diff --git a/deploy/pphuman/README.md b/deploy/pphuman/README.md index af61b3a253670dbe3a03b7b2ebeb54b5b9668946..ee37c9ad9c4c8abe833c72696d21fb470a1e01c8 100644 --- a/deploy/pphuman/README.md +++ b/deploy/pphuman/README.md @@ -44,7 +44,7 @@ PP-Human提供了目标检测、属性识别、行为识别、ReID预训练模 | 属性识别 | 图片/视频输入 属性识别 | mA: 94.86 | 单人2ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | | 关键点检测 | 视频输入 行为识别 | AP: 87.1 | 单人2.9ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) | 行为识别 | 视频输入 行为识别 | 准确率: 96.43 | 单人2.7ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | -| ReID | 视频输入 跨镜跟踪 | mAP: 99.7 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) | +| ReID | 视频输入 跨镜跟踪 | mAP: 98.8 | 单人1.5ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) | 下载模型后,解压至`./output_inference`文件夹 diff --git a/deploy/pphuman/README_en.md b/deploy/pphuman/README_en.md index 44c6f78632ab6966b6c38f003e0657e499f87c87..47f0f9df9e56a8a7a546b6fbc97576621541f0c2 100644 --- a/deploy/pphuman/README_en.md +++ b/deploy/pphuman/README_en.md @@ -42,7 +42,7 @@ To make users have access to models of different scenarios, PP-Human provides pr | Attribute Recognition | Image/Video Input Attribute Recognition | MOTA: 72.0 | 33.1ms | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | | Keypoint Detection | Video Input Action Recognition | mA: 94.86 | 2ms per person | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) | Behavior Recognition | Video Input Bheavior Recognition | Precision 96.43 | 2.7ms per person | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | -| ReID | Multi-Target Multi-Camera Tracking | mAP: 99.7 | - | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) | +| ReID | Multi-Target Multi-Camera Tracking | mAP: 98.8 | 1.5ms per person | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) | Then, unzip the downloaded model to the folder `./output_inference`.