提交 9b1a17a8 编写于 作者: C chengduo 提交者: Abhinav Arora

Refine conv2d_transpose layer doc (#6920)

* refine conv2d_transpose layer doc

* fix conv2d_transpose doc

* fix doc
上级 cd25adbe
...@@ -160,8 +160,8 @@ Example: ...@@ -160,8 +160,8 @@ Example:
Output shape: $(N, C_{out}, H_{out}, W_{out})$ Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where Where
$$ $$
H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + H_f \\ H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + W_f W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
$$ $$
)DOC"); )DOC");
} }
...@@ -249,9 +249,9 @@ Example: ...@@ -249,9 +249,9 @@ Example:
Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$ Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
Where Where
$$ $$
D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + D_f \\ D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + H_f \\ H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + W_f W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
$$ $$
)DOC"); )DOC");
} }
......
...@@ -141,8 +141,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> { ...@@ -141,8 +141,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
if (data_dim == 2U) { if (data_dim == 2U) {
// col2im: col_matrix -> dy // col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w) // from (c * k_h * k_w, h * w) to (c, o_h, o_w)
col2im(dev_ctx, col, std::vector<int>{dilations[0], dilations[1]}, col2im(dev_ctx, col, dilations, strides,
strides, std::vector<int>{paddings[0], paddings[1], paddings[0], std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]}, paddings[1]},
&output_batch); &output_batch);
} else if (data_dim == 3U) { } else if (data_dim == 3U) {
...@@ -247,8 +247,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -247,8 +247,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
if (data_dim == 2U) { if (data_dim == 2U) {
// im2col: dy -> col matrix // im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w) // from (c, o_h, o_w) to (c * k_h * k_w, h * w)
im2col(dev_ctx, output_grad_batch, im2col(dev_ctx, output_grad_batch, dilations, strides,
std::vector<int>{dilations[0], dilations[1]}, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0], std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]}, paddings[1]},
&col); &col);
......
...@@ -790,8 +790,8 @@ def conv2d(input, ...@@ -790,8 +790,8 @@ def conv2d(input,
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ . <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
If bias attribution and activation type are provided, bias is added to the output of the convolution, If bias attribution and activation type are provided, bias is added to the output of the convolution,
and the corresponding activation function is applied to the final result. and the corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
For each input :math:`X`, the equation is:
.. math:: .. math::
...@@ -808,14 +808,17 @@ def conv2d(input, ...@@ -808,14 +808,17 @@ def conv2d(input,
Example: Example:
Input: - Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$ Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
Output: - Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$ Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where Where
.. math:: .. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
...@@ -858,7 +861,6 @@ def conv2d(input, ...@@ -858,7 +861,6 @@ def conv2d(input,
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu") conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
""" """
if stride is None: if stride is None:
stride = [1, 1] stride = [1, 1]
helper = LayerHelper('conv2d', **locals()) helper = LayerHelper('conv2d', **locals())
...@@ -1212,13 +1214,51 @@ def conv2d_transpose(input, ...@@ -1212,13 +1214,51 @@ def conv2d_transpose(input,
use_cudnn=True, use_cudnn=True,
name=None): name=None):
""" """
The transpose of conv2d layer. **Convlution2D transpose layer**
The convolution2D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCHW format. Where N is batch size, C is the number of channels,
H is the height of the feature, and W is the width of the feature.
Parameters(dilations, strides, paddings) are two elements. These two elements
represent height and width, respectively. The details of convolution transpose
layer, please refer to the following explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
For each input :math:`X`, the equation is:
.. math::
Out = W \\ast X
In the above equation:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`\\ast` : Convolution transpose operation.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
This layer is also known as deconvolution layer. Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
- Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where
.. math::
H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Args: Args:
input(Variable): The input image with [N, C, H, W] format. input(Variable): The input image with [N, C, H, W] format.
num_filters(int): The number of filter. It is as same as the output num_filters(int): The number of the filter. It is as same as the output
image channel. image channel.
output_size(int|tuple|None): The output image size. If output size is a output_size(int|tuple|None): The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This tuple, it must contain two integers, (image_H, image_W). This
...@@ -1226,24 +1266,33 @@ def conv2d_transpose(input, ...@@ -1226,24 +1266,33 @@ def conv2d_transpose(input,
filter_size(int|tuple|None): The filter size. If filter_size is a tuple, filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W). it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square. None if use output size to Otherwise, the filter will be a square. None if use output size to
calculate filter_size calculate filter_size.
padding(int|tuple): The padding size. If padding is a tuple, it must padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. padding_H = padding_W = padding. Default: padding = 0.
stride(int|tuple): The stride size. If stride is a tuple, it must stride(int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. stride_H = stride_W = stride. Default: stride = 1.
dilation(int|tuple): The dilation size. If dilation is a tuple, it must dilation(int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. dilation_H = dilation_W = dilation. Default: dilation = 1.
param_attr: Parameter Attribute. param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer. Default: None
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
Returns: Returns:
Variable: Output image. Variable: The tensor variable storing the convolution transpose result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
""" """
helper = LayerHelper("conv2d_transpose", **locals()) helper = LayerHelper("conv2d_transpose", **locals())
if not isinstance(input, Variable): if not isinstance(input, Variable):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册