提交 9a2af02f 编写于 作者: L Luo Tao

Merge branch 'develop' into stride

...@@ -8,200 +8,256 @@ Please be aware that you will need to change `Dockers settings ...@@ -8,200 +8,256 @@ Please be aware that you will need to change `Dockers settings
<https://github.com/PaddlePaddle/Paddle/issues/627>`_ to make full use <https://github.com/PaddlePaddle/Paddle/issues/627>`_ to make full use
of your hardware resource on Mac OS X and Windows. of your hardware resource on Mac OS X and Windows.
Working With Docker
-------------------
Usage of CPU-only and GPU Images Docker is simple as long as we understand a few basic concepts:
----------------------------------
For each version of PaddlePaddle, we release 2 types of Docker images: development - *image*: A Docker image is a pack of software. It could contain one or more programs and all their dependencies. For example, the PaddlePaddle's Docker image includes pre-built PaddlePaddle and Python and many Python packages. We can run a Docker image directly, other than installing all these software. We can type
image and production image. Production image includes CPU-only version and a CUDA
GPU version and their no-AVX versions. We put the docker images on
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_. You can find the
latest versions under "tags" tab at dockerhub.com.
1. development image :code:`paddlepaddle/paddle:<version>-dev`
This image has packed related develop tools and runtime environment. Users and
developers can use this image instead of their own local computer to accomplish
development, build, releasing, document writing etc. While different version of
paddle may depends on different version of libraries and tools, if you want to
setup a local environment, you must pay attention to the versions.
The development image contains:
- gcc/clang
- nvcc
- Python
- sphinx
- woboq
- sshd
Many developers use servers with GPUs, they can use ssh to login to the server
and run :code:`docker exec` to enter the docker container and start their work.
Also they can start a development docker image with SSHD service, so they can login to
the container and start work.
To run the CPU-only image as an interactive container: .. code-block:: bash
docker images
to list all images in the system. We can also run
.. code-block:: bash .. code-block:: bash
docker run -it --rm paddledev/paddle:<version> /bin/bash docker pull paddlepaddle/paddle:0.10.0rc2
or, we can run it as a daemon container to download a Docker image, paddlepaddle/paddle in this example,
from Dockerhub.com.
- *container*: considering a Docker image a program, a container is a
"process" that runs the image. Indeed, a container is exactly an
operating system process, but with a virtualized filesystem, network
port space, and other virtualized environment. We can type
.. code-block:: bash .. code-block:: bash
docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:<version> docker run paddlepaddle/paddle:0.10.0rc2
and SSH to this container using password :code:`root`: to start a container to run a Docker image, paddlepaddle/paddle in this example.
- By default docker container have an isolated file system namespace,
we can not see the files in the host file system. By using *volume*,
mounted files in host will be visible inside docker container.
Following command will mount current dirctory into /data inside
docker container, run docker container from debian image with
command :code:`ls /data`.
.. code-block:: bash .. code-block:: bash
ssh -p 2202 root@localhost docker run --rm -v $(pwd):/data debian ls /data
An advantage of using SSH is that we can connect to PaddlePaddle from Usage of CPU-only and GPU Images
more than one terminals. For example, one terminal running vi and ----------------------------------
another one running Python interpreter. Another advantage is that we
can run the PaddlePaddle container on a remote server and SSH to it
from a laptop.
For each version of PaddlePaddle, we release two types of Docker images:
development image and production image. Production image includes
CPU-only version and a CUDA GPU version and their no-AVX versions. We
put the docker images on `dockerhub.com
<https://hub.docker.com/r/paddledev/paddle/>`_. You can find the
latest versions under "tags" tab at dockerhub.com
1. Production images, this image might have multiple variants:
2. Production images, this image might have multiple variants:
- GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu` - GPU/AVX::code:`paddlepaddle/paddle:<version>-gpu`
- GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx` - GPU/no-AVX::code:`paddlepaddle/paddle:<version>-gpu-noavx`
- CPU/AVX::code:`paddlepaddle/paddle:<version>` - CPU/AVX::code:`paddlepaddle/paddle:<version>`
- CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx` - CPU/no-AVX::code:`paddlepaddle/paddle:<version>-noavx`
Please be aware that the CPU-only and the GPU images both use the AVX Please be aware that the CPU-only and the GPU images both use the
instruction set, but old computers produced before 2008 do not support AVX instruction set, but old computers produced before 2008 do not
AVX. The following command checks if your Linux computer supports support AVX. The following command checks if your Linux computer
AVX: supports AVX:
.. code-block:: bash .. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
If it doesn't, we will use the non-AVX images. To run the CPU-only image as an interactive container:
Above methods work with the GPU image too -- just please don't forget
to install GPU driver. To support GPU driver, we recommend to use
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker). Run using
.. code-block:: bash .. code-block:: bash
nvidia-docker run -it --rm paddledev/paddle:0.10.0rc1-gpu /bin/bash docker run -it --rm paddlepaddle/paddle:0.10.0rc2 /bin/bash
Above method work with the GPU image too -- the recommended way is
using `nvidia-docker <https://github.com/NVIDIA/nvidia-docker>`_.
Please install nvidia-docker first following this `tutorial
<https://github.com/NVIDIA/nvidia-docker#quick-start>`_.
Note: If you would have a problem running nvidia-docker, you may try the old method we have used (not recommended). Now you can run a GPU image:
.. code-block:: bash .. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" nvidia-docker run -it --rm paddlepaddle/paddle:0.10.0rc2-gpu /bin/bash
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:<version>-gpu
2. development image :code:`paddlepaddle/paddle:<version>-dev`
3. Use production image to release you AI application This image has packed related develop tools and runtime
Suppose that we have a simple application program in :code:`a.py`, we can test and run it using the production image: environment. Users and developers can use this image instead of
their own local computer to accomplish development, build,
releasing, document writing etc. While different version of paddle
may depends on different version of libraries and tools, if you
want to setup a local environment, you must pay attention to the
versions. The development image contains:
```bash - gcc/clang
docker run -it -v $PWD:/work paddle /work/a.py - nvcc
``` - Python
- sphinx
- woboq
- sshd
But this works only if all dependencies of :code:`a.py` are in the production image. If this is not the case, we need to build a new Docker image from the production image and with more dependencies installs. Many developers use servers with GPUs, they can use ssh to login to
the server and run :code:`docker exec` to enter the docker
container and start their work. Also they can start a development
docker image with SSHD service, so they can login to the container
and start work.
PaddlePaddle Book Train Model Using Python API
------------------ ----------------------------
The Jupyter Notebook is an open-source web application that allows Our official docker image provides a runtime for PaddlePaddle
you to create and share documents that contain live code, equations, programs. The typical workflow will be as follows:
visualizations and explanatory text in a single browser.
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers. Create a directory as workspace:
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
We provide a packaged book image, simply issue the command: .. code-block:: bash
mkdir ~/workspace
Edit a PaddlePaddle python program using your favourite editor
.. code-block:: bash .. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book emacs ~/workspace/example.py
Then, you would back and paste the address into the local browser: Run the program using docker:
.. code-block:: text .. code-block:: bash
http://localhost:8888/ docker run --rm -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0rc2 python /workspace/example.py
That's all. Enjoy your journey! Or if you are using GPU for training:
Development Using Docker .. code-block:: bash
------------------------
Developers can work on PaddlePaddle using Docker. This allows nvidia-docker run --rm -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0rc2-gpu python /workspace/example.py
developers to work on different platforms -- Linux, Mac OS X, and
Windows -- in a consistent way.
1. Build the Development Docker Image Above commands will start a docker container by running :code:`python
/workspace/example.py`. It will stop once :code:`python
/workspace/example.py` finishes.
.. code-block:: bash Another way is to tell docker to start a :code:`/bin/bash` session and
run PaddlePaddle program interactively:
git clone --recursive https://github.com/PaddlePaddle/Paddle .. code-block:: bash
cd Paddle
docker build -t paddle:dev .
Note that by default :code:`docker build` wouldn't import source docker run -it -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0rc2 /bin/bash
tree into the image and build it. If we want to do that, we need docker the # now we are inside docker container
development docker image and then run the following command: cd /workspace
python example.py
.. code-block:: bash Running with GPU is identical:
.. code-block:: bash
docker run -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "TEST=OFF" paddle:dev nvidia-docker run -it -v ~/workspace:/workspace paddlepaddle/paddle:0.10.0rc2-gpu /bin/bash
# now we are inside docker container
cd /workspace
python example.py
2. Run the Development Environment Develop PaddlePaddle or Train Model Using C++ API
---------------------------------------------------
Once we got the image :code:`paddle:dev`, we can use it to develop We will be using PaddlePaddle development image since it contains all
Paddle by mounting the local source code tree into a container that compiling tools and dependencies.
runs the image:
.. code-block:: bash Let's clone PaddlePaddle repo first:
.. code-block:: bash
docker run -d -p 2202:22 -p 8888:8888 -v $PWD:/paddle paddle:dev sshd git clone https://github.com/PaddlePaddle/Paddle.git && cd Paddle
This runs a container of the development environment Docker image Mount both workspace folder and paddle code folder into docker
with the local source tree mounted to :code:`/paddle` of the container, so we can access them inside docker container. There are
container. two ways of using PaddlePaddle development docker image:
The above :code:`docker run` commands actually starts - run interactive bash directly
an SSHD server listening on port 2202. This allows us to log into
this container with:
.. code-block:: bash .. code-block:: bash
ssh root@localhost -p 2202 # use nvidia-docker instead of docker if you need to use GPU
docker run -it -v ~/workspace:/workspace -v $(pwd):/paddle paddlepaddle/paddle:0.10.0rc2-dev /bin/bash
# now we are inside docker container
Usually, I run above commands on my Mac. I can also run them on a - or, we can run it as a daemon container
GPU server :code:`xxx.yyy.zzz.www` and ssh from my Mac to it:
.. code-block:: bash .. code-block:: bash
my-mac$ ssh root@xxx.yyy.zzz.www -p 2202 # use nvidia-docker instead of docker if you need to use GPU
docker run -d -p 2202:22 -p 8888:8888 -v ~/workspace:/workspace -v $(pwd):/paddle paddlepaddle/paddle:0.10.0rc2-dev /usr/sbin/sshd -D
3. Build and Install Using the Development Environment
Once I am in the container, I can use and SSH to this container using password :code:`root`:
:code:`paddle/scripts/docker/build.sh` to build, install, and test
Paddle:
.. code-block:: bash .. code-block:: bash
/paddle/paddle/scripts/docker/build.sh ssh -p 2202 root@localhost
This builds everything about Paddle in :code:`/paddle/build`. And An advantage is that we can run the PaddlePaddle container on a
we can run unit tests there: remote server and SSH to it from a laptop.
.. code-block:: bash When developing PaddlePaddle, you can edit PaddlePaddle source code
from outside of docker container using your favoriate editor. To
compile PaddlePaddle, run inside container:
.. code-block:: bash
WITH_GPU=OFF WITH_AVX=ON WITH_TEST=ON bash /paddle/paddle/scripts/docker/build.sh
This builds everything about Paddle in :code:`/paddle/build`. And we
can run unit tests there:
.. code-block:: bash
cd /paddle/build cd /paddle/build
ctest ctest
When training model using C++ API, we can edit paddle program in
~/workspace outside of docker. And build from /workspace inside of
docker.
PaddlePaddle Book
------------------
The Jupyter Notebook is an open-source web application that allows
you to create and share documents that contain live code, equations,
visualizations and explanatory text in a single browser.
PaddlePaddle Book is an interactive Jupyter Notebook for users and developers.
We already exposed port 8888 for this book. If you want to
dig deeper into deep learning, PaddlePaddle Book definitely is your best choice.
We provide a packaged book image, simply issue the command:
.. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book
Then, you would back and paste the address into the local browser:
.. code-block:: text
http://localhost:8888/
That's all. Enjoy your journey!
Documentation Documentation
------------- -------------
......
...@@ -159,4 +159,10 @@ extern void hl_sequence_avg_forward(real* dst, ...@@ -159,4 +159,10 @@ extern void hl_sequence_avg_forward(real* dst,
int width, int width,
const int mode); const int mode);
extern void hl_sequence_avg_backward(real* dst,
real* src,
const int* starts,
int height,
int width,
const int mode);
#endif /* HL_SEQUENCE_H_ */ #endif /* HL_SEQUENCE_H_ */
...@@ -57,4 +57,10 @@ inline void hl_sequence_avg_forward(real* dst, ...@@ -57,4 +57,10 @@ inline void hl_sequence_avg_forward(real* dst,
int width, int width,
const int mode) {} const int mode) {}
inline void hl_sequence_avg_backward(real* dst,
real* src,
const int* starts,
int height,
int width,
const int mode) {}
#endif // HL_SEQUENCE_STUB_H_ #endif // HL_SEQUENCE_STUB_H_
...@@ -325,12 +325,12 @@ __global__ void KeSequenceAvgForward(real* dst, ...@@ -325,12 +325,12 @@ __global__ void KeSequenceAvgForward(real* dst,
int seqLength = end - start; int seqLength = end - start;
if (seqLength == 0) return; if (seqLength == 0) return;
real sum = 0.0; real sum = 0.0;
for (int i = 0; i < seqLength; i++) { for (int i = start; i < end; i++) {
sum += src[(start + i) * width + col]; sum += src[i * width + col];
} }
sum = mode == 1 ? sum : sum = mode == 1 ? sum :
(mode == 0 ? sum / seqLength : sum * my_rsqrt((real)seqLength)); (mode == 0 ? sum / seqLength : sum * my_rsqrt((real)seqLength));
dst[row * width + col] = sum; dst[gid] = sum;
} }
} }
...@@ -354,3 +354,48 @@ void hl_sequence_avg_forward(real* dst, ...@@ -354,3 +354,48 @@ void hl_sequence_avg_forward(real* dst,
(dst, src, starts, height, width, mode); (dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_forward failed"); CHECK_SYNC("hl_sequence_avg_forward failed");
} }
__global__ void KeSequenceAvgBackward(real* dst,
real* src,
const int* starts,
int height,
int width,
const int mode) {
int gid = blockIdx.x * blockDim.x + threadIdx.x;
int row = gid / width;
int col = gid % width;
if (gid < height * width) {
int start = starts[row];
int end = starts[row + 1];
int seqLength = end - start;
if (seqLength == 0) return;
real grad = src[gid];
grad = mode == 1 ? grad :
(mode == 0 ? grad / seqLength : grad * my_rsqrt((real)seqLength));
for (int i = start; i < end; i++) {
dst[i * width + col] += grad;
}
}
}
void hl_sequence_avg_backward(real* dst,
real* src,
const int* starts,
int height,
int width,
const int mode) {
CHECK_NOTNULL(dst);
CHECK_NOTNULL(src);
CHECK_NOTNULL(starts);
int block = 512;
int grid = DIVUP(width * height, 512);
CHECK(mode == 0 || mode == 1 || mode == 2)
<< "mode error in hl_sequence_avg_backward!";
KeSequenceAvgBackward<<< grid, block, 0, STREAM_DEFAULT >>>
(dst, src, starts, height, width, mode);
CHECK_SYNC("hl_sequence_avg_backward failed");
}
...@@ -26,8 +26,6 @@ bool AverageLayer::init(const LayerMap& layerMap, ...@@ -26,8 +26,6 @@ bool AverageLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) { const ParameterMap& parameterMap) {
SequencePoolLayer::init(layerMap, parameterMap); SequencePoolLayer::init(layerMap, parameterMap);
dataMtx_ = Matrix::create(nullptr, 1, 1, false, useGpu_);
outMtx_ = Matrix::create(nullptr, 1, getSize(), false, useGpu_);
// average strategy // average strategy
if (config_.average_strategy() == "average") { if (config_.average_strategy() == "average") {
mode_ = kAverage; mode_ = kAverage;
...@@ -60,43 +58,9 @@ void AverageLayer::forward(PassType passType) { ...@@ -60,43 +58,9 @@ void AverageLayer::forward(PassType passType) {
void AverageLayer::backward(const UpdateCallback& callback) { void AverageLayer::backward(const UpdateCallback& callback) {
SequencePoolLayer::backward(callback); SequencePoolLayer::backward(callback);
const int* starts = startPositions_->getData(false); if (getInputGrad(0)) {
MatrixPtr grad = getInputGrad(0); getInputGrad(0)->sequenceAvgBackward(
*getOutputGrad(), *startPositions_->getVector(useGpu_), mode_);
if (grad) {
size_t dim = getSize();
real* gradientData = getInputGrad(0)->getData();
real* gradient = getOutputGrad()->getData();
size_t numSequences = startPositions_->getSize() - 1;
for (size_t sequenceId = 0; sequenceId < numSequences; ++sequenceId) {
// TODO(Dangqingqing) optimization for GPU
int sequenceLength = starts[sequenceId + 1] - starts[sequenceId];
if (0 == sequenceLength) {
// empty sequence
continue;
}
dataMtx_->setData(
gradientData + starts[sequenceId] * dim, sequenceLength, dim);
outMtx_->setData(gradient + sequenceId * dim);
switch (mode_) {
case kAverage: {
// plain average
dataMtx_->addBias(*outMtx_, 1.0f / sequenceLength);
break;
}
case kSum: {
// sum instead of average
dataMtx_->addBias(*outMtx_, 1.0f);
break;
}
case kAverageSquareRootN: {
// divide by square root of sequenceLength
dataMtx_->addBias(*outMtx_, 1.0f / sqrt(sequenceLength));
break;
}
default: { LOG(FATAL) << "should not reach here"; }
}
}
} }
} }
......
...@@ -45,8 +45,6 @@ public: ...@@ -45,8 +45,6 @@ public:
void backward(const UpdateCallback& callback = nullptr) override; void backward(const UpdateCallback& callback = nullptr) override;
protected: protected:
MatrixPtr outMtx_;
MatrixPtr dataMtx_;
int mode_; int mode_;
}; };
} // namespace paddle } // namespace paddle
...@@ -483,6 +483,20 @@ void GpuMatrix::sequenceAvgForward(Matrix& a, ...@@ -483,6 +483,20 @@ void GpuMatrix::sequenceAvgForward(Matrix& a,
hl_sequence_avg_forward(dst, src, starts, height, width, mode); hl_sequence_avg_forward(dst, src, starts, height, width, mode);
} }
void GpuMatrix::sequenceAvgBackward(Matrix& a,
const IVector& startsPos,
int mode) {
size_t height = a.getHeight();
size_t width = getWidth();
CHECK_EQ(height, startsPos.getSize() - 1);
CHECK_EQ(width, a.getWidth());
real* dst = getData();
real* src = a.getData();
const int* starts = startsPos.getData();
hl_sequence_avg_backward(dst, src, starts, height, width, mode);
}
/* this = scaleAB*(a*b) + scaleT*this */ /* this = scaleAB*(a*b) + scaleT*this */
void GpuMatrix::mul(const GpuMatrix& a, void GpuMatrix::mul(const GpuMatrix& a,
const GpuMatrix& b, const GpuMatrix& b,
...@@ -2304,6 +2318,41 @@ void CpuMatrix::sequenceAvgForward(Matrix& a, ...@@ -2304,6 +2318,41 @@ void CpuMatrix::sequenceAvgForward(Matrix& a,
} }
} }
void CpuMatrix::sequenceAvgBackward(Matrix& a,
const IVector& startsPos,
int mode) {
size_t height = a.getHeight();
size_t width = getWidth();
CHECK_EQ(height, startsPos.getSize() - 1);
CHECK_EQ(width, a.getWidth());
real* dst = getData();
real* src = a.getData();
const int* starts = startsPos.getData();
MatrixPtr outMtx = Matrix::create(nullptr, 1, width, false, false);
MatrixPtr dataMtx = Matrix::create(nullptr, 1, width, false, false);
for (size_t i = 0; i < height; ++i) {
int sequenceLength = starts[i + 1] - starts[i];
if (0 == sequenceLength) {
// empty sequence
continue;
}
outMtx->setData(dst + starts[i] * width, sequenceLength, width);
dataMtx->setData(src + i * width);
if (mode == 0) {
// plain average
outMtx->addBias(*dataMtx, 1.0f / sequenceLength);
} else if (mode == 1) {
// sum instead of average
outMtx->addBias(*dataMtx, 1.0f);
} else if (mode == 2) {
// divide by square root of sequenceLength
outMtx->addBias(*dataMtx, 1.0f / std::sqrt(sequenceLength));
} else {
LOG(FATAL) << "should not reach here";
}
}
}
/* this = scaleAB*(a*b) + scaleT*this*/ /* this = scaleAB*(a*b) + scaleT*this*/
void CpuMatrix::mul(const Matrix& a, void CpuMatrix::mul(const Matrix& a,
const Matrix& b, const Matrix& b,
......
...@@ -461,6 +461,12 @@ public: ...@@ -461,6 +461,12 @@ public:
LOG(FATAL) << "Not implemented"; LOG(FATAL) << "Not implemented";
} }
virtual void sequenceAvgBackward(Matrix& a,
const IVector& startsPos,
int mode) {
LOG(FATAL) << "Not implemented";
}
/** /**
* @code * @code
* this = scaleAB*(a*b) + scaleT*this * this = scaleAB*(a*b) + scaleT*this
...@@ -1203,6 +1209,7 @@ public: ...@@ -1203,6 +1209,7 @@ public:
void collectSharedBias(Matrix& a, real scale); void collectSharedBias(Matrix& a, real scale);
void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode); void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);
void sequenceAvgBackward(Matrix& a, const IVector& startsPos, int mode);
/** /**
* @code * @code
...@@ -1619,6 +1626,7 @@ public: ...@@ -1619,6 +1626,7 @@ public:
void collectSharedBias(Matrix& a, real scale); void collectSharedBias(Matrix& a, real scale);
void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode); void sequenceAvgForward(Matrix& a, const IVector& startsPos, int mode);
void sequenceAvgBackward(Matrix& a, const IVector& startsPos, int mode);
/** /**
* @code * @code
......
...@@ -685,7 +685,7 @@ TEST(SMatrix, topK) { ...@@ -685,7 +685,7 @@ TEST(SMatrix, topK) {
} }
} }
void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) { void testMatrixSequenceAvg(int batchSize, int inputDim, int mode) {
MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim); MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim); MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
cpuInput->randomizeUniform(); cpuInput->randomizeUniform();
...@@ -706,15 +706,25 @@ void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) { ...@@ -706,15 +706,25 @@ void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) {
gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode); gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode);
TensorCheckErr(*cpuOutput, *gpuOutput); TensorCheckErr(*cpuOutput, *gpuOutput);
MatrixPtr cpuInGrad = std::make_shared<CpuMatrix>(batchSize, inputDim);
MatrixPtr gpuInGrad = std::make_shared<GpuMatrix>(batchSize, inputDim);
cpuInGrad->randomizeUniform();
gpuInGrad->copyFrom(*cpuInGrad);
cpuInGrad->sequenceAvgBackward(*cpuOutput, *cpuSequence, mode);
gpuInGrad->sequenceAvgBackward(*gpuOutput, *gpuSequence, mode);
TensorCheckErr(*cpuInGrad, *gpuInGrad);
} }
TEST(Matrix, sequenceAvgForward) { TEST(Matrix, sequenceAvg) {
for (auto batchSize : {10, 128, 6000}) { for (auto batchSize : {10, 128, 6000}) {
for (auto inputDim : {32, 100, 512}) { for (auto inputDim : {32, 100, 512}) {
for (auto mode : {0, 1, 2}) { for (auto mode : {0, 1, 2}) {
VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim VLOG(3) << " batchSize=" << batchSize << " inputDim=" << inputDim
<< " mode=" << mode; << " mode=" << mode;
testMatrixSequenceAvgForward(batchSize, inputDim, mode); testMatrixSequenceAvg(batchSize, inputDim, mode);
} }
} }
} }
......
from IPython import display
import os
class PlotCost(object):
"""
append train and test cost in event_handle and then call plot.
"""
def __init__(self):
self.train_costs = ([], [])
self.test_costs = ([], [])
self.__disable_plot__ = os.environ.get("DISABLE_PLOT")
if not self.__plot_is_disabled__():
import matplotlib.pyplot as plt
self.plt = plt
def __plot_is_disabled__(self):
return self.__disable_plot__ == "True"
def plot(self):
if self.__plot_is_disabled__():
return
self.plt.plot(*self.train_costs)
self.plt.plot(*self.test_costs)
title = []
if len(self.train_costs[0]) > 0:
title.append('Train Cost')
if len(self.test_costs[0]) > 0:
title.append('Test Cost')
self.plt.legend(title, loc='upper left')
display.clear_output(wait=True)
display.display(self.plt.gcf())
self.plt.gcf().clear()
def append_train_cost(self, step, cost):
self.train_costs[0].append(step)
self.train_costs[1].append(cost)
def append_test_cost(self, step, cost):
self.test_costs[0].append(step)
self.test_costs[1].append(cost)
def reset(self):
self.train_costs = ([], [])
self.test_costs = ([], [])
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册