300e_coco.yml) |
| YOLOX-l | 640 | 8 | 300e | 9.3 | 50.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | [配置文件](./yolox_l_300e_coco.yml) |
| YOLOX-x | 640 | 8 | 300e | 16.6 | 51.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_x_300e_coco.pdparams) | [配置文件](./yolox_x_300e_coco.yml) |
**注意:**
- YOLOX模型训练使用COCO train2017作为训练集,Box AP为在COCO val2017上的`mAP(IoU=0.5:0.95)`结果;
- YOLOX模型训练过程中默认使用8 GPUs进行混合精度训练,默认单卡batch_size为8,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率;
- 为保持高mAP的同时提高推理速度,可以将[yolox_cspdarknet.yml](_base_/yolox_cspdarknet.yml)中的`nms_top_k`修改为`1000`,将`keep_top_k`修改为`100`,mAP会下降约0.1~0.2%;
- YOLOX模型训练过程中默认使用8 GPUs进行混合精度训练,默认每卡batch_size为8,默认lr为0.01为8卡总batch_size=64的设置,如果**GPU卡数**或者每卡**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率;
- 为保持高mAP的同时提高推理速度,可以将[yolox_cspdarknet.yml](_base_/yolox_cspdarknet.yml)中的`nms_top_k`修改为`1000`,将`keep_top_k`修改为`100``score_threshold`修改为`0.01`mAP会下降约0.1~0.2%;
- 为快速的demo演示效果,可以将[yolox_cspdarknet.yml](_base_/yolox_cspdarknet.yml)中的`score_threshold`修改为`0.25`,将`nms_threshold`修改为`0.45`,但mAP会下降较多;
- YOLOX模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8**
- 参考[速度测试](#速度测试)以复现YOLOX推理速度测试结果,速度为tensorRT-FP16测速后的最快速度,不包含数据预处理和模型输出后处理(NMS)的耗时。
- 如果你设置了`--run_benchmark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil`
## 使用教程
### 1. 训练
### 1.训练
执行以下指令使用混合精度训练YOLOX
```bash
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/yolox/yolox_s_300e_coco.yml --fleet --amp --eval
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/yolox/yolox_s_300e_coco.yml --amp --eval
```
**注意:**
使用默认配置训练需要设置`--fleet``--amp`最好也设置以避免显存溢出,`--eval`表示边训边验证。
- `--amp`表示开启混合精度训练以避免显存溢出,`--eval`表示边训边验证。
### 2. 评估
### 2.评估
执行以下命令在单个GPU上评估COCO val2017数据集
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams
```
### 3. 推理
### 3.推理
使用以下命令在单张GPU上预测图片,使用`--infer_img`推理单张图片以及使用`--infer_dir`推理文件中的所有图片。
```bash
# 推理单张图片
......@@ -45,16 +54,57 @@ CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/yolox/yolox_s_300e_coco.
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams --infer_dir=demo
```
### 4. 部署
#### 4.1. 导出模型
### 4.导出模型
YOLOX在GPU上推理部署或benchmark测速等需要通过`tools/export_model.py`导出模型。
运行以下的命令进行导出:
当你**使用Paddle Inference但不使用TensorRT**时,运行以下的命令导出模型
```bash
python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams
```
#### 4.2. Python部署
当你**使用Paddle Inference且使用TensorRT**时,需要指定`-o trt=True`来导出模型。
```bash
python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams trt=True
```
如果你想将YOLOX模型导出为**ONNX格式**,参考
[PaddleDetection模型导出为ONNX格式教程](../../deploy/EXPORT_ONNX_MODEL.md),运行以下命令:
```bash
# 导出推理模型
python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams
# 安装paddle2onnx
pip install paddle2onnx
# 转换成onnx格式
paddle2onnx --model_dir output_inference/yolox_s_300e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file yolox_s_300e_coco.onnx
```
**注意:** ONNX模型目前只支持batch_size=1
### 5.推理部署
YOLOX可以使用以下方式进行部署:
- Paddle Inference [Python](../../deploy/python) & [C++](../../deploy/cpp)
- [Paddle-TensorRT](../../deploy/TENSOR_RT.md)
- [PaddleServing](https://github.com/PaddlePaddle/Serving)
- [PaddleSlim模型量化](../slim)
运行以下命令导出模型
```bash
python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams trt=True
```
**注意:**
- trt=True表示**使用Paddle Inference且使用TensorRT**进行测速,速度会更快,默认不加即为False,表示**使用Paddle Inference但不使用TensorRT**进行测速。
- 如果是使用Paddle Inference在TensorRT FP16模式下部署,需要参考[Paddle Inference文档](https://www.paddlepaddle.org.cn/inference/master/user_guides/download_lib.html#python),下载并安装与你的CUDA, CUDNN和TensorRT相应的wheel包。
#### 5.1.Python部署
`deploy/python/infer.py`使用上述导出后的Paddle Inference模型用于推理和benchnark测速,如果设置了`--run_benchmark=True`, 首先需要安装以下依赖`pip install pynvml psutil GPUtil`
```bash
......@@ -63,8 +113,37 @@ python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --i
# 推理文件夹下的所有图片
python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_dir=demo/ --device=gpu
```
#### 5.2. C++部署
`deploy/cpp/build/main`使用上述导出后的Paddle Inference模型用于C++推理部署, 首先按照[docs](../../deploy/cpp/docs)编译安装环境。
```bash
# C++部署推理单张图片
./deploy/cpp/build/main --model_dir=output_inference/yolox_s_300e_coco/ --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=GPU --threshold=0.5 --output_dir=cpp_infer_output/yolox_s_300e_coco
```
## 速度测试
为了公平起见,在[模型库](#模型库)中的速度测试结果均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致),需要在导出模型时指定`-o exclude_nms=True`。测速需设置`--run_benchmark=True`, 首先需要安装以下依赖`pip install pynvml psutil GPUtil`
**使用Paddle Inference但不使用TensorRT**进行测速,执行以下命令:
```bash
# 导出模型
python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams exclude_nms=True
# 速度测试,使用run_benchmark=True
python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=gpu --run_benchmark=True
```
**使用Paddle Inference且使用TensorRT**进行测速,执行以下命令:
```bash
# 导出模型,使用trt=True
python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams exclude_nms=True trt=True
# benchmark测速
# 速度测试,使用run_benchmark=True
python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_benchmark=True
# tensorRT-FP32测速
......@@ -73,13 +152,10 @@ python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --i
# tensorRT-FP16测速
python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_benchmark=True --trt_max_shape=640 --trt_min_shape=640 --trt_opt_shape=640 --run_mode=trt_fp16
```
**注意:**
- 导出模型时指定`-o exclude_nms=True`仅作为测速时用,这样导出的模型其推理部署预测的结果不是最终检出框的结果。
- [模型库](#模型库)中的速度测试结果为tensorRT-FP16测速后的最快速度,为不包含数据预处理和模型输出后处理(NMS)的耗时。
#### 4.2. C++部署
`deploy/cpp/build/main`使用上述导出后的Paddle Inference模型用于C++推理部署, 首先按照[docs](../../deploy/cpp/docs)编译安装环境。
```bash
# C++部署推理单张图片
./deploy/cpp/build/main --model_dir=output_inference/yolox_s_300e_coco/ --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=GPU --threshold=0.5 --output_dir=cpp_infer_output/yolox_s_300e_coco
```
## Citations
```
......
......@@ -135,10 +135,5 @@ class YOLOX(BaseArch):
self.size_stride * size_factor,
self.size_stride * int(size_factor * image_ratio)
]
size = paddle.to_tensor(size)
if dist.get_world_size() > 1 and paddle_distributed_is_initialized(
):
dist.barrier()
dist.broadcast(size, 0)
self._input_size = size
self._input_size = paddle.to_tensor(size)
self._step += 1
......@@ -18,7 +18,6 @@ import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register, serializable
from ppdet.modeling.ops import get_activation
from ppdet.modeling.initializer import conv_init_
from ..shape_spec import ShapeSpec
......@@ -49,7 +48,6 @@ class BaseConv(nn.Layer):
out_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self.act = get_activation(act)
self._init_weights()
......@@ -57,7 +55,10 @@ class BaseConv(nn.Layer):
conv_init_(self.conv)
def forward(self, x):
return self.act(self.bn(self.conv(x)))
# use 'x * F.sigmoid(x)' replace 'silu'
x = self.bn(self.conv(x))
y = x * F.sigmoid(x)
return y
class DWConv(nn.Layer):
......@@ -78,7 +79,7 @@ class DWConv(nn.Layer):
stride=stride,
groups=in_channels,
bias=bias,
act=act, )
act=act)
self.pw_conv = BaseConv(
in_channels,
out_channels,
......@@ -274,7 +275,7 @@ class CSPDarkNet(nn.Layer):
return_idx (list): Index of stages whose feature maps are returned.
"""
__shared__ = ['depth_mult', 'width_mult', 'act']
__shared__ = ['depth_mult', 'width_mult', 'act', 'trt']
# in_channels, out_channels, num_blocks, add_shortcut, use_spp(use_sppf)
# 'X' means setting used in YOLOX, 'P5/P6' means setting used in YOLOv5.
......@@ -294,12 +295,12 @@ class CSPDarkNet(nn.Layer):
width_mult=1.0,
depthwise=False,
act='silu',
trt=False,
return_idx=[2, 3, 4]):
super(CSPDarkNet, self).__init__()
self.arch = arch
self.return_idx = return_idx
Conv = DWConv if depthwise else BaseConv
arch_setting = self.arch_settings[arch]
base_channels = int(arch_setting[0][0] * width_mult)
......
......@@ -26,6 +26,7 @@ from ..backbones.csp_darknet import BaseConv, DWConv
from ..losses import IouLoss
from ppdet.modeling.assigners.simota_assigner import SimOTAAssigner
from ppdet.modeling.bbox_utils import bbox_overlaps
from ppdet.modeling.layers import MultiClassNMS
__all__ = ['YOLOv3Head', 'YOLOXHead']
......@@ -150,7 +151,7 @@ class YOLOv3Head(nn.Layer):
@register
class YOLOXHead(nn.Layer):
__shared__ = ['num_classes', 'width_mult', 'act']
__shared__ = ['num_classes', 'width_mult', 'act', 'trt', 'exclude_nms']
__inject__ = ['assigner', 'nms']
def __init__(self,
......@@ -164,10 +165,14 @@ class YOLOXHead(nn.Layer):
act='silu',
assigner=SimOTAAssigner(use_vfl=False),
nms='MultiClassNMS',
loss_weight={'cls': 1.0,
loss_weight={
'cls': 1.0,
'obj': 1.0,
'iou': 5.0,
'l1': 1.0}):
'l1': 1.0,
},
trt=False,
exclude_nms=False):
super(YOLOXHead, self).__init__()
self._dtype = paddle.framework.get_default_dtype()
self.num_classes = num_classes
......@@ -178,6 +183,9 @@ class YOLOXHead(nn.Layer):
self.l1_epoch = l1_epoch
self.assigner = assigner
self.nms = nms
if isinstance(self.nms, MultiClassNMS) and trt:
self.nms.trt = trt
self.exclude_nms = exclude_nms
self.loss_weight = loss_weight
self.iou_loss = IouLoss(loss_weight=1.0) # default loss_weight 2.5
......@@ -400,5 +408,9 @@ class YOLOXHead(nn.Layer):
# scale bbox to origin image
scale_factor = scale_factor.flip(-1).tile([1, 2]).unsqueeze(1)
pred_bboxes /= scale_factor
if self.exclude_nms:
# `exclude_nms=True` just use in benchmark
return pred_bboxes.sum(), pred_scores.sum()
else:
bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
return bbox_pred, bbox_num
......@@ -17,6 +17,7 @@ import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.layers import DropBlock
from ppdet.modeling.ops import get_act_fn
from ..backbones.darknet import ConvBNLayer
from ..shape_spec import ShapeSpec
from ..backbones.csp_darknet import BaseConv, DWConv, CSPLayer
......@@ -995,18 +996,24 @@ class YOLOCSPPAN(nn.Layer):
"""
YOLO CSP-PAN, used in YOLOv5 and YOLOX.
"""
__shared__ = ['depth_mult', 'act']
__shared__ = ['depth_mult', 'data_format', 'act', 'trt']
def __init__(self,
depth_mult=1.0,
in_channels=[256, 512, 1024],
depthwise=False,
act='silu'):
data_format='NCHW',
act='silu',
trt=False):
super(YOLOCSPPAN, self).__init__()
self.in_channels = in_channels
self._out_channels = in_channels
Conv = DWConv if depthwise else BaseConv
self.data_format = data_format
act = get_act_fn(
act, trt=trt) if act is None or isinstance(act,
(str, dict)) else act
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
# top-down fpn
......@@ -1061,7 +1068,11 @@ class YOLOCSPPAN(nn.Layer):
feat_heigh)
inner_outs[0] = feat_heigh
upsample_feat = self.upsample(feat_heigh)
upsample_feat = F.interpolate(
feat_heigh,
scale_factor=2.,
mode="nearest",
data_format=self.data_format)
inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx](
paddle.concat(
[upsample_feat, feat_low], axis=1))
......
......@@ -26,10 +26,22 @@ from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
__all__ = [
'roi_pool', 'roi_align', 'prior_box', 'generate_proposals',
'iou_similarity', 'box_coder', 'yolo_box', 'multiclass_nms',
'distribute_fpn_proposals', 'collect_fpn_proposals', 'matrix_nms',
'batch_norm', 'get_activation', 'mish', 'swish', 'identity'
'roi_pool',
'roi_align',
'prior_box',
'generate_proposals',
'iou_similarity',
'box_coder',
'yolo_box',
'multiclass_nms',
'distribute_fpn_proposals',
'collect_fpn_proposals',
'matrix_nms',
'batch_norm',
'mish',
'silu',
'swish',
'identity',
]
......@@ -41,13 +53,17 @@ def mish(x):
return F.mish(x) if hasattr(F, mish) else x * F.tanh(F.softplus(x))
def silu(x):
return F.silu(x)
def swish(x):
return x * F.sigmoid(x)
TRT_ACT_SPEC = {'swish': swish}
TRT_ACT_SPEC = {'swish': swish, 'silu': swish}
ACT_SPEC = {'mish': mish}
ACT_SPEC = {'mish': mish, 'silu': silu}
def get_act_fn(act=None, trt=False):
......@@ -107,18 +123,6 @@ def batch_norm(ch,
return norm_layer
def get_activation(name="silu"):
if name == "silu":
module = nn.Silu()
elif name == "relu":
module = nn.ReLU()
elif name == "leakyrelu":
module = nn.LeakyReLU(0.1)
else:
raise AttributeError("Unsupported act type: {}".format(name))
return module
@paddle.jit.not_to_static
def roi_pool(input,
rois,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册