From 93af332ecb9d206335b801d60e3fc42984f6244c Mon Sep 17 00:00:00 2001 From: wangyang59 Date: Thu, 17 Nov 2016 14:18:09 -0800 Subject: [PATCH] unified cifar/mnist/uniform gan training in demo --- demo/gan/.gitignore | 2 +- demo/gan/data/get_mnist_data.sh | 6 +- demo/gan/gan_conf.py | 7 +- demo/gan/gan_conf_image.py | 8 +-- demo/gan/gan_trainer.py | 17 ++--- demo/gan/gan_trainer_image.py | 116 ++++++++++++++++++-------------- 6 files changed, 80 insertions(+), 76 deletions(-) diff --git a/demo/gan/.gitignore b/demo/gan/.gitignore index f03677e75..e9a33070c 100644 --- a/demo/gan/.gitignore +++ b/demo/gan/.gitignore @@ -4,5 +4,5 @@ output/ .project *.log *.pyc -data/raw_data/ +data/mnist_data/ data/cifar-10-batches-py/ diff --git a/demo/gan/data/get_mnist_data.sh b/demo/gan/data/get_mnist_data.sh index 3a6aa5132..21fd9badc 100644 --- a/demo/gan/data/get_mnist_data.sh +++ b/demo/gan/data/get_mnist_data.sh @@ -2,9 +2,9 @@ # This scripts downloads the mnist data and unzips it. set -e DIR="$( cd "$(dirname "$0")" ; pwd -P )" -rm -rf "$DIR/raw_data" -mkdir "$DIR/raw_data" -cd "$DIR/raw_data" +rm -rf "$DIR/mnist_data" +mkdir "$DIR/mnist_data" +cd "$DIR/mnist_data" echo "Downloading..." diff --git a/demo/gan/gan_conf.py b/demo/gan/gan_conf.py index 5b4a2bbf8..e9e3d2f07 100644 --- a/demo/gan/gan_conf.py +++ b/demo/gan/gan_conf.py @@ -32,7 +32,7 @@ sample_dim = 2 settings( batch_size=128, learning_rate=1e-4, - learning_method=AdamOptimizer() + learning_method=AdamOptimizer(beta1=0.7) ) def discriminator(sample): @@ -47,16 +47,15 @@ def discriminator(sample): bias_attr = ParamAttr(is_static=is_generator_training, initial_mean=1.0, initial_std=0) + hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, act=ReluActivation()) - #act=LinearActivation()) hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, - #act=ReluActivation()) act=LinearActivation()) hidden_bn = batch_norm_layer(hidden2, @@ -88,12 +87,10 @@ def generator(noise): bias_attr=bias_attr, param_attr=param_attr, act=ReluActivation()) - #act=LinearActivation()) hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim, bias_attr=bias_attr, param_attr=param_attr, - #act=ReluActivation()) act=LinearActivation()) hidden_bn = batch_norm_layer(hidden2, diff --git a/demo/gan/gan_conf_image.py b/demo/gan/gan_conf_image.py index 0c3f3a343..5d42f3238 100644 --- a/demo/gan/gan_conf_image.py +++ b/demo/gan/gan_conf_image.py @@ -113,7 +113,6 @@ def generator(noise): size=s8 * s8 * gf_dim * 4, bias_attr=bias_attr, param_attr=param_attr, - #act=ReluActivation()) act=LinearActivation()) h1_bn = batch_norm_layer(h1, @@ -235,13 +234,8 @@ if is_discriminator_training: sample = data_layer(name="sample", size=sample_dim * sample_dim*c_dim) if is_generator_training or is_discriminator_training: - sample_noise = data_layer(name="sample_noise", - size=sample_dim * sample_dim * c_dim) label = data_layer(name="label", size=1) - prob = discriminator(addto_layer([sample, sample_noise], - act=LinearActivation(), - name="add", - bias_attr=False)) + prob = discriminator(sample) cost = cross_entropy(input=prob, label=label) classification_error_evaluator(input=prob, label=label, name=mode+'_error') outputs(cost) diff --git a/demo/gan/gan_trainer.py b/demo/gan/gan_trainer.py index 6dc67e4b0..6385bae01 100644 --- a/demo/gan/gan_trainer.py +++ b/demo/gan/gan_trainer.py @@ -71,7 +71,7 @@ def print_parameters(src): print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray() def get_real_samples(batch_size, sample_dim): - return numpy.random.rand(batch_size, sample_dim).astype('float32') * 10.0 - 10.0 + return numpy.random.rand(batch_size, sample_dim).astype('float32') # return numpy.random.normal(loc=100.0, scale=100.0, size=(batch_size, sample_dim)).astype('float32') def get_fake_samples(generator_machine, batch_size, noise_dim, sample_dim): @@ -106,7 +106,7 @@ def prepare_discriminator_data_batch_pos(batch_size, noise_dim, sample_dim): labels = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples)) - inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumy(labels)) + inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(labels)) return inputs def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise_dim, sample_dim): @@ -114,7 +114,7 @@ def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise_di labels = numpy.zeros(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples)) - inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumy(labels)) + inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(labels)) return inputs def prepare_generator_data_batch(batch_size, dim): @@ -122,7 +122,7 @@ def prepare_generator_data_batch(batch_size, dim): label = numpy.ones(batch_size, dtype='int32') inputs = api.Arguments.createArguments(2) inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise)) - inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumy(label)) + inputs.setSlotIds(1, api.IVector.createGpuVectorFromNumpy(label)) return inputs @@ -140,7 +140,8 @@ def get_layer_size(model_conf, layer_name): def main(): - api.initPaddle('--use_gpu=1', '--dot_period=100', '--log_period=10000') + api.initPaddle('--use_gpu=1', '--dot_period=10', '--log_period=100', + '--gpu_id=2') gen_conf = parse_config("gan_conf.py", "mode=generator_training") dis_conf = parse_config("gan_conf.py", "mode=discriminator_training") generator_conf = parse_config("gan_conf.py", "mode=generator") @@ -175,10 +176,10 @@ def main(): curr_strike = 0 MAX_strike = 5 - for train_pass in xrange(10): + for train_pass in xrange(100): dis_trainer.startTrainPass() gen_trainer.startTrainPass() - for i in xrange(100000): + for i in xrange(1000): # data_batch_dis = prepare_discriminator_data_batch( # generator_machine, batch_size, noise_dim, sample_dim) # dis_loss = get_training_loss(dis_training_machine, data_batch_dis) @@ -199,7 +200,7 @@ def main(): if i % 1000 == 0: print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss) - if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > 0.690 or dis_loss > gen_loss): + if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss): if curr_train == "dis": curr_strike += 1 else: diff --git a/demo/gan/gan_trainer_image.py b/demo/gan/gan_trainer_image.py index 11476621c..b4062b213 100644 --- a/demo/gan/gan_trainer_image.py +++ b/demo/gan/gan_trainer_image.py @@ -13,16 +13,29 @@ # limitations under the License. import argparse -import itertools import random import numpy import cPickle -import sys,os,gc +import sys,os from PIL import Image from paddle.trainer.config_parser import parse_config from paddle.trainer.config_parser import logger import py_paddle.swig_paddle as api +import matplotlib.pyplot as plt + +def plot2DScatter(data, outputfile): + x = data[:, 0] + y = data[:, 1] + print "The mean vector is %s" % numpy.mean(data, 0) + print "The std vector is %s" % numpy.std(data, 0) + + heatmap, xedges, yedges = numpy.histogram2d(x, y, bins=50) + extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] + + plt.clf() + plt.scatter(x, y) + plt.savefig(outputfile, bbox_inches='tight') def CHECK_EQ(a, b): assert a == b, "a=%s, b=%s" % (a, b) @@ -60,7 +73,6 @@ def load_mnist_data(imageFile): # Define number of samples for train/test if "train" in imageFile: - #n = 60000 n = 60000 else: n = 10000 @@ -89,6 +101,11 @@ def load_cifar_data(cifar_path): data = data / 255.0 * 2.0 - 1.0 return data +# synthesize 2-D uniform data +def load_uniform_data(): + data = numpy.random.rand(1000000, 2).astype('float32') + return data + def merge(images, size): if images.shape[1] == 28*28: h, w, c = 28, 28, 1 @@ -98,7 +115,6 @@ def merge(images, size): for idx in xrange(size[0] * size[1]): i = idx % size[1] j = idx // size[1] - #img[j*h:j*h+h, i*w:i*w+w, :] = (images[idx, :].reshape((h, w, c), order="F") + 1.0) / 2.0 * 255.0 img[j*h:j*h+h, i*w:i*w+w, :] = \ ((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0) return img.astype('uint8') @@ -118,13 +134,9 @@ def get_real_samples(batch_size, data_np): def get_noise(batch_size, noise_dim): return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32') -def get_sample_noise(batch_size, sample_dim): - return numpy.random.normal(size=(batch_size, sample_dim), - scale=0.01).astype('float32') - def get_fake_samples(generator_machine, batch_size, noise): gen_inputs = api.Arguments.createArguments(1) - gen_inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise)) + gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) gen_outputs = api.Arguments.createArguments(0) generator_machine.forward(gen_inputs, gen_outputs, api.PASS_TEST) fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat() @@ -136,33 +148,27 @@ def get_training_loss(training_machine, inputs): loss = outputs.getSlotValue(0).copyToNumpyMat() return numpy.mean(loss) -def prepare_discriminator_data_batch_pos(batch_size, data_np, sample_noise): +def prepare_discriminator_data_batch_pos(batch_size, data_np): real_samples = get_real_samples(batch_size, data_np) labels = numpy.ones(batch_size, dtype='int32') - inputs = api.Arguments.createArguments(3) - inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(real_samples)) - inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise)) - inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels)) + inputs = api.Arguments.createArguments(2) + inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(real_samples)) + inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels)) return inputs -def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise, - sample_noise): +def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise): fake_samples = get_fake_samples(generator_machine, batch_size, noise) - #print fake_samples.shape labels = numpy.zeros(batch_size, dtype='int32') - inputs = api.Arguments.createArguments(3) - inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(fake_samples)) - inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise)) - inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(labels)) + inputs = api.Arguments.createArguments(2) + inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(fake_samples)) + inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels)) return inputs -def prepare_generator_data_batch(batch_size, noise, sample_noise): +def prepare_generator_data_batch(batch_size, noise): label = numpy.ones(batch_size, dtype='int32') - #label = numpy.zeros(batch_size, dtype='int32') - inputs = api.Arguments.createArguments(3) - inputs.setSlotValue(0, api.Matrix.createGpuDenseFromNumpy(noise)) - inputs.setSlotValue(1, api.Matrix.createGpuDenseFromNumpy(sample_noise)) - inputs.setSlotIds(2, api.IVector.createGpuVectorFromNumpy(label)) + inputs = api.Arguments.createArguments(2) + inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise)) + inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(label)) return inputs @@ -181,7 +187,7 @@ def get_layer_size(model_conf, layer_name): def main(): parser = argparse.ArgumentParser() - parser.add_argument("-d", "--dataSource", help="mnist or cifar") + parser.add_argument("-d", "--dataSource", help="mnist or cifar or uniform") parser.add_argument("--useGpu", default="1", help="1 means use gpu for training") parser.add_argument("--gpuId", default="0", @@ -189,22 +195,31 @@ def main(): args = parser.parse_args() dataSource = args.dataSource useGpu = args.useGpu - assert dataSource in ["mnist", "cifar"] + assert dataSource in ["mnist", "cifar", "uniform"] assert useGpu in ["0", "1"] api.initPaddle('--use_gpu=' + useGpu, '--dot_period=10', '--log_period=100', '--gpu_id=' + args.gpuId) - gen_conf = parse_config("gan_conf_image.py", "mode=generator_training,data=" + dataSource) - dis_conf = parse_config("gan_conf_image.py", "mode=discriminator_training,data=" + dataSource) - generator_conf = parse_config("gan_conf_image.py", "mode=generator,data=" + dataSource) + + if dataSource == "uniform": + conf = "gan_conf.py" + num_iter = 10000 + else: + conf = "gan_conf_image.py" + num_iter = 1000 + + gen_conf = parse_config(conf, "mode=generator_training,data=" + dataSource) + dis_conf = parse_config(conf, "mode=discriminator_training,data=" + dataSource) + generator_conf = parse_config(conf, "mode=generator,data=" + dataSource) batch_size = dis_conf.opt_config.batch_size noise_dim = get_layer_size(gen_conf.model_config, "noise") - sample_dim = get_layer_size(dis_conf.model_config, "sample") if dataSource == "mnist": - data_np = load_mnist_data("./data/raw_data/train-images-idx3-ubyte") - else: + data_np = load_mnist_data("./data/mnist_data/train-images-idx3-ubyte") + elif dataSource == "cifar": data_np = load_cifar_data("./data/cifar-10-batches-py/") + else: + data_np = load_uniform_data() if not os.path.exists("./%s_samples/" % dataSource): os.makedirs("./%s_samples/" % dataSource) @@ -234,48 +249,44 @@ def main(): copy_shared_parameters(gen_training_machine, dis_training_machine) copy_shared_parameters(gen_training_machine, generator_machine) + # constrain that either discriminator or generator can not be trained + # consecutively more than MAX_strike times curr_train = "dis" curr_strike = 0 - MAX_strike = 10 + MAX_strike = 5 for train_pass in xrange(100): dis_trainer.startTrainPass() gen_trainer.startTrainPass() - for i in xrange(1000): -# data_batch_dis = prepare_discriminator_data_batch( -# generator_machine, batch_size, noise_dim, sample_dim) -# dis_loss = get_training_loss(dis_training_machine, data_batch_dis) + for i in xrange(num_iter): noise = get_noise(batch_size, noise_dim) - sample_noise = get_sample_noise(batch_size, sample_dim) data_batch_dis_pos = prepare_discriminator_data_batch_pos( - batch_size, data_np, sample_noise) + batch_size, data_np) dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos) - sample_noise = get_sample_noise(batch_size, sample_dim) data_batch_dis_neg = prepare_discriminator_data_batch_neg( - generator_machine, batch_size, noise, sample_noise) + generator_machine, batch_size, noise) dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg) dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0 data_batch_gen = prepare_generator_data_batch( - batch_size, noise, sample_noise) + batch_size, noise) gen_loss = get_training_loss(gen_training_machine, data_batch_gen) if i % 100 == 0: print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg) print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss) - if (not (curr_train == "dis" and curr_strike == MAX_strike)) and ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss_neg > gen_loss): + if (not (curr_train == "dis" and curr_strike == MAX_strike)) and \ + ((curr_train == "gen" and curr_strike == MAX_strike) or dis_loss > gen_loss): if curr_train == "dis": curr_strike += 1 else: curr_train = "dis" curr_strike = 1 dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg) - dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos) -# dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"]) -# print "getForwardOutput loss is %s" % dis_loss + dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos) copy_shared_parameters(dis_training_machine, gen_training_machine) else: @@ -290,10 +301,11 @@ def main(): dis_trainer.finishTrainPass() gen_trainer.finishTrainPass() - - fake_samples = get_fake_samples(generator_machine, batch_size, noise) - saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass)) + if dataSource == "uniform": + plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass)) + else: + saveImages(fake_samples, "./%s_samples/train_pass%s.png" % (dataSource, train_pass)) dis_trainer.finishTrain() gen_trainer.finishTrain() -- GitLab