diff --git a/paddle/fluid/inference/tests/api/CMakeLists.txt b/paddle/fluid/inference/tests/api/CMakeLists.txt index 9aa9db031cd46c9d537bd686f0b23f4c9ae71de6..e8da6255b324305af0bcd67943fd36c35ce703d2 100644 --- a/paddle/fluid/inference/tests/api/CMakeLists.txt +++ b/paddle/fluid/inference/tests/api/CMakeLists.txt @@ -90,6 +90,11 @@ set(SEQ_CONV1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/seq_conv1") download_model_and_data(${SEQ_CONV1_INSTALL_DIR} "seq_conv1_model.tar.gz" "seq_conv1_data.txt.tar.gz") inference_analysis_api_test(test_analyzer_seq_conv1 ${SEQ_CONV1_INSTALL_DIR} analyzer_seq_conv1_tester.cc) +# seq_pool1 +set(SEQ_POOL1_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/seq_pool1") +download_model_and_data(${SEQ_POOL1_INSTALL_DIR} "seq_pool1_model.tar.gz" "seq_pool1_data.txt.tar.gz") +inference_analysis_api_test(test_analyzer_seq_pool1 ${SEQ_POOL1_INSTALL_DIR} analyzer_seq_pool1_tester.cc) + # ocr set(OCR_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/ocr") if (NOT EXISTS ${OCR_INSTALL_DIR}) @@ -108,10 +113,6 @@ inference_analysis_api_test_with_refer_result(test_analyzer_mobilenet_transpose inference_analysis_api_test_with_fake_data(test_analyzer_resnet50 "${INFERENCE_DEMO_INSTALL_DIR}/resnet50" analyzer_resnet50_tester.cc "resnet50_model.tar.gz") -# seq_pool1 -inference_analysis_api_test_with_fake_data(test_analyzer_seq_pool1 -"${INFERENCE_DEMO_INSTALL_DIR}/seq_pool1" analyzer_seq_pool1_tester.cc "seq_pool1.tar.gz") - # mobilenet with depthwise_conv op inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv "${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz") diff --git a/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc b/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc index 2ae840fd11f627d845a20a59ab14118516311d22..30ebfbebf385f000d7fd5c7f7952d271eba02fac 100644 --- a/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc +++ b/paddle/fluid/inference/tests/api/analyzer_seq_pool1_tester.cc @@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include #include #include #include "paddle/fluid/inference/tests/api/tester_helper.h" @@ -20,6 +21,106 @@ namespace paddle { namespace inference { namespace analysis { +struct OneSlotInBatch { + std::string name; + std::vector> data; + std::vector shape; + std::vector lod; +}; + +struct DataRecord { + std::vector> batched_data; + std::map>> datasets; + size_t batch_iter{0}, num_samples; // total number of samples + + DataRecord() = default; + explicit DataRecord(const std::string &path, int batch_size = 1) { + Load(path); + Prepare(batch_size); + } + + void Load(const std::string &path) { + std::ifstream file(path); + constexpr int num_slots = 154; + std::string line; + int num_lines = 0; + while (std::getline(file, line)) { + num_lines++; + std::vector data; + split(line, '\t', &data); + std::vector slot_data; + split_to_float(data[1], ' ', &slot_data); + std::string name = data[0]; + PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0, + "line %d, %s should be divisible", num_lines, name); + datasets[name].emplace_back(std::move(slot_data)); + } + num_samples = num_lines / num_slots; + PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast(num_lines), + "num samples should be divisible"); + PADDLE_ENFORCE_GT(num_samples, 0); + } + + void Prepare(int bs) { + for (auto it = datasets.begin(); it != datasets.end(); ++it) { + PADDLE_ENFORCE_EQ(it->second.size(), num_samples, + "size of each slot should be equal"); + } + size_t num_batches = num_samples / bs; + EXPECT_GT(num_batches, 0); + batched_data.resize(num_batches); + for (auto &one_batch : batched_data) { + one_batch.resize(datasets.size()); + size_t i = 0; + for (auto it = datasets.begin(); it != datasets.end(); ++it) { + auto &slot = one_batch[i]; + slot.name = it->first; + slot.data.resize(bs); + slot.lod.resize(bs + 1); + slot.lod[0] = 0; + auto &lod = slot.lod; + auto &datas = it->second; + for (int k = 0; k < bs; ++k) { + size_t id = k + batch_iter * bs; + std::copy(datas[id].begin(), datas[id].end(), + std::back_inserter(slot.data[k])); + size_t len = datas[id].size() / 11; + PADDLE_ENFORCE_EQ(len * 11, datas[id].size(), + "%s %d size should be divisible", slot.name, id); + lod[k + 1] = lod[k] + len; + } + slot.shape.assign({static_cast(lod[bs]), 11}); + i++; + } + } + } + + const std::vector &NextBatch() { + if (batch_iter >= batched_data.size() - 1) { + batch_iter = -1; + } + return batched_data[++batch_iter]; + } +}; + +static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) { + tensor->name = slot.name + "_embed"; + tensor->shape = slot.shape; + tensor->dtype = PaddleDType::FLOAT32; + tensor->lod.clear(); + tensor->lod.emplace_back(slot.lod); + TensorAssignData(tensor, slot.data); +} + +void PrepareInputs(std::vector *input_slots, DataRecord *data) { + const auto &one_batch = data->NextBatch(); + input_slots->resize(one_batch.size()); + for (size_t i = 0; i < one_batch.size(); ++i) { + auto &slot = one_batch[i]; + TensorAssignSlot(&((*input_slots)[i]), slot); + } +} + void SetConfig(AnalysisConfig *cfg) { cfg->param_file = FLAGS_infer_model + "/params"; cfg->prog_file = FLAGS_infer_model + "/model"; @@ -27,62 +128,22 @@ void SetConfig(AnalysisConfig *cfg) { cfg->device = 0; cfg->enable_ir_optim = true; cfg->specify_input_name = true; + cfg->pass_builder()->TurnOnDebug(); cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads); } void SetInput(std::vector> *inputs) { - std::vector feed_names = { - "slot10000_embed", "slot10001_embed", "slot10004_embed", - "slot10005_embed", "slot10008_embed", "slot10009_embed", - "slot10012_embed", "slot10013_embed", "slot10108_embed", - "slot13324_embed", "slot13325_embed", "slot13326_embed", - "slot13327_embed", "slot13328_embed", "slot13329_embed", - "slot13330_embed", "slot13331_embed", "slot15501_embed", - "slot15502_embed", "slot15503_embed", "slot15504_embed", - "slot15505_embed", "slot15506_embed", "slot15507_embed", - "slot15508_embed", "slot15516_embed", "slot15519_embed", - "slot15523_embed", "slot15531_embed", "slot15533_embed", - "slot15548_embed", "slot15564_embed", "slot15565_embed", - "slot15566_embed", "slot15570_embed", "slot15571_embed", - "slot15572_embed", "slot15573_embed", "slot15574_embed", - "slot15575_embed", "slot15576_embed", "slot15577_embed", - "slot15579_embed", "slot15581_embed", "slot15582_embed", - "slot15583_embed", "slot15584_embed", "slot5016_embed", - "slot5021_embed", "slot6002_embed", "slot6003_embed", - "slot6004_embed", "slot6005_embed", "slot6006_embed", - "slot6007_embed", "slot6008_embed", "slot6009_embed", - "slot6011_embed", "slot6014_embed", "slot6015_embed", - "slot6023_embed", "slot6024_embed", "slot6025_embed", - "slot6027_embed", "slot6029_embed", "slot6031_embed", - "slot6034_embed", "slot6035_embed", "slot6036_embed", - "slot6037_embed", "slot6039_embed", "slot6048_embed", - "slot6050_embed", "slot6058_embed", "slot6059_embed", - "slot6060_embed", "slot6066_embed", "slot6067_embed", - "slot6068_embed", "slot6069_embed", "slot6070_embed", - "slot6071_embed", "slot6072_embed", "slot6073_embed", - "slot6182_embed", "slot6183_embed", "slot6184_embed", - "slot6185_embed", "slot6186_embed", "slot6188_embed", - "slot6189_embed", "slot6190_embed", "slot6201_embed", - "slot6202_embed", "slot6203_embed", "slot6247_embed", - "slot6248_embed", "slot6250_embed", "slot6251_embed", - "slot6807_embed", "slot6808_embed", "slot6809_embed", - "slot6810_embed", "slot6811_embed", "slot6812_embed", - "slot6813_embed", "slot6814_embed", "slot6815_embed", - "slot6816_embed", "slot6817_embed", "slot6818_embed", - "slot6819_embed", "slot6820_embed", "slot6822_embed", - "slot6823_embed", "slot6826_embed", "slot7002_embed", - "slot7003_embed", "slot7004_embed", "slot7005_embed", - "slot7006_embed", "slot7008_embed", "slot7009_embed", - "slot7010_embed", "slot7011_embed", "slot7013_embed", - "slot7014_embed", "slot7015_embed", "slot7016_embed", - "slot7017_embed", "slot7019_embed", "slot7100_embed", - "slot7506_embed", "slot7507_embed", "slot7514_embed", - "slot7515_embed", "slot7516_embed"}; - SetFakeImageInput(inputs, FLAGS_infer_model, true, "model", "params", - &feed_names); + DataRecord data(FLAGS_infer_data, FLAGS_batch_size); + std::vector input_slots; + int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1; + LOG(INFO) << "number of samples: " + << data.batched_data.size() * FLAGS_batch_size; + for (int bid = 0; bid < epoch; ++bid) { + PrepareInputs(&input_slots, &data); + (*inputs).emplace_back(input_slots); + } } -// Easy for profiling independently. void profile(bool use_mkldnn = false) { AnalysisConfig cfg; SetConfig(&cfg); @@ -100,6 +161,17 @@ void profile(bool use_mkldnn = false) { TEST(Analyzer_seq_pool1, profile) { profile(); } +// Compare result of NativeConfig and AnalysisConfig +TEST(Analyzer_seq_pool1, compare) { + AnalysisConfig cfg; + SetConfig(&cfg); + + std::vector> input_slots_all; + SetInput(&input_slots_all); + CompareNativeAndAnalysis( + reinterpret_cast(&cfg), input_slots_all); +} + // Check the fuse status TEST(Analyzer_seq_pool1, fuse_statis) { AnalysisConfig cfg;