diff --git a/paddle/fluid/imperative/layer.h b/paddle/fluid/imperative/layer.h index 34aa701c5b9ec432843c5ce995afaf20e30e4829..2289da090703d9e33718b2d9fe07afd7cfd71bc6 100644 --- a/paddle/fluid/imperative/layer.h +++ b/paddle/fluid/imperative/layer.h @@ -101,7 +101,6 @@ class VarBase { // Owns `var` and `grad` VarBase(framework::Variable* var, VarBase* grad) : pre_op_(nullptr), - pre_op_out_name_(), pre_op_out_idx_(-1), var_desc_(nullptr), var_(var), @@ -110,7 +109,6 @@ class VarBase { explicit VarBase(bool stop_gradient) : pre_op_(nullptr), - pre_op_out_name_(), pre_op_out_idx_(-1), var_desc_(nullptr), var_(new framework::Variable()), @@ -127,6 +125,13 @@ class VarBase { } } + void Clear() { + delete grads_; + grads_ = new VarBase(true); + pre_op_ = nullptr; + pre_op_out_name_ = ""; + } + void RunBackward(); framework::LoDTensor& GradValue(); diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index f3f4854a9efbcf5ab325e7f6aec81135c018dcd5..efe70a075d1b81441378a661a06b71644155c351 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -133,6 +133,7 @@ PYBIND11_MODULE(core, m) { [](imperative::VarBase &self) { self.RunBackward(); }) .def("_grad_name", &imperative::VarBase::GradName) .def("_grad_value", &imperative::VarBase::GradValue) + .def("_clear", &imperative::VarBase::Clear) .def("_grad_ivar", [](const imperative::VarBase &self) { return self.grads_; }, py::return_value_policy::reference) diff --git a/python/paddle/fluid/framework.py b/python/paddle/fluid/framework.py index 8d061f41f09a88d06a6b0018d95793e8cadbcdf3..e737b9bc61a39b66843bf6faea2cad03f13647e0 100644 --- a/python/paddle/fluid/framework.py +++ b/python/paddle/fluid/framework.py @@ -388,6 +388,9 @@ class Variable(object): def _gradient(self): return np.array(self._ivar._grad_value()) + def _clear(self): + self._ivar._clear() + def __str__(self): return self.to_string(True) diff --git a/python/paddle/fluid/tests/unittests/test_imperative_gan.py b/python/paddle/fluid/tests/unittests/test_imperative_gan.py index af2a2f45aa8ff4dd5ab3318d8e12639451685b1a..c38906ce6adbf471dfb3faceb5690bf67793ff2d 100644 --- a/python/paddle/fluid/tests/unittests/test_imperative_gan.py +++ b/python/paddle/fluid/tests/unittests/test_imperative_gan.py @@ -69,8 +69,6 @@ class TestImperativeMnist(unittest.TestCase): generate_p.random_seed = seed scope = fluid.core.Scope() - exe = fluid.Executor(fluid.CPUPlace()) - sys.stderr.write('1111\n') with new_program_scope( main=discriminate_p, startup=startup, scope=scope): discriminator = Discriminator() @@ -117,6 +115,8 @@ class TestImperativeMnist(unittest.TestCase): sgd = SGDOptimizer(learning_rate=1e-3) sgd.minimize(g_loss) + exe = fluid.Executor(fluid.CPUPlace()) + static_params = dict() with fluid.scope_guard(scope): img = np.ones([2, 1], np.float32) noise = np.ones([2, 2], np.float32) @@ -128,14 +128,14 @@ class TestImperativeMnist(unittest.TestCase): g_loss_val = exe.run(generate_p, feed={'noise': noise}, fetch_list=[g_loss])[0] - sys.stderr.write('d_loss %s, g_loss: %s\n' % - (d_loss_val, g_loss_val)) - - static_params = dict() - for param in discriminate_p.global_block().all_parameters(): - sys.stderr.write('%s\n' % param.name) + for param in generate_p.global_block().all_parameters(): static_params[param.name] = np.array( scope.find_var(param.name).get_tensor()) + sys.stderr.write( + 'static_param_loss: %s: %s\n' % + (param.name, np.sum(static_params[param.name]))) + sys.stderr.write('d_loss %s, g_loss: %s\n' % + (d_loss_val, g_loss_val)) dy_params = dict() with fluid.imperative.guard(): @@ -158,15 +158,31 @@ class TestImperativeMnist(unittest.TestCase): x=d_fake, label=to_variable(np.zeros([2, 1], np.float32)))) d_loss = d_loss_real + d_loss_fake - sys.stderr.write('dy_d_loss: %s\n' % d_loss._numpy()) d_loss._backward() sgd.minimize(d_loss) for p in discriminator.parameters(): - dy_params[p.name] = p._numpy() + p._clear() + for p in generator.parameters(): + p._clear() - for k, v in six.iteritems(dy_params): - sys.stderr.write('dy_param_loss: %s: %s\n' % (k, np.sum(v))) - sys.stderr.write('static_param_loss: %s: %s\n' % (k, np.sum(v))) + d_fake = discriminator( + generator(to_variable(np.ones([2, 2], np.float32)))) + g_loss = fluid.layers.reduce_mean( + fluid.layers.sigmoid_cross_entropy_with_logits( + x=d_fake, label=to_variable(np.ones([2, 1], np.float32)))) + g_loss._backward() + sgd = SGDOptimizer(learning_rate=1e-3) + sgd.minimize(g_loss) + for p in discriminator.parameters(): + dy_params[p.name] = p._numpy() + sys.stderr.write('dy_param_loss: %s: %s\n' % + (p.name, np.sum(dy_params[p.name]))) + for p in generator.parameters(): + dy_params[p.name] = p._numpy() + sys.stderr.write('dy_param_loss: %s: %s\n' % + (p.name, np.sum(dy_params[p.name]))) + sys.stderr.write('dy_d_loss: %s, dy_g_loss: %s\n' % + (d_loss._numpy(), g_loss._numpy())) if __name__ == '__main__':